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Concurrency : Software and Challenges

• Ubiquitous computing paradigm 

• Back-bone of big-data and AI revolution
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• Challenging to develop concurrent software

• Large interleaving space

• Data Races

• are most common problems

• manifest in production despite rigorous testing

• hard to even reproduce!

A data race occurs when  
the program accesses  

a shared memory location  
from two different threads 
concurrently without any 

synchronisation



Race detected

Not detected

Analysis

Dynamic Analysis for Detecting Data Races

Execution
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Soundness Scalability

High Recall

Algorithms for Data Race Detection
3

Existing 
techniques

Existing  
techniques

Existing 
techniques

No false 
positives

Executions 
typically have 

billions of 
events

Does not 
miss many 

bugs

Bug found

Not found

What constitutes a good  
Dynamic Analysis Algorithm for 
Concurrency Bug Detection ?

This  
talk



Concurrent Programs and Traces
4

• Threads

• Shared memory

• Locks for mutual exclusion

• Critical sections cannot overlap

Concurrent Program

t1 t2

 synchronized(l){

 x := 42

y := 1

  }

if(x == 42){

y := 2

 }



Concurrent Programs and Traces
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t1 t2

 synchronized(l){

 x := 42

y := 1

  }

if(x == 42){

y := 2

 }

Concurrent Program

t1 t2

1 acq(l)

2 w(x)

3 w(y)

4 r(x)

5 rel(l)

6 w(y)

Execution trace



Concurrent Programs and Traces
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t1 t2

1 acq(l)

2 w(x)

3 w(y)

4 r(x)

5 rel(l)

6 w(y)

Execution trace

Event operations:

• Acquire and release of locks

• Access to memory locations



Data Race Prediction : Fundamentals



Consecutive

Data Races

1. Same memory location
2. Different threads
3. At least one writeAn execution has data race if

• pair of conflicting events

• concurrent
Data Race
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t1 t2

acq(l)

w(x)

r(x)

rel(l)

Data Race
Detection

(1) Execute program and observe trace
(2) Check if data race exists in the observed trace



or concurrent

Data Race Detection

1. Same memory location
2. Different threads
3. At least one writeAn execution has data race if

• pair of conflicting events

• consecutive
Data Race

6

t1 t2

acq(l)

w(x)

r(x)

rel(l)

Data Race
Detection

Prone to missing data races:

• Executions are sensitive to thread scheduling

• Even multiple runs may not help

Can we do better?



or concurrent

Data Race Prediction
1. Same memory location
2. Different threads
3. At least one writeAn execution has data race if

• pair of conflicting events

• consecutive
Data Race
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Data Race 
Prediction

t1 t2

acq(l)

w(x)

rel(l)

r(x)

t1 t2

acq(l)

w(x)

r(x)

rel(l)

R
eo

rd
er

in
gData Race

Detection
Prone to missing data races:

• Executions are sensitive to thread scheduling

• Even multiple runs may not help

Reorder executions to expose data races



Which reorderings are allowed?
7

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

Reordering 1

Reordering

t1 t2

acq(l)

w(x)

r(x)

w(y)

w(y)

rel(l)

✔︎



✔︎Reordering 1

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

Which reorderings are allowed?
7

some reorderings may not be allowed in some programs

?Reordering 2

Source agnostic analysis:



✔︎Reordering 1

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

Which reorderings are allowed?
7

some reorderings may not be allowed in some programs

❌

t1 t2

 sync(l) {

 x := 42

y := 1

  }

if(x == 42){

y := 2

 }

Initially,  x == 0 and y == 0

Reordering 2Possible source program

Source agnostic analysis:



❌Reordering 2

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

t1 t2

acq(l)

w(x)

w(y)

rel(l)

r(x)

w(y)

Which reorderings are allowed?
7

✔︎

t1 t2

 sync(l) {

 x := 42

y := 1

  }

if(x == 42){

y := 2

 }

Initially,  x == 0 and y == 0

Reordering 1 Possible source program

some reorderings are always allowedSource agnostic analysis:



Correct reordering*

Which reorderings are allowed?
7

Reorderings must satisfy some properties -

1. Preserve lock semantics

• critical sections on same lock don’t overlap

2. Preserve intra-thread ordering

3. Preserve control flow

• Every read sees its original write

t1 t2

acq(l)

w(x)

rel(l)

r(x)

Any program that generates the observed execution must also 
generate the reordering

t1 t2

acq(l)

w(x)

rel(l)

r(x)

t1 t2

acq(l)

w(x)

rel(l)

acq(l)

rel(l)

❌ ❌

* Şerbănuţă et al, Maximal Causal Models for Sequentially Consistent Systems, RV 2012

✔︎❌



Soundness Scalability

High Recall

Algorithms for Data Race Detection

Existing 
techniques

Existing  
techniques

Existing 
techniques

No false 
positives

Executions 
typically have 

billions of 
events

Does not 
miss many 

bugs

Bug found

Not found

What constitutes a good  
Dynamic Analysis Algorithm for 
Concurrency Bug Detection ?

