Bidding Games on Graphs: In Theory and in Practice

Suman Sadhukhan ${ }^{1}$
Talk at IARCS verificalion Seminar March 19, 2024

Work in collaboration with Guy Avni ${ }^{1}$ and Kaushik Mallik ${ }^{2}$ ${ }^{1}$ Universily of Haifa, ${ }^{2}$ IST Austria

Games in Formal verification

cames in Formal Verification

Background: Turn-based Graph Games

Background: Turn-based Graph Games

Background: Turn-based Graph Games

Background: Turn-based Graph Games
5

Bart

Lisa
Turn-based: Players alternate turns in moving the token

Background: Turn-based Graph Games

Bart

Lisa

Turn-based: Players alternate turns in moving the token

Background: Turn-based Graph Games

Bart

\square

Lisa
Turn-based: Players alternate turns in moving the token

Background: Turn-based Graph Games

Bart

\square

Lisa

Turn-based: Players alkernate lurns in moving the koken Winning Condikions: Reachabiliky, Buchi, Pariky

Background: Turh-based Graph Games

Bart

Lisa

Turn-based: Players alternate burns in moving the token Winning Condikions: Reachability, Buchi, Parity Zero-sum games: Every infinite play has a winner

Background: Turn-based Graph Games

Turn-based: Players alkernate turns in moving the token Winning Condikions: Reachabilily, Buchi, Parily Zero-sum games: Every infinike play has a winher

Decision Problem:
Inpuk: A game graph \mathscr{G}, a winning condition IVI for Bart, and initial configuration (vertex) $v_{\text {. }}$
Output: Yes, iff Bart has a winning strategy for $\mathbb{I I}$ from v in \mathscr{G}

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games
Both players have budgets In each turn, each player bids for getting the turn to move the token

Bidding Games on Graphs

Graph Games: Two-player zero-sum infinite-duration games
Both players have budgets In each Eurn, each player bids for getting the turn to move the token

Decision Problem:
Input: A game graph \mathscr{E}, a winning condition \mathbb{I} for Bart, and initial configuration (vertextbudgeb) c.
Output: Yes, iff Bart has a winning strategy for III from c in \mathscr{G}

Bidding Games on Graphs

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Bidding Mechanisms

In each kurn, both players simullaneously submil "legal" bids, and the higher bidder moves the loken.

Who pays?
Where?
What?

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?
\{ first-price, all-pay\}

Bidding Mechanisms

In each kurn, both players simullaneousty submit "legal" bids, and the higher bidder moves the loken.

Who pays?
Where?
What?
\{first-price, all-pay\}

Higher bidder Boch

Bidding Mechanisms

In each kurn, both players simullaneousty submit "legal" bids, and the higher bidder moves the loken.

Who pays?
Where?
What?
$\{$ first-price, all-pay $\} \times\{$ Richman, Poorman $\}$

Higher bidder Bolh

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?
$\{$ first-price, all-pay $\} \times\{$ Richman, Poorman $\}$

Higher bidder

Both

pay the other bidder

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?
$\{$ first-price, all-pay $\} \times\{$ Richman, Poorman $\}$

Higher bidder

Both

pay the other pay the bidder bank

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?
$\{$ first-price, all-pay $\} \times\{$ Richman, Poorman $\} \times\{$ continuous, discrete $\}$

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?
$\{$ first-price, all-pay $\} \times\{$ Richman, Poorman $\} \times\{$ continuous, discrete $\}$

Higher bidder

pay the other pay the bidder bank

arbitrary

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?

Bidding Mechanisms

In each turn, both players simultaneously submit "legal" bids, and the higher bidder moves the token.

Who pays?
Where?
What?

Reachability first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]
civen a game and initial budgets, decide which player has a winning bidding strategy from a given vertex.

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ultman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Reachability first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Total budget is normalised to 1

Reachability first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Easy:

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquise, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Easy:

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquise, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Easy:

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquise, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquise, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Easy:

Total budget is normalised to 1

Reachability first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Easy:
0

Total budget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

Total budget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?
Yes!

