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Turn-based: Players alternate turis in moving the token
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Turn-based: Players alternate turis in moving the token

Winning Conditions: Reachability, Bucht, Parity ~ 8
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Zero-sum games: Every infinite play has a winner \?\ A

Decision Problem:

Input: A game graph &, a winning condition 7 for Bart, and initial
confiquration (vertex) v.
Oubput: Yes, 4f Bart has a winning strategy for 7 from v in &
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Graph Games: Two-player zero-sum infinite-duration games

Both players have budqets
In each bturn, each

player bids for getting
the turn ko move the
toleen
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Both players have budqets
In each bturin, each

player bids for getting
the turn ko move the
toleen

Decision Problem:

Input: A game graph 9, a winhing condition 7/ for Bart, and initial
confiquration (vertex+budqet) c.
Qulput: 7es, UL Bart has a winning strateqy for W from c in @
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Both players have budqets
In each turn, each

rer bids for getting
e turin ko wmove the
toleen

Decision Problem:

Bart has o wihing strategy for W from c in G
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In each turih, both players simultaneously submit “legal” bids, and
the higher bidder moves the token.
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In each turh, both players simultaneously submit “legal” bids, and
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Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromquist, Ullman 96,99 ]




Reachability first—price Richman continuous
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Given o game and initial budgets, decide which player has o
a winning bidding strategy from a given vertex. (-
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Can he do any belbter?
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Can he do any belbter?
Yes!

o— 0

Tokal budgef: s hormalised to 1



[Lazarus, Loeb, Propp, Skromaquist, Ullman 96,99 ]
PP 9

(\

Reachability first—price Richman continuous

Can he do any belbter?
Yes!

Tokal budgef: s hormalised to 1



(\

Reachability first—price Richman continuous

[Lazarus, Loeb, Propp, Skromaquist, Ullman 96,99 ]
PP 9

Can he do any belbter?

Tokal budgef: s hormalised to 1



(\

Reachability first—price Richman continuous

[Lazarus, Loeb, Propp, Skromaquist, Ullman 96,99 ]
PP 9

Can he do any belbter?

Tokal budgef: s hormalised to 1



(\

Reachability first—price Richman continuous

[Lazarus, Loeb, Propp, Skromaquist, Ullman 96,99 ]
PP 9

Can he do any belbter?

Tokal budgef: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

\__I
N\ =
|
-+
M

\_

J (-

4
e

6

Tokal budgef: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

Y\ 1 1 1
‘\ — 44 c §+€ < —4 €
L[] l

N

6

Tokal budge.?: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

\__I
N\ =
|
-+
M

\_

J (-

4
e

6

Tokal budge.?: s hormalised to 1



Reachability first—price Richman continuous

[Lazarus, Loeb, Propp, Sktromaquist, Ullman 96,99 ]
PP 9

'f

Cawn he do any bekber?

0

budqet is 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

\__I
N\ =
|
-+
M

\_

J (-

4
e

6

Tokal budgef: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

Y\ | 1
‘\ - e C
o |
% |

s

6

Tokal budge.?: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

=

;

Tokal budgef: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any betber?

=

;

Tokal budgef: s hormalised to 1



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromquist, Ullman 96,99 ]

Can he do any bekter?




Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromquist, Ullman 96,99 ]

Con he do any bebber?




Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any better than = ?




Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any better than = ?

The answer s No!

L
‘ \
~)_/

n l

;



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any better than = ?

The answer s No!

L
‘ \
~)_/

n l

;



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any better than = ?

The answer s No!

L
‘ \
~)_/

n l

(\
@



Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

Can he do any better than = ?

The answer s No!

L
‘ \
~)_/

n l

(\
@



Reachability first—price Richman continuous

[Lazarus, Loeb, Propp, Skromaquist, Ullman 96,99 ]
PP 9

(\

How much initial budget is necessary & sufficient for Bart to win? @




Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromauist, Ullman 96,99 ]

How much initial budget is necessary & sufficient for Bart to win? Q‘

Theorem:
Bidding games are determined.
— Bart wins from v, if he has budge& > Th(v)
- Lisa wins from v, if Bart has budqget < Th(v)
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How much initial budqget is hecessary & sufficient for Bart ko win? Q‘

Theorem:
Bidding games are determined.
— Bart wins from v, if he has bu,cige& > Th(v)
- Lisa wins from v, if Bart has budqget < Th(v)
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Theorem [LLPUSG, LLPSU9]:
(1) Threshold budqets exist
() They satisfy an average property
(3) Optimal bids can be derived from the threshold budgets
(4) In NP N co-NP via a (sLmPLe) reduction to stochastic games




Reachability first—price Richman continuous
[Lazarus, Loeb, Propp, Stromquist, Ullman 96,99 ]

How much initial budget is necessary & sufficient for Bart to win? Q‘

Theorem:
Bidding games are determined.
— Bark wins from v, f he has budqget > Th(v)
- Lisa wins from v, if Bart has budqget < Th(v)

Theorem [LLPU2E, LLPSU99:

(1) Threshold budqets exist

() They satisfy an average property

(3)  Optimal bids can be c!\envec'x from the bhreshold budqets
(4) In NP N co-NP via a (stmple) reduction to stochastic games

P.S. v and v are the max/min neighbours wrt Th()
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[Develin & Payne. 009 ]

A bidding games is played o an arena: (K, V. E)
where k € N is the total budqget

At each turi, Player i bids an integer b, < B,
1f by > by, then Player 1 moves, m\c’\ B; = B, — b, B}