This  
talk

Prediction  
can address this



Data Race Prediction
Given an execution σ, is there a correct reordering with a data race?Data Race 

Prediction

8

❌

Observed 
execution

Space of all correct 
reorderings

Correct reordering 
with a data race

Underlying 
program is guaranteed 

to have a data race



Data Race Prediction : Prior Techniques
Given an execution σ, is there a correct reordering with a data race?Data Race 

Prediction
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Existing Techniques

Explicit 
enumeration1

Constraint 
based2

Happens-Before 
(HB)3

Scalability

Predictive 
Power

{• All possible reorderings
• Exponential search

• Small space of reorderings
• Linear time algorithm

1. Sen et. al., Detecting Errors in Multithreaded Programs by Generalized Predictive Analysis of Executions, FMOODS 2005

3. Lamport, Time, clocks, and the ordering of events in a distributed system, CACM 1978
2. Said et. al., Generating Data Race Witnesses by an SMT-Based Analysis, NFM 2011



• ≤HB orders events of an execution σ as follows

1. Intra-thread ordering

2. Critical sections on the same lock are ordered as in σ
• release of earlier to acquire of later

• Race if conflicting events are not ordered

• Sound - no false alarms

• Race detection algorithm

• Linear time

• One pass streaming (does not store the trace)

t1 t2

1 w(x)

2 acq(l)

3 rel(l)

4 acq(l)

5 rel(l)

6 w(x)

Happens-Before
9



t1 t2

1 w(x)

2 acq(l)

3 rel(l)

4 acq(l)

5 rel(l)

6 w(x)

Happens-Before
9

• ≤HB orders events of an execution σ as follows

1. Intra-thread ordering

2. Critical sections on the same lock are ordered as in σ
• release of earlier to acquire of later

• Race if conflicting events are not ordered

• Sound - no false alarms

• Race detection algorithm

• Linear time

• One pass streaming (does not store the trace)

No race reported by HB



t1 t2

1 acq(l)

2 rel(l)

3 w(x)

4 w(x)

5 acq(l)

6 rel(l)

Happens-Before
9

HB is too conservative. 
Misses simple data races

• ≤HB orders events of an execution σ as follows

1. Intra-thread ordering

2. Critical sections on the same lock are ordered as in σ
• release of earlier to acquire of later

• Race if conflicting events are not ordered

• Sound - no false alarms

• Race detection algorithm

• Linear time

• One pass streaming (does not store the trace)



Weak Causal Precedence†

†Dynamic Race Prediction in Linear Time, PLDI 2017



Tackling the Conservativeness of HB

• Space of reorderings = all linearizations of ≤HB

• ≤HB orders too many events 

• Can we relax some HB-orderings?

• Naively ⇒ infeasible reorderings

• Careful analysis ⇒ expensive

10

acq(l)

rel(l)

acq(l)

rel(l)

≤HB orders all critical sections 
on the same lock

Can we balance 
soundness, and 

scalability and still get 
better prediction 
power than HB?



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

†Dynamic Race Prediction in Linear Time, PLDI 2017

11

WCP identifies when to order critical sections on common lock

If critical sections contain events conflicting events,  
then they can’t be reordered



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

†Dynamic Race Prediction in Linear Time, PLDI 2017

11

WCP identifies when to order critical sections on common lock



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

†Dynamic Race Prediction in Linear Time, PLDI 2017

11

WCP identifies when to order critical sections on common lock

If critical sections contain events (inductively) ordered by WCP,  
then they can’t be reordered.



