
Bidding Games on Graphs:
In Theory and in Practice

Work in collaboration with Guy Avni and Kaushik Mallik

University of Haifa, IST Austria

1 2

1 2

Suman Sadhukhan

Talk at IARCS Verification Seminar

March 19, 2024

1

Games in Formal Verification

• Door opens iff the lift is at the
correct level

• Stops when someone calls
EMERGENCY!!

….

Games in Formal Verification

• Door opens iff the lift is at the
correct level

• Stops when someone calls
EMERGENCY!!

….

SystemEnvironement

i

o

Games in Formal Verification

• Door opens iff the lift is at the
correct level

• Stops when someone calls
EMERGENCY!!

….

System

Controller??

Environement

Specifications
written in LTL etc….

i

o

Games in Formal Verification

• Door opens iff the lift is at the
correct level

• Stops when someone calls
EMERGENCY!!

….

System

Controller??

Environement

Specifications
written in LTL etc….

i

o
Given a model of

interactions with the
environment, and a

specification that the system
needs to satisfy, does there
exist a controller who can

guarantee that?

Games in Formal Verification

• Door opens iff the lift is at the
correct level

• Stops when someone calls
EMERGENCY!!

….

System

Controller??

Environement

Specifications
written in LTL etc….

i

o
Given a model of

interactions with the
environment, and a

specification that the system
needs to satisfy, does there
exist a controller who can

guarantee that?

We construct a two-player zero-sum game which
models the interactions, encode specs in winning

conditions, and  
Winning strategy == correct-by-design controller

a

b
e

g

c

d f

h

t

Background: Turn-based Graph Games

a

b
e

g

c

d f

h

t

Background: Turn-based Graph Games

a

b
e

g

c

d f

h

t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

a

b
e

g

c

d f

h

t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

a

b
e

g

c

d f

h

t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

a

b
e

g

c

d f

h

t

a b e g h t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

Winning Conditions: Reachability, Buchi, Parity

a

b
e

g

c

d f

h

t

a b e g h t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

Zero-sum games: Every infinite play has a winner

Winning Conditions: Reachability, Buchi, Parity

a

b
e

g

c

d f

h

t

a b e g h t

Background: Turn-based Graph Games

Bart Lisa

Turn-based: Players alternate turns in moving the token

Zero-sum games: Every infinite play has a winner

Winning Conditions: Reachability, Buchi, Parity

a

b
e

g

c

d f

h

t

a b e g h t

Background: Turn-based Graph Games

Decision Problem:

Input: A game graph , a winning condition for Bart, and initial
configuration (vertex) .

Output: Yes, iff Bart has a winning strategy for from in

𝒢 𝒲
v

𝒲 v 𝒢

Bart Lisa

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games

Both players have budgets
In each turn, each

player bids for getting
the turn to move the

token

Decision Problem:

Input: A game graph , a winning condition for Bart, and initial
configuration (vertex+budget) .

Output: Yes, iff Bart has a winning strategy for from in

𝒢 𝒲
c

𝒲 c 𝒢

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games

Both players have budgets
In each turn, each

player bids for getting
the turn to move the

token

Decision Problem:

Input: A game graph , a winning condition for Bart, and initial
configuration (vertex+budget) .

Output: Yes, iff Bart has a winning strategy for from in

𝒢 𝒲
c

𝒲 c 𝒢

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games

Both players have budgets
In each turn, each

player bids for getting
the turn to move the

token

Bidding Mechanisms

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

first-price, all-pay{ }

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

Higher bidder Both

first-price, all-pay{ }

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

Higher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }

pay the

bank

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }× discrete}{continuous,continuous, discrete{ }

pay the

bank

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }× discrete}{continuous,continuous, discrete{ }

pay the

bank arbitrary

fixed

granularity

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }× discrete}{continuous,continuous, discrete{ }

pay the

bank arbitrary

fixed

granularity

Bidding Mechanisms

In each turn, both players simultaneously submit “legal” bids, and

the higher bidder moves the token.

Who pays? Where? What?

pay the other

bidderHigher bidder Both

×first-price, all-pay{ } Richman, Poorman{ }× discrete}{continuous,continuous, discrete{ }

pay the

bank arbitrary

fixed

granularity

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Given a game and initial budgets, decide which player has
a winning bidding strategy from a given vertex.