Total budget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

Total budget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+\epsilon
$$

Total buadget is normalised to 1

Reachability first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+c
$$

$$
\frac{1}{3}
$$

$$
\frac{1}{3}-\epsilon
$$

Total budget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+\epsilon
$$

Total budget is normalised to 1

Reachability first-price Richman conkinuous
[Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{1}{3}+c
$$

Total buadget is normalised to 1

Reachabilily first-price Richman conkinuous
[Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]
can he do any beller?

$$
\frac{1}{3}+\epsilon \quad \frac{1}{3}+\epsilon \quad<\frac{1}{3}+\epsilon \quad \frac{2}{3}-\epsilon
$$

Total busdget is normalised to 1

Reachability first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{1}{3}+\epsilon
$$

Total buadget is normalised to 1

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

0

Total budget is normalised to 1

Reachability first-price Richman conkinuous
[Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{1}{3}+c
$$

Total buadget is normalised to 1

Reachability first-price Richman conkinuous
[Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{1}{3}+\epsilon \quad>\frac{1}{3}+c
$$

Total buadget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+2 \epsilon
$$

Total buadget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+2 \epsilon
$$

Total buadget is normalised to 1

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquise, Ullman '96,'99]

Can he do any beller?

$$
\frac{2}{3}+2 c
$$

Total buadget is normalised to 1
Continue cuntill he has burdget >0.75, then he wins

Reachability first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

can he do any better?

$$
\frac{2}{3}+2 \epsilon
$$

Tokal budget is normalised to 1
Continue cuntill he has budgeb >0.75, then he wins

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any betcer than $\frac{2}{3}$?

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any belter than $\frac{2}{3}$? The answer is No!

Reachability first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any belter than $\frac{2}{3}$? The answer is No!

$$
\frac{2}{3}-c
$$

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any belter than $\frac{2}{3}$? The answer is No!

$$
\frac{2}{3}-c
$$

Reachabilily first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

Can he do any better than $\frac{2}{3}$? The answer is No!

Reachability first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Reachability first-price Richman continuous
[Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?

Reachabilily first-price Richman conkinuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

How much initial budget is necessary \& sufficient for Bart to win?
Theorem:
Bidding games are determined.

- Bart wins from v, if he has budget $>T h(v)$
- Lisa wins from v, if Bart has budget $<T h(v)$

Theorem [LLPU96, LLPSU99]:
(1)

Threshold budgets exist
(2) They salisfy an average property
(3) Optimal bids can be derived from the threshold budgets
(4) In NP \cap co-NP Via a (simple) reduction to stochastic games

Reachability first-price Richman continuous [Lazarus, Loeb, Propp, Stromquist, Ullman '96,'99]

P.S. v^{+}and v^{-}are the max/min neighbours wrt Th()

Part I (in Theory): Discrele Bidding Games

Reachabilily first-price Richman discrele
[Develin \& Payne. 2009]

Reachabilily first-price Richman discrele
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$ where $k \in \mathbb{N}$ is the total busdget

Reachability firskprice Richman discrete
[Develin \& Payne. 2009]

A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the local budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$

Reachability firskprice Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the local budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Al each burn, Player i bids an integer $b_{i} \leq B_{i}$

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the local budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Discrete
AB each Burn, Player i bids an integer $b_{i} \leq B_{i}$

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is che local budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Al each burn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, chen Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$

Reachability first-price Richman discrete
[Develin $\&$ Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the cola budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Discrete
Al each burn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Discrete
At each turn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

8
10

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Discrete
At each turn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

8
10

Reachabilily first-price Richman discrele
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total busdget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
At each turn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

12

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
At each turn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

12

Reachabilily first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
At each turn, Player i bids an inleger $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

Reachabiliky firskprice Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is the total budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
At each turn, Player i bids an inkeger $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$
Tie breaking (when $b_{1}=b_{2}$)

12

The possible budgels are as follows:
Budgets are of the form B or $B^{3:}$

$$
0<0 *<1<1 * \ldots k<k^{*}<k+1
$$

Reachability first-price Richman discrete
[Develin \& Payne. 2009]
A bidding games is played on an arena: $\mathscr{A}=\langle k, V, E\rangle$
where $k \in \mathbb{N}$ is che local budget
A configuration is $\left(\nu, B_{1}, B_{2}\right)$ with $B_{1}+B_{2}=k$
Al each turn, Player i bids an integer $b_{i} \leq B_{i}$
If $b_{1}>b_{2}$, then Player 1 moves, and $B_{1}^{\prime}=B_{1}-b_{1}, B_{2}^{\prime}=B_{2}+b_{2}$