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

acq(l)

e1
rel(l)

acq(l)

e2
rel(l)

<
W

CP

†Dynamic Race Prediction in Linear Time, PLDI 2017

11

WCP identifies when to order critical sections on common lock



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

acq(l)

e1
rel(l)

acq(l)

e2
rel(l)

<
W

CP

†Dynamic Race Prediction in Linear Time, PLDI 2017
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WCP identifies when to order critical sections on common lock

Ensure Soundness



Weak Causal Precedence†

• <WCP orders events of an execution σ as follows

1. Critical sections C1, C2 on same lock are ordered when  
they contain conflicting events e1∈C1, e2∈C2 : 
                    rel(C1) <WCP e2

2. Critical sections C1, C2 on same lock are ordered when  
they contain events e1∈C1, e2∈C2 ordered by WCP : 
                   rel(C1) <WCP rel(C2).

3. <WCP composes with ≤HB 

                                 <WCP o ≤HB ⊆ <WCP  
                      ≤HB o <WCP ⊆ <WCP

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

acq(l)

e1
rel(l)

acq(l)

e2
rel(l)

<
W

CP

e1

e2

e3

≤
HB

<
W

CP

†Dynamic Race Prediction in Linear Time, PLDI 2017
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WCP identifies when to order critical sections on common lock



WCP Soundness

Theorem (Weak Soundness for WCP). 
Let σ be a trace and let (e1, e2) be a pair of conflicting events  
in σ, unordered by <WCP.  
Then, there is a correct reordering of σ that exhibits a 
data race or a deadlock.

12



HB v/s WCP

HB orders all critical 
sections on the same lock

acq(l)

rel(l)

acq(l)

rel(l)

WCP selectively orders critical 
sections on the same lock

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

acq(l)

e1
rel(l)

acq(l)

e2
rel(l)

<
W

CP

All races reported by HB are also reported by WCP 1

Every ≤WCP ordering is also an ≤HB ordering

WCP detects more races than HB2

≤WCP places fewer orderings than ≤HB

13



Race Detection Algorithm using WCP
14

• Linear time, one pass streaming
• Does not store the entire trace

• Processes each event as it occurs

• Constant time processing for each event

• Detects races (conflicting events unordered by WCP) as 
they occur

• Vector-clock algorithm

github.com/umangm/rapid

Algorithm Implementation

http://github.com/umangm/rapid
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Explicit 
enumeration

Symbolic 
(SAT/SMT)

Happens-
Before 

Scalability

Predictive 
Power

Balance of scalability 
and predictive power

• 18 benchmarks  
(Dacapo, Apache projects, IBM 
Contest suite, Java Grande Forum)

• Trace sizes -  50 to 216M

144 s

198 s

 2258 s

Avg. Time

HB

WCP

SMT*

Techniques

182

190

51

Races

* RVPredict (Commercial race detector)

WCP Evaluation

Number of events

Time

HB

WCP

Weak Causal 
Precedence (WCP)



Synchronization Preserving Races†

†Optimal Prediction of Synchronization-Preserving Races, POPL 2021
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• Scalability

• Soundness

Pros

• Misses simple races

Consacq(l)

rel(l)

acq(l)

rel(l)

HB orders all critical sections 
on the same lock

HB-principle:  Consider all 
reorderings in which the order of 
critical sections is the same as the 
original trace

Can we - 

• Reason about correct reorderings beyond the purview of HB

• While still sticking to the HB-principle

Tackling the Conservativeness of HB (yet again)



Synchronization Preserving Races
17

A correct reordering σ* of σ is 
synchronization preserving if

• for every two critical sections  
C1 and C2 on the same lock, 

• if both C1 and C2 occur in σ*,  
then they must occur in the  
same order as in σ.

t1 t2 t3

w(x)

acq(l)

rel(l)

acq(l)

w(x)

rel(l)

acq(l)

r(x)

rel(l)

t1 t2 t3

acq(l)

w(x)

rel(l)

acq(l)

r(x)

w(x)

rel(l)

Reordering

Order of  
remaining critical 

sections is same



Synchronization Preserving Races
18

A race (e1, e2) is called a sync-preserving race if it is witnessed by a sync-preserving correct reordering 

t1 t2

w(y)

acq(l)

r(x)

rel(l)

acq(l)

w(x)

rel(l)

w(y)

t1 t2

acq(l)

w(x)

rel(l)

w(y)

w(y)

Sync-peserving  
Reordering



Detecting Sync-Preserving Races
19

Search for set  
of events in the 

reordering

Search for  
linearization of  

the set of events
+=

Search for a  
sync-preserving 

reordering

O(n) time O(1) time

Theorem. 
The problem of checking if a trace σ has a sync-preserving race 
can be solved in O(n) time and O(n) space.