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.75 + ϵ

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.75 + ϵ 0.25 − ϵ

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.75 + ϵ 0.25 − ϵ0.25

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.75 + ϵ 0.25 − ϵ0.25

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.5 + ϵ 0.5 − ϵ

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.5 + ϵ 0.5 − ϵ0.5 + ϵ

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0.5 + ϵ 0.5 − ϵ0.5 + ϵ

Total budget is normalised to 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Easy:

0 1

Total budget is normalised to 1

Can he do any better?

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?
Yes!

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?
Yes!

2
3

+ ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ ϵ
1
3

− ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ ϵ
1
3

− ϵ
1
3

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ ϵ
1
3

− ϵ
1
3

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

1
3

+ ϵ
2
3

− ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

1
3

+ ϵ
2
3

− ϵ
1
3

+ ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

<
1
3

+ ϵ

Total budget is normalised to 1

Can he do any better?

1
3

+ ϵ
2
3

− ϵ
1
3

+ ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

0 1

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

1
3

+ ϵ
2
3

− ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

1
3

+ ϵ
2
3

− ϵ>
1
3

+ ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ 2ϵ
1
3

− 2ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ 2ϵ
1
3

− 2ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Can he do any better?

2
3

+ 2ϵ
1
3

− 2ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Continue untill he has budget
, then he wins> 0.75

Can he do any better?

2
3

+ 2ϵ
1
3

− 2ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Total budget is normalised to 1

Continue untill he has budget
, then he wins> 0.75

Can he do any better than ?
2
3

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Can he do any better than ?
2
3

The answer is No!

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Can he do any better than ?
2
3

The answer is No!

2
3

− ϵ
1
3

+ ϵ

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Can he do any better than ?
2
3

The answer is No!

2
3

− ϵ
1
3

+ ϵ

2
3

1
3

01

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

Can he do any better than ?
2
3

The answer is No!

2
3

1
3

01

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

2
3

1
3

01

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

2
3

1
3

01

Theorem:

Bidding games are determined.

- Bart wins from , if he has budget

- Lisa wins from , if Bart has budget

v > Th(v)
v < Th(v)

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

2
3

1
3

01

Theorem [LLPU96, LLPSU99]:

(1) Threshold budgets exist

(2) They satisfy an average property

(3) Optimal bids can be derived from the threshold budgets

(4) In NP co-NP via a (simple) reduction to stochastic games∩

Theorem:

Bidding games are determined.

- Bart wins from , if he has budget

- Lisa wins from , if Bart has budget

v > Th(v)
v < Th(v)

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

2
3

1
3

01

Theorem [LLPU96, LLPSU99]:

(1) Threshold budgets exist

(2) They satisfy an average property

(3) Optimal bids can be derived from the threshold budgets

(4) In NP co-NP via a (simple) reduction to stochastic games∩

Optimal bids: b(v) =
Th(v+) − Th(v−)

2 Th(v) =
Th(v+) + Th(v−)

2

P.S. and are the max/min neighbours wrt Th()v+ v−

Theorem:

Bidding games are determined.

- Bart wins from , if he has budget

- Lisa wins from , if Bart has budget

v > Th(v)
v < Th(v)

Reachability first-price Richman continuous

[Lazarus, Loeb, Propp, Stromquist, Ullman ’96,’99]

How much initial budget is necessary & sufficient for Bart to win?

Part I (in Theory):
Discrete Bidding Games

Reachability first-price Richman discrete

[Develin & Payne. 2009]

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

Discrete

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

Discrete

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

8 10

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4 4

8 10

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4 4

8 10

12 6

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4 4

8 10

12 6

4 14

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4 4

8 10

12 6

4 14
Budgets are of the

form or B B*

Discrete

Tie breaking (when)b1 = b2

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4 4

8 10

12 6

4 14
Budgets are of the

form or B B*

Discrete

Tie breaking (when)b1 = b2

The possible budgets are as follows:
0 < 0* < 1 < 1 * …k < k* < k + 1

Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena: 𝒜 = ⟨k, V, E⟩
where is the total budgetk ∈ ℕ
A configuration is with (v, B1, B2) B1 + B2 = k

At each turn, Player bids an integer i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

Decision Problem:

Input: A game graph , total budget (encoded in binary),
Winning condition , and initial configuration ,
where Bart’s initial budget