Decision Problem:
Input: A game graph \mathscr{E}, local budget k (encoded in binary), Winning condition \mathbb{W}, and initial configuration $\left\langle v, B_{1}, k \ominus B_{1}\right\rangle$, where $B_{1}=$ Bart's initial budget
Output: Yes of Bart wins the game from v with budget B_{1}

Conkinuous vs Discrete Bidding

Continuous vs Discrete Bidding

Theorem[LLPU'96, LLLPSU '99]:
(1) Threshold budgets exist
(2) Threshold budgets satisfy average property
(3) Bids are derived from the thresholds
(4) Computing threshold budgets is in $N P \cap \operatorname{CONP}$

Theorem[LLPU'96, LLPSU'99]:
(1) Threshold budgets exist
(2) Threshold budgebs salisfy average
property
(3) Bids are derived from the thresholds
(4) Computing threshold budgets is in $N P \cap \operatorname{coNP}$

Reachability
fixed granularity
Theorem[Develin \& Payne '09]:
A discrete version of $(1)-(3)$ holds

EXPTIME Value iteration algorithm for compuking thresholds.

arbitrary

Theorem[LLPU'96, LLPSU'99]:
(1) Threshold budgets exist
(2) Threshold budgebs salisfy average
property
(3) Bids are derived from the thresholds
(4) Computing threshold budgets is in $N P \cap \operatorname{coNP}$

Reachability
fixed granularity
Theorem[Develin \& Payne '09]:
A discrete version of $(1)-(3)$ holds

EXPTIME Value iteration algorithm for computing thresholds.

Buchi

Theorem[Avni, Henzinger, Chonev '19]:
(Easily) Reduce to reachabilily games

Theorem[Aghajohari, Avni, Henzinger '21]:
Muller games are determined

arbitrary

Theorem[LLPU' 96, LLPSU' '99]:
(1) Threshold budgets exist
(2) Threshold budgets satisfy average
(3) Bids are derived from the thresholds
(4) Computing threshold budgets is in $N P \cap \operatorname{coNP}$

Reachability
fixed granularity
Theorem[Develin \& Payne '09]:
A discrete version of $(1)-(3)$ holds

EXPTIME Value iteration algorithm for computing thresholds.

Buchi

Theorem[Avni, Henzinger, Chonev '19]:
(Easily) Reduce to reachability games

Theorem[Aghajohari, Avni, Henzinger '21]:
Muller games are determined

No known structure on the threshold budgets Do Threshold budgets satisfy the average property?

Do threshold budgets give rise to bids?
Best algorithm to compute them is exponential

arbitrary

Theorem[LLPU'96, LLPSU'99]:
(1) Threshold budgets exist
(2) Threshold budgets satisfy average
(3) Bids are derived from the thresholds
(4) Computing threshold budgets is in $N P \cap \operatorname{coNP}$

Reachability
fixed granularity
Theorem[Develin \& Payne '09]:
A discrete version of $(1)-(3)$ holds
EXPTIME Value iteration algorithm for computing thresholds.

Buchi

Theorem[Avni, Henzinger, Chonev '19]:
(Easily) Reduce to reachability games

Theorem[Aghajohari, Avni, Henzinger '21]:
Muller games are determined

No known structure on the threshold budgets Do Threshold budgets satisfy the average property? Do threshold buágets give rise to bids?