Algorithm: Key Ideas
20

Lemma. 
Let ρ be a sync-preserving reordering of σ that witnesses a race (e1, e2).
Let ρ* = σ|Events(ρ). Then ρ* is also a sync-preserving reordering that 
witnesses the race (e1, e2)

If (e1, e2) is witnessed by a sync-preserving correct reordering ρ of the observed execution σ,  
then it is also witnessed by a trace, all whose events are ordered as in σ.

Search for linearization  
of the set of events



Algorithm: Key Ideas
20

The  SPIdeal(e1, e2) is the smallest set I such that

• pred(e1)  I, pred(e1)  I (Thread predecessors of e1 and e1 are in I)
• For every event e, if e  I then pred(e)  I
• If a read event r  I then (the last write observed by r) lastWrite(r)  I
• For two acquire events acq1 < acq2 of the same lock , 

if acq1  I, acq2  I, then match(acq2)  I

∈ ∈
∈ ∈

∈ ∈
ℓ

∈ ∈ ∈

Lemma. 
If (e1, e2) is a sync-preserving race, then it is witnessed by a 
reordering ρ such that Events(ρ) = SPIdeal(e1, e2)

Search for set of events  
in the reordering



Algorithm and Complexity
21

Theorem. 
The problem of checking if a trace σ has a sync-preserving race 
can be solved in O(n) time and O(n) space.

• Generate the set SPIdeal(e1, e2)

• Check if e1 SPIdeal(e1, e2) and e2 SPIdeal(e1, e2)∉ ∉



HB v/s WCP v/s Sync-Preserving Races
22

acq(l)

rel(l)

acq(l)

rel(l)

HB orders all critical sections 
on the same lock

WCP selectively orders 
conflicting critical sections

acq(l)

w(x)
rel(l)

acq(l)

r(x)
rel(l)

acq(l)

rel(l)

acq(l)

rel(l)

acq(l)

rel(l)

Sync-preserving selects which 
critical sections to schedule

✔︎

❌

✔︎
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Sync-Preserving 
Races WCP RacesHB Races

All Predictable Races

HB v/s WCP v/s Sync-Preserving Races



23

t1 t2
w(x)

acq(l)
rel(l)

acq(l)
rel(l)
w(x)

HB ❌

Sync-Preserving ✔︎
WCP ✔︎

HB v/s WCP v/s Sync-Preserving Races

t1 t2
w(y)

acq(l)
r(x)

rel(l)
acq(l)
w(x)

rel(l)
w(y)

HB ❌

Sync-Preserving ✔︎
WCP ❌

t1 t2
acq(l)
r(x)

rel(l)
acq(l)
rel(l)
w(x)

HB ❌

Sync-Preserving ❌

WCP ✔︎

t1 t2
acq(m)
w(y)

acq(l)
r(x)

rel(l)
rel(m)

acq(m)
rel(m)
acq(l)
w(x)

rel(l)
w(y)

HB ❌

Sync-Preserving ❌

WCP ❌



• 30 benchmarks: Dacapo, Apache projects, IBM Contest suite, Java Grande Forum, SIR

• Trace sizes -  50 to 600M

Evaluation

Number of events

Time

SHB

WCP*
SyncP

24



Evaluation

1255

1240

1276

Racy Mem. Loc.

SHB

WCP*

SyncP

Techniques

157

134

178

Races

10M

8M

224M

Max Distance

235s

403s

321s

Avg Time

• 30 benchmarks: Dacapo, Apache projects, IBM Contest suite, Java Grande Forum, SIR

• Trace sizes -  50 to 600M

25



Explicit 
enumeration

Symbolic (SAT/
SMT)

Happens-Before 
(HB)

Scalability

Predictive 
Power

Algorithms for Data Race Prediction
26

SyncPWCP



How Hard is Data Race Prediction?†

†The Complexity of Dynamic Data Race Prediction, LICS 2020



Some History
Given an execution σ, is there a correct reordering of σ with a data race?Data Race 

Prediction

27

2012

CP partial 
order

20182017 2019

WCP  
partial order

Renewed 
interest

DC

SHB

M2

SDP

SyncP

Polynomial time algorithms, 
better than HB

DJIT+

DJIT

Happens-Before

Eraser1970 2003

Initial developments 
based on HB

20092007

Goldilocks FastTrack

SAT solving
Exhaustive 

enumeration

20112005

Explicit or Symbolic 
Search

Complexity

Completeness

PTIME Complexity

Completeness

Exponential Complexity

Completeness

PTIME



Some History
Given an execution σ, is there a correct reordering of σ with a data race?Data Race 