Output: Yes iff Bart wins the game from with budget

𝒢 k
𝒲 ⟨v, B1, k ⊖ B1⟩

B1 =
v B1

Continuous vs Discrete Bidding

Reachabilityarbitrary fixed granularity

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary fixed granularity

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Buchi

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Buchi

Theorem[Avni, Henzinger, Chonev ’19]:

(Easily) Reduce to reachability games

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Buchi

Theorem[Avni, Henzinger, Chonev ’19]:

(Easily) Reduce to reachability games

Theorem[Aghajohari, Avni,
Henzinger ’21]:

Muller games are determined

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Buchi

Theorem[Avni, Henzinger, Chonev ’19]:

(Easily) Reduce to reachability games

Theorem[Aghajohari, Avni,
Henzinger ’21]:

Muller games are determined

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is exponential

Continuous vs Discrete Bidding

Theorem[LLPU ’96, LLPSU ’99]:

(1) Threshold budgets exist

(2) Threshold budgets satisfy average

property

(3) Bids are derived from the

thresholds

(4) Computing threshold budgets is in

NP coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:

A discrete version of (1)-(3) holds

EXPTIME Value iteration algorithm for
computing thresholds.

fixed granularity

Buchi

Theorem[Avni, Henzinger, Chonev ’19]:

(Easily) Reduce to reachability games

Theorem[Aghajohari, Avni,
Henzinger ’21]:

Muller games are determined

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is exponential

Buchi Games

u v wt

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Buchi Games

u v wt

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Buchi Games

u v wt

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Buchi Games

u v wt

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

visit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

⋮

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

⋮

≥

≥

≥

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

⋮

≥

≥

≥

Fixed Point Exists!

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

⋮

≥

≥

≥

Fixed Point Exists!

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average

property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is

exponential

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

visit with a target budget

(frugal-reachability)

V∖{t}

Fixed-point Algorithm for co-Buchi Games

u v wt

u
v

w

Determinacy [Aghajohari et al’21]

⇓

Computing Bart’s Buchi Threshold
≡

Computing Lisa’s coBuchi Threshold

t

u v

wvisit t finitely often

visit t never (safety)

visit with a target budgett

⋮

≥

≥

≥

Fixed Point Exists!

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average

property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is

exponential

Corollaries: [Avni & S.] 
(1) Threshold budgets satisfy a discrete average property.

(2) Optimal bids arise from the thresholds

Buchi winning condition:

Bart wins iff the set of target vertices is visited infinitely oftenT

Fixed-point algorithm for Parity Games

4 3 22

Parity Winning Condition:

Bart (Player 1) wins iff infinitely
occurring max priority is odd.

Fixed-point algorithm for Parity Games

4 3 22

Parity Winning Condition:

Bart (Player 1) wins iff infinitely
occurring max priority is odd.

tv

T1 = fr-parity(t, k + 1)

R1 = fr-Reach(v, T1)

T2 = fr-parity(t, R1)

.

.

.

Tn = fr-parity(t, Rn−1)
Rn = fr-Reach(v, Tn)

Tn+1 = fr-Parity(t, Rn)

Theorem:

ThParity(v) = Tn

Parity = dParity <= d-1

Ad
dit

ion
all

y:
Ind

uct
ion

 on

par
itie

s

Fixed-point algorithm for Parity Games

4 3 22

Parity Winning Condition:

Bart (Player 1) wins iff infinitely
occurring max priority is odd.

Corollaries: [Avni & S.] 
(1) Threshold budgets satisfy a discrete average property.

(2) Optimal bids arise from the thresholds

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is exponential

Fixed-point algorithm for Parity Games

4 3 22

Parity Winning Condition:

Bart (Player 1) wins iff infinitely
occurring max priority is odd.

tv

T1 = fr-parity(t, k + 1)

R1 = fr-Reach(v, T1)

T2 = fr-parity(t, R1)

.

.

.

Tn = fr-parity(t, Rn−1)
Rn = fr-Reach(v, Tn)

Tn+1 = fr-Parity(t, Rn)

Theorem:

ThParity(v) = Tn

Parity = dParity <= d-1

Ad
dit

ion
all

y:
Ind

uct
ion

 on

par
itie

s

Corollaries: [Avni & S.] 
(1) Threshold budgets satisfy a discrete average property.