Tie breaking (when b, = b,) k
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Reachability first-price Richman discrete

[Develin & Payne. 009 ]

A bidding games is played o an arena: (K, V. E)
where k € N is the total budqget

At each turi, Player i bids an integer b, < B,
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1{ b, > b,, then Player 1 moves, ‘?M\‘{‘ B = B, —
Tie br&awm.q (whev\ b1 — b,,) | &% "
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Reachability first-price Richman discrete
[ Develin & ?O‘UV\E‘ 2009 ]

A bidding games is played on an arena: o = (K, V. E)
where k € N is the tokal budqget
A confiquraktion is (v, By, B;) with B+ B, =k
At each turi, Player i bids an integer b; < B,
1f by > by, then Player 1 moves, and Bi = B, — b, B; = B, + b,

Decision Problem:
lmyu&: A game grarzh G, total budqget k (encoded in bimm‘:j),
Winning condition 7, and initial confiquration (v, B,k S B;),
where B| = Bart’s initial budqgek
Outpub: 7es Yf Bart wins the game from v with budget B,
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Theorem[LLPU ‘96, LLPSU 997 Theorem] Develin & Payne ‘09 ]:
(1) Threshold budqgeks exist A discrete version of (1)-(3) holds
(2) Threshold budgets satisfy average
property EXPTIME Value iteration algorithm for
©)) Bids are derived from the computing thresholds.
thresholds
(4) Computing threshold budqgets is in
Nt N coNP
Bucht

Theorem[ Avni, Henzinger, Chonev ‘197
(Easily) Reduce to reachability games
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(2) Threshold budgets satisfy average
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(4) Computing threshold budqgets is in
Nt N coNP
Bucht

Theorem][ Agha johart, Avini,
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Muller games are determined

Theorem[ Avni, Henzinger, Chonev ‘197
(Easily) Reduce to reachability games
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Theorem[LLPU 96, LLPSU 99]:

&D) Threshold budqgeks exist
(2) Threshold budgets satisfy average
propar&j
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thresholds
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Theorem[LLPU 96, LLPSU 99]:

&D) Threshold budqgeks exist
(2) Threshold budgets satisfy average
propar&j
&) Bids are derived from the
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(4) Com[ﬂu&ms threshold budqgets is in
N?T N coN?

Theorem[ Avhi, Henzinger, Chonev ‘197
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Theorem[Develin & Payne ‘09]:
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Parity Winning Condition:
Bart (Player 1) wins f infinitely
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R, = fr-{QaQCh(V, T,)

Theorem:
ThParity(v) — Tn H f\/\/\—a
T4 = fr-Pariby(t, R,)
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Theorem:

Finding Threshold budgets in parity discrete bidding games is NP N co-N?.




Theorem:

Finding Threshold budgets i parity discrete bidding games is NP N co-N¥.

Food for thought?

o Turn-based parity games are in NP N co-NF, but not known to be in P

o Turi-based parity games —» discrete bidding qames with fixed budqets

* Discrete bidding parity games with budgets in binary -> membership in
N? N co-NP
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Auction-based Scheduling Problem - (somewhal) Formally

Input: A graph-arena & and two noh-conflicting objectives

Outpukb: Ves, i we can two conbrollers and
50 that they fulfil theip own objectives.

For ol give sebl of assumptionsiaboubithe other controller
(SomelofitheliTiheorensi (AVATEMalltic Jandis A 24-):

ch}ssibw_.
cdundant-vertex-removed graph (if exists) =>

e about objective, ¢ Khowledqge about objective, exact
avioural assumption, behavioural assumption, Lleast
Less flexible flexible

oW space exlmnded ® Solution space expo\ncied more




T&M@. Aw&v o ‘Pr% l %

Decenkralised St}v&hasis Problem:

Given a game arena G, kwo overlapping winning objectives,
when can we synthesize two controllers and schedule them
so that both the objectives are satisfied.



Talee Awav - Part 11

Decentralised Synthests Problem:
Given a game arena Z, two overlapping winning objectives,

when can we synthesize two controllers and schedule them
so that both the objectives are satisfied.

ac(mc,ssc,b:, d:j,
Mui.&c,—pi.ajer




Qeaag: Bidding Grames on Grapks

1in 1in

Auction-Based Scheduling:
¢ Proposed a solution for

Studied Richnwan first—price discrete
: decentralised synthesis probt&m

using bidding for scheduling
mechanism

parity bidding games:

® ﬁxed—-pcin& algorithm gives nice
structure to the threshold budgets,
and op&mai bids
o Showed membership tn NF 0 coN? by

Studied where such solubkion

(-}

always exists (graph arena,
using that structure and algorithm objectives), where it gives
for turn-based parity games 5 ou:sf\cimbu&nimcom[ote&e:
soluktion , and complexity
resulks
Tradeoff between solubtion

space and behaviocural solution

(-}




Qeaag: Bidding Grames on Grayks

1in 1in

Auction-Based Scheduling:
¢ Proposed a solution for

Studied Richnwan first—price discrete
: decentralised synthesis probt&m

using bidding for scheduling
mechanism

parity bidding games:

® ﬁxed—-pcin& algorithm gives nice
structure to the threshold budgets,
and op&mai bids
o Showed membership tn NF 0 coN? by

Studied where such solubkion

(-}

always exists (graph arena,
using that structure and algorithm objectives), where it gives
for turn-based parity games 5 ou:sf\dmbu&nimcom!pte&e:
soluktion , and complexity
resulks
Tradeoff between solubtion

space and behaviocural solution

(-}