Prediction

27

DJIT+ 
(Vector clocks)

DJIT

1970 2000

2009

2011 2017

2012

1970 2018 2019

2007

Goldilocks

Happens-Before

Eraser

FastTrack

SAT solving

2005

Exhaustive 
enumeration

CP partial 
order

WCP  
partial order

Renewed 
interest

DC

SHB

M2

SDP

Initial developments 
based on HB

Polynomial time algorithms, 
better than HB

Explicit or Symbolic 
Search

Complexity

Completeness

PTIME Complexity

Completeness

Exponential

Is there a complete algorithm 
that runs in polynomial time?

What is the exact complexity of Data Race Prediction?

Complexity

Completeness

PTIME



How hard is Data Race Prediction?
28

Data Race 
Prediction

(Easy) Upper Bounds

1. NP 

• Guess an alternate reordering and check 

if it is a correct reordering

2. O(kn) - Enumeration based techniques:
• At every step, choose thread to execute

3. O(SAT(poly(n)) - SAT solving based 
techniques

• Is it NP-hard? Is enumeration unavoidable? 

• Is it polynomial time?

• Input: Trace σ and conflicting events e1 and e2 
[n events, k threads, d memory locations and locks]

• Output: YES iff there is a correct reordering of σ that exhibits data race (e1, e2).

Lower Bound



Extensive study of complexity theoretic questions in data race prediction†

General Case

1. Poly-time Upper bound (when k is constant)
O(TN2(T-1))Algorithm for race prediction

3. Restricting the space of input traces
• O(N2) time algorithm
• Matching (conditional) lower bound

4. Restricting the space of data races to be reported
• Linear time algorithm (parametric)

Special Cases

• Input: Trace σ and events e1 and e2 
[N events, T threads, V memory locations and L locks]

• Output: YES iff there is a correct reordering of σ that exhibits data race (e1, e2).

Data Race 
Prediction

2. Lower bound : W[1] hard in parameter T

• NP-hard in general

• Not likely to be FPT in T

exponential 
in T (not N)

Enumeration 
based approaches run in 

O(TN) time

28

†The Complexity of Dynamic Data Race Prediction, LICS 2020

How hard is Data Race Prediction?



Fine-Grained Hardness in Data Race Prediction†

†Dynamic Data Race Prediction through the Fine-Grained Lens, CONCUR 2021



Linear Time Checkable Notions
29

• Algorithm that runs in time proportional to N, on input traces containing N events

O(N*T)

Happens-Before Lockset Principle

O(N*L)

Synchronization Preserving

O(N*V*T3)

Is it possible to design purely linear time algorithms?

• Multiplicative dependence on other parameters - #threads (T),  #locks (L), #variables (V) 

• Linear only when parameters are constant!



Contributions
30

Study of fine-grained complexity of detecting races based on several notions

Given trace σ [N events, T threads, L locks, V variables], check if σ has a data raceData Race Detection

Lockset Principle Synchronization 
Preserving

Happens-Before

2. SETH-based O(N2) lower bound for read-

write races
3. Conditional impossibility of SETH-based 

super-linear lower bound for general 
races

1. Improved upper bound: O(N*min(T, L))

4. O(N3/2) lower bound based on hardness 

of model-checking of FO(∀∃∃)

O(N*T) O(N*V*T3)O(N*L)

9. SETH-based O(N3) 

lower bound for read-
write races

6. Improved upper bound for lock-set  
races: O(N*min(L,V))

7. Conditional impossibility of SETH-based 
super-linear lower bound for lock-set 
races

8. Hitting Set based O(N2) lower bound  

for lock-set races

5. SETH-based O(N2) lower bound  

for lock-cover races

†Dynamic Data Race Prediction through the Fine-Grained Lens, CONCUR 2021



Avenues for Future Work

• Best race detector that runs in linear time?

• Other concurrency bugs - deadlocks, atomicity violations 

• Complementing other techniques

• DPOR-style model checking

• Fuzzing

• controlled concurrency testing

• Other concurrency paradigms - message passing, distributed systems, 
weak memory
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Thank You !
Looking for students and postdocs!

umathur@comp.nus.edu.sg
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