(2) Optimal bids arise from the thresholds

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Best algorithm to compute them is exponential

Computing Threshold budgets for Parity Games

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Fa
il
s

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Fa
il
s

Go back to Step 1

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Fa
il
s

Go back to Step 1
Passes

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Fa
il
s

Go back to Step 1
Passes

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Construct a turn-based game of size poly in ,

verify if Player 1 wins from every vertex of

GT G
GT

Computing Threshold budgets for Parity Games

Guess a ,

and check if it satisfies the discrete average property.

T : V → [k + 1]

Fa
il
s

Go back to Step 1
Passes

such that ,

(denotes that the tie-

breaking advantage is needed)

T(v) = ⌊
|T(v+) | + |T(v−) |

2
⌋ + ε

ε = 0,1, or *
*

Construct a turn-based game of size poly in ,

verify if Player 1 wins from every vertex of

GT G
GT

We establish: 
 is winning for Player 1 iff Player 1
wins from every vertex of

T(v)
GT

From bidding to turn-based games

From bidding to turn-based games

v

u1

u2

u3

…

G

From bidding to turn-based games

v

u1

u2

u3

…

G

Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2

Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

⟨v, T(v)⟩

bT(v)

Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

⟨u2, T(v) ⊖ bT(v)⟩

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

⟨u3, T(v) ⊕ bT(v) ⊕ 1⟩

From bidding to turn-based games

v

u1

u2

u3

…

G

 gives rise to Player 1’s bid:T bT(v) ≈
T(v+) − T(v−)

2
Player 2’s two optimal responses: or 0 bT(v) ⊕ 1

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}Vertices: ⟨v, T(v)⟩ ⟨v, T(v) ⊕ 1⟩ ⟨v, ⊤ ⟩
, ,

⟨v, T(v)⟩
,

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

From bidding to turn-based games

v

u1

u2

u3

…

G

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

 Theorem: [Avni & S.] 
 1. If Player 1 wins from every vertex, then  
 2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

From bidding to turn-based games

v

u1

u2

u3

…

G

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

 Theorem: [Avni & S.] 
 1. If Player 1 wins from every vertex, then  
 2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

Repeat the same
with respect to
Player 2 (Lisa)

From bidding to turn-based games

v

u1

u2

u3

…

G

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

 Theorem: [Avni & S.] 
 1. If Player 1 wins from every vertex, then  
 2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

Remark:

Both and the winning strategy of

are the certificates.
T : V → [k + 1] GT

Repeat the same
with respect to
Player 2 (Lisa)

From bidding to turn-based games

v

u1

u2

u3

…

G

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

 Theorem: [Avni & S.] 
 1. If Player 1 wins from every vertex, then  
 2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

Remark:

Both and the winning strategy of

are the certificates.
T : V → [k + 1] GT

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Algorithm: membership in NP co-NP∩

Repeat the same
with respect to
Player 2 (Lisa)

From bidding to turn-based games

v

u1

u2

u3

…

G

⟨v, T(v)⟩

bT(v)

0
⟨v, T(v)⟩

⟨u1, T(v) ⊖ bT(v)⟩

⟨u3, T(v) ⊖ bT(v)⟩

⟨u1, T(v) ⊕ bT(v) ⊕ 1⟩

⟨u2, T(v) ⊕ bT(v) ⊕ 1⟩
bT(v) ⊕ 1

Keep only ’s such that 
these budgets are in  

 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then {T(ui), T(ui) ⊕ 1} ⊤

 Theorem: [Avni & S.] 
 1. If Player 1 wins from every vertex, then  
 2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

Remark:

Both and the winning strategy of

are the certificates.
T : V → [k + 1] GT

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Algorithm: membership in NP co-NP∩

Repeat the same
with respect to
Player 2 (Lisa)

Take Away - Part I

Theorem:

Finding Threshold budgets in parity discrete bidding games is NP co-NP.
∩

Take Away - Part I

Theorem:

Finding Threshold budgets in parity discrete bidding games is NP co-NP.
∩

Imrovement: Earlier only EXPTIME
algorithm was known for discrete
bidding (including Reachability)

Take Away - Part I

Theorem:

Finding Threshold budgets in parity discrete bidding games is NP co-NP.
∩

Imrovement: Earlier only EXPTIME
algorithm was known for discrete
bidding (including Reachability)

Corollary:

Polynomial size winning strategies exist.