Buchi Eames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Buchi Eames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Computing Bart's Buchi Threshold

$$
\equiv
$$

Computing Lisa's coBuchi Threshold

Buchi Eames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Computing Bart's Buchi Threshold

$$
\equiv
$$

Computing Lisa's coBuchi Threshold
Visib ef finitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Computing Bart's Buchi Threshold三
Computing Lisa's coBuchi Threshold visib \& finitely often

Fixed-poink Algorilhm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Computing Bart's Buchi Threshold三
Computing Lisa's coBuchi Threshold visib \& finitely often

Fixed-point Algorithm for co-Buchi cames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
』
Computing Bart's Buchi Threshold

$$
\equiv
$$

Compuling Lisa's coBuchi Threshold visib \& finitely often

Fixed-point Algorithm for co-Buchi cames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
『
Computing Bart's Buchi Threshold

$$
\equiv
$$

Computing Lisa's coBuchi Threshold visib \& finitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
『
Computing Bart's Buchi Threshold三
Compuling Lisa's coBuchi Threshold Visib \& finitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]

Fixed-point Algorithm for co-Buchi cames

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target verkices T is visited infinitely often

Determinacy [Aghajohari et al'21]

Computing Bart's Buchi Threshold三 Computing Lisa's coBuchi Threshold

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target verkices T is visited infinitely often

Determinacy [Aghajohari et al'21]

$$
\Downarrow
$$

Computing Bart's Buchi Threshold三 Computing Lisa's coBuchi Threshold
visile e finctely often

visile $V \backslash\{t\}$ with a target budget (frugal-reachabilily)

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target verkices T is visited infinitely often

Determinacy [Aghajohari et al'21]

$$
\Downarrow
$$

Computing Bart's Buchi Threshold三 Computing Lisa's coBuchi Threshold visile e finctely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Computing Bart's Buchi Threshold三 Computing Lisa's coBuchi Threshold visile e finctely often

Visil it with a target budgel

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]
\Downarrow
Compuling Bart's Buchi Threshold三
Computing Lisa's coBuchi Threshold Visib ef finitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target verkices T is visited infinitely often

Determinacy [Aghajohari et al'21]

$$
\Downarrow
$$

Computing Bart's Buchi Threshold三 Computing Lisa's coBuchi Threshold visile e finctely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target vertices T is visited infinitely often

Determinacy [Aghajohari et al'21]

$$
\Downarrow
$$

Computing Bart's Buchi Threshold三 Computing Lisa's cobuchi Threshold visile e finctely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condilion:
Bart wins iff the set of target vertices T is visited infinitely often

No known struckure on the threshold busdgels - Do Threshold budgels salisfy the average property?
Do threshold budgets give rise to bids?Best algorithm to compute them is exponenkial

Compuling Lisa's cobuchi Threshold Visib ef finitely often

Fixed-point Algorithm for co-Buchi Games

Buchi winning condition:
Bart wins iff the set of target vertices T is visited infinitely often

No known struckure on the threshold busdgels - Do Threshold budgels salisfy the average property?
Do threshold budgels give rise to bids?
0 Best algorithm bo compute them is exponential

Compuking Lis
Corollaries: [Avni \& S.]
(1) Threshold budgebs salisfy a discrebe average propes
(2) Optimal bids arise from the thresholds

Fixed-poink algorithm for Parity Games

Parity Winning Condition: Bart (Player 1) wins iff infinitely occurring max priority is odd.

Fixed-poink algorithm for Parity Games

Parity Winning Condition: Bart (Player 1) wins inf infinitely occurring max priority is odd.

$$
\operatorname{Parily}=d
$$

$$
T_{2}=\text { fix parity }\left(t, R_{1}\right)
$$

Theorem:

Fixed-poink algorithm for Parity Games

Parity winning Condition: Bart (Player 1) wins iff infinitely occurring max priority is odd.

No known structure on the threshold budgets
Do Threshold budgets satisfy the average property?
Do threshold budgets give rise to bids? Best algorithm to compute them is exponential

Corollaries: [Avi \& S.]
(1) Threshold busdgebs satisfy a discrete average proper f (2) Optimal bids arise from the thresholds

Fixed-poink algorithm for Parity Games

Parity winning Condition: Bart (Player 1) wins iff infinitely occurring max priority is odd.

No known structure on the threshold budgets
Do Threshold budgets satisfy the average property?
Do threshold budgets give rise bo bids? Best algorithm to compute them is exponential

Corollaries: [Avi \& S.]
The
$T h_{\text {Pariu }}$
(1) Threshold budgets satisfy a discrete average proper
(2) Optimal bids arise from the thresholds

Compuling Threshold budgels for Parily Cames

Computing Threshold budgets for Parity Games
Guess a $T: V \rightarrow[k+1]$,
and check if it satisfies the discrete average property.