Take Away - Part I

Theorem:

Finding Threshold budgets in parity discrete bidding games is NP co-NP.
∩

Imrovement: Earlier only EXPTIME
algorithm was known for discrete
bidding (including Reachability)

Corollary:

Polynomial size winning strategies exist.

Food for thought?

• Turn-based parity games are in NP co-NP, but not known to be in P.

• Turn-based parity games -> discrete bidding games with fixed budgets

• Discrete bidding parity games with budgets in binary -> membership in

NP co-NP

∩

∩

Part II (in Practice):  
Continuous Bidding Games in Multi-

objective Decentralised Synthesis

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

…bid value scheduling urgency…bid value scheduling urgency

Multi-objective Control Problem

…bid value scheduling urgency…bid value scheduling urgency

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

Multi-objective Control Problem

…bid value scheduling urgency…bid value scheduling urgency

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

Multi-objective Control Problem

…bid value scheduling urgency…bid value scheduling urgency

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

System

Controller

Env

ψ1 ∧ ψ2

Centralised Controller Synthesis

Multi-objective Control Problem

…bid value scheduling urgency…bid value scheduling urgency

Objective 2 ():

Recharge before battery runs out

ψ2

Objective 1 (): 
Repeatedly empty all trash cans

ψ1

System

Controller

Env

ψ1 ∧ ψ2

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Centralised Controller Synthesis De-centralised Controller Synthesis

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans

Objective 2:

Recharge before battery runs out

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Multi-objective Decentralised Controller Synthesis

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans

Auction-Based Scheduling:

Controllers = bidding strategies, scheduler

= bidding mechanism,

Objective 2:

Recharge before battery runs out

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Multi-objective Decentralised Controller Synthesis

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans

Auction-Based Scheduling:

Controllers = bidding strategies, scheduler

= bidding mechanism,

Objective 2:

Recharge before battery runs out

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

fairness: bid value scheduling urgency∝

Multi-objective Decentralised Controller Synthesis

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans

Auction-Based Scheduling:

Controllers = bidding strategies, scheduler

= bidding mechanism,

Objective 2:

Recharge before battery runs out

…bid value scheduling urgency…bid value scheduling urgency

Homer Marge

Modularity: If one objective changes, no
need to design a new controller for the

other objective as well.

fairness: bid value scheduling urgency∝

Multi-objective Decentralised Controller Synthesis

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

1
4

+ ϵ1

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

1
4

+ ϵ1

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
4

+ ϵ1
1
2

+ ϵ2

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
4

+ ϵ1
1
2

+ ϵ2

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
4

+ ϵ1
1
2

+ ϵ2

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
4

+ ϵ1
1
2

+ ϵ2 Sum of the budgets < 1

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
4

+ ϵ
3
4

− ϵ

3
4

− ϵ
1
4

+ ϵ

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

Auction-Based Scheduling

3
4

− ϵ
1
4

+ ϵ

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

ϵ <
1
4

Auction-Based Scheduling

3
4

− ϵ
1
4

+ ϵ

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

ϵ <
1
4

1
4

0

Auction-Based Scheduling

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

ϵ <
1
4

ϵ 1 − ϵ

Auction-Based Scheduling

ϵ 1 − ϵ

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

ϵ <
1
4

Auction-Based Scheduling

ϵϵ 1 − ϵ1 − ϵ

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

ϵ <
1
4

Auction-Based Scheduling

1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

0

Auction-Based Scheduling

1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

0

Auction-Based Scheduling

1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

0

Auction-Based Scheduling

1
4

+ ϵ1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
2

+ ϵ2 Sum of the budgets < 1

Auction-Based Scheduling

1
4

+ ϵ1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
2

+ ϵ2 Sum of the budgets < 1

“Strong” Synthesis: Winning strategies can be
synthesized (in decentralised manner) AND

composed without knowing other player’s objective

Auction-Based Scheduling

1
4

+ ϵ1

Wants to clear trash-cans

Wants to recharge the battery

Claim 1: Homer can fulfil his objective with any budget of >
1
4

Claim 2: Marge can fulfil his objective with any budget of >
1
2

1
2

+ ϵ2 Sum of the budgets < 1

But what if the
sum is ≥ 1

“Strong” Synthesis: Winning strategies can be
synthesized (in decentralised manner) AND

composed without knowing other player’s objective

Auction-Based Scheduling

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2 Sum of the budgets > 1

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2 Sum of the budgets > 1

FAILS!!