Computing Threshold budgets for Parity Cames
Guess a $T: V \rightarrow[k+1]$,
and check if it satisfies the discrete average property.

$$
T(\nu)=\left\lfloor\frac{\left|T\left(\nu^{+}\right)\right|+\left|T\left(\nu^{-}\right)\right|}{2}\right\rfloor+\varepsilon
$$

such that $\varepsilon=0,1$, or *, (* denotes that the tiebreaking advankage is needed)

Computing Threshold budgets for Parity Cames
Guess a $T: V \rightarrow[k+1]$,
and check if it satisfies the discrete average property.

$$
T(\nu)=\left\lfloor\frac{\left|T\left(\nu^{+}\right)\right|+\left|T\left(\nu^{-}\right)\right|}{2}\right\rfloor+\varepsilon
$$

such thate $\varepsilon=0,1$, or *, (\% denotes that the ties breaking advantage is needed)

Computing Threshold budgets for Parity Games
Guess a $T: V \rightarrow[k+1]$,
and check if it satisfies the discrete average property.

$$
T(\nu)=\left\lfloor\frac{\left|T\left(\nu^{+}\right)\right|+\left|T\left(\nu^{-}\right)\right|}{2}\right\rfloor+\varepsilon
$$ such that $\varepsilon=0,1$, or ${ }^{*}$, (* denotes that the tiebreaking advantage is needed)

Go back to Step 1

Computing Threshold budgets for Parity Games
Guess a $T: V \rightarrow[k+1]$, and check if it satisfies the discrete average property.

co back to Step 1

$$
T(\nu)=\left\lfloor\frac{\left|T\left(\nu^{+}\right)\right|+\left|T\left(\nu^{-}\right)\right|}{2}\right\rfloor+\varepsilon
$$ such that $\varepsilon=0,1$, or ${ }^{*}$, (s denotes that the tiebreaking advantage is needed)

Computing Threshold budgets for Parity Games
Guess a $T: V \rightarrow[k+1]$, and check if it satisfies the discrete average property.

Go back to Step 1
Construct a turn-based game G_{T} of size poly in G, verify if Player 1 wins from every vertex of G_{T}

Computing Threshold budgets for Parity Games
Guess a $T: V \rightarrow[k+1]$, and check if it satisfies the discrete average property.

co back to Step 1
Construct a turn-based game G_{T} of size poly in G, verify if Player 1 wins from every vertex of G_{T}

We establish:
$T(v)$ is winking for Player 1 of Player 1 wins from every vertex of G_{T}

From bidding lo lurn-based games

From bidding to turn-based games

G

From bidding to turn-based games

Vertices: $\langle v, T(v)\rangle$
$\langle(v, T(v) \oplus 1\rangle$
$\langle\nu, T\rangle$
$\langle v, T(v)\rangle$

G

From bidding to turn-based games

Vertices: $\langle\nu, T(\nu)\rangle$
T gives rise to Player 1's bid: $b_{T}(v) \approx \frac{T\left(v^{+}\right)-T\left(v^{-}\right)}{2}$

G

From bidding to turn-based games

Vertices: $\langle\nu, T(\nu)\rangle$
$(\langle v, T(D) \oplus 1\rangle$ $\langle\nu, T\rangle$
T gives rise to Player 1's bid: $b_{T}(v) \approx \frac{T\left(v^{+}\right)-T\left(v^{-}\right)}{2}$
Player 2's kwo optimal responses: 0 or $b_{T}(v) \oplus 1$

G

From bidding to turn-based games

Vertices: $\langle\nu, T(v)\rangle$
$(\langle v, T(\omega) \oplus 1\rangle$ $\langle\nu, T\rangle$ $\langle\nu, T(v)\rangle$
T gives rise ko Player 1's bid: $b_{I}(v) \approx \frac{T\left(v^{+}\right)-T\left(v^{-}\right)}{2}$ Player 2's kwo optimal responses: 0 or $b_{T}(v) \oplus 1$

G

From bidding to turn-based games

Vertices: $\langle\nu, T(\nu)\rangle,\langle\nu, T(\nu) \oplus 1\rangle,\langle\nu, T\rangle,\langle v, T(v)\rangle$
T gives rise to Player 1's bid: $b_{T}(\nu) \approx \frac{T\left(\nu^{*}\right)-T\left(\nu^{-}\right)}{2}$
Player 2's two optimal responses: 0 or $b_{T}(\nu) \oplus 1$

G

From bidding to turn-based games

From bidding to lurn-based games

From bidding to lurn-based games

From bidding to curn-based games

Theorem: [Avmi \& S.]