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2 Sum of the budgets > 1

FAILS!!

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2 Sum of the budgets > 1

FAILS!!

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”Homer
knows Marge wouldn’t
take this edge and

vice-versa

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

7
8

+ ϵ1
1
8

+ ϵ2 Sum of the budgets > 1

FAILS!!

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”

>
3
4

> 0

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”

>
3
4

> 0 Sum of the budgets < 1

Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

Solution? We let them know what the
other one’s objective is, and that they

play ``rationally”

>
3
4

> 0 Sum of the budgets < 1

“Assume-admissible” Synthesis: Winning strategies
can be synthesized (in decentralised manner) AND

composed after knowing the other player’s
objective, and their rational behaviour

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

(Some of the) Theorems (Avni, Mallik, and S.’ 24):

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

(Some of the) Theorems (Avni, Mallik, and S.’ 24):

• Strong Synthesis can be solved in , and in PTIME for binary

graphs. Moreover, for SCC and Buchi objectives, strong synthesis is always
possible.

NP ∩ coNP

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

(Some of the) Theorems (Avni, Mallik, and S.’ 24):

• Strong Synthesis can be solved in , and in PTIME for binary

graphs. Moreover, for SCC and Buchi objectives, strong synthesis is always
possible.

NP ∩ coNP

• Strong-synthesised controller in redundant-vertex-removed graph (if exists) =>
Assume-admissible controller for original graph [Sound solution but not complete]

….

For a given set of assumptions about the other controller

Input: A graph-arena G and two non-conflicting objectives

Output: Yes, if we can synthesise two controllers and schedule

them via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhat) Formally

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

• No knowledge about objective,

no assumption about behaviour,
quite flexible if solution exists

• Restricted solution space

Assume-admissible Synthesis:

• Knowledge about objective,

rational behavioural assumption,
less flexible

• Solution space expanded

Assume-guarantee synthesis:

• Knowledge about objective, exact

behavioural assumption, least
flexible

• Solution space expanded more

(Some of the) Theorems (Avni, Mallik, and S.’ 24):

• Strong Synthesis can be solved in , and in PTIME for binary

graphs. Moreover, for SCC and Buchi objectives, strong synthesis is always
possible.

NP ∩ coNP

• Strong-synthesised controller in redundant-vertex-removed graph (if exists) =>
Assume-admissible controller for original graph [Sound solution but not complete]

….

For a given set of assumptions about the other controller

Take Away - Part II

Decentralised Synthesis Problem:

Given a game arena , two overlapping winning objectives,
when can we synthesize two controllers and schedule them

so that both the objectives are satisfied.

𝒢

Take Away - Part II

• We propose a solution using bidding games

• We identify where some solution always exists, and analyse complexity

for finding solutions for qualitative objectives

• We show knowledge/assumption/flexibility tradeoff with solution space

Future work:

• Quantitative objectives?

• Complete solutions for assume-
admissibility, assume-guarantee?

• Multi-player bidding?

Decentralised Synthesis Problem:

Given a game arena , two overlapping winning objectives,
when can we synthesize two controllers and schedule them

so that both the objectives are satisfied.

𝒢

Recap: Bidding Games on Graphs
In Theory In Practice

Studied Richman first-price discrete
parity bidding games:

• Fixed-point algorithm gives nice
structure to the threshold budgets,

and optimal bids

• Showed membership in NP coNP by

using that structure and algorithm
for turn-based parity games

∩

Auction-Based Scheduling:

• Proposed a solution for

decentralised synthesis problem
using bidding for scheduling

mechanism

• Studied where such solution

always exists (graph arena,
objectives), where it gives

sound-but-incomplete
solution , and complexity

results

• Tradeoff between solution

space and behavioural solution

Recap: Bidding Games on Graphs

Thanks!

In Theory In Practice

Studied Richman first-price discrete
parity bidding games:

• Fixed-point algorithm gives nice
structure to the threshold budgets,

and optimal bids

• Showed membership in NP coNP by

using that structure and algorithm
for turn-based parity games

∩

Auction-Based Scheduling:

• Proposed a solution for

decentralised synthesis problem
using bidding for scheduling

mechanism

• Studied where such solution

always exists (graph arena,
objectives), where it gives

sound-but-incomplete
solution , and complexity

results

• Tradeoff between solution

space and behavioural solution