1. If Player 1 wins from every vertex, then $T \geq T h_{G}$
2. If $T=T h_{G}$, then Player 1 wins from each vertex of G_{T}

Keep only u_{i} 's such that these budgels are in $\left\{T\left(u_{i}\right), T\left(u_{i}\right) \oplus 1\right\}$

From bidding to lurn-based games

From bidding to kurn-based games
Theorem: [Avni \& S.]

1. If Player 1 wins from every vertex, then $T \geq T h_{G}$ Repeat the same such that
2. If $T=T h_{G}$, then Player 1 wins from each vertex of G_{T} with respect to is are in Player 2 (Lisa)) $\oplus 1\}$

Remark:
Both $T: V \rightarrow[k+1]$ and the winning strategy of G_{T} are the certificates.

From bidding to turn-based games

Theorem: [Avni \& S.]

1. If Player 1 wins from every vertex, then $T \geq T h_{G}$
2. If $T=T h_{G}$, then Player 1 wins from each vertex of G_{T}

Repeat the same such that with respect bo is are in Player 2 (Lisa)) $\oplus 1\}$

Remark:
Both $T: V \rightarrow[k+1]$ and the winning strategy of G_{T} are the certificates.

No knowh structure on the threshold budgets Do Threshold budgels sabisfy the average properity? Do threshold budgets give rise to bids? Algorithm: membership in NP \cap co-NP

From bidding to turn-based games

Theorem: [Avi \& S.]

1. If Player 1 wins from every vertex, then $T \geq T h_{G}$
2. If $T=T h_{G}$, then Player 1 wins from each vertex of G_{T}

Repeat the same such that with respect to is are in Player 2 (Lisa)) $\oplus 1\}$

Remark:
Both $T: V \rightarrow[k+1]$ and the winning strategy of G_{T} are the certificates.

No known structure on the threshold budgets
Do Threshold budgets satisfy the average property?
mo threshold budgets give rise to bids? Games $\mathrm{G}_{u_{y}} A_{v_{p_{j}}}$

Take Away - Part I

Theorem:

Finding Threshold budgels in parily discrete bidding games is NP \cap co-NP.

Take Away - Part I

Theorem:

Finding Threshold budgets in parily discrete bidding games is NP \cap co-NP.

Imrovement: Earlier only EXPTIME algorithm was known for discrete bidding (including Reachability)

Take Away - Part I

Theorem:

Finding Threshold budgets in parily discrete bidding games is NP \cap co-NP.

Corollary:

Polynomial size winning strategies exisk.

Imrovement: Earlier only EXPTIME algorithm was known for discrete bidding (inctuding Reachability)

Take Away - Part I

Theorem:
Finding Threshold budgets in parity discrete bidding games is NP \cap co-NP.

Corollary:

Polynomial size winning strategies exist.

Imrovement: Earlier only EXPTIME algorithm was known for discrete bidding (including Reachability)

Food for thought?

- Turn-based parity games are in NP \cap co-NP, but not known to be in P. - Turn-based parity games \rightarrow discrete bidding games with fixed budgets - Discrete bidding parity games with budgets in binary \rightarrow membership in $N P \cap \operatorname{co-NP}$

Part II (in Practice):
Continuous Bidding Games in Multiobjective Decentralised Synthesis

Multi-objective Conkrol Problem

Multi-objective Conkrol Problem

Multi-objective Conkrol Problem

Mulki-objective Control Problem

Multi-objective Conkrol Problem

Objective $1\left(\psi_{1}\right)$:
Repeatedly emply all trash cans

Multi-objective Conkrol Problem

Mutki-objective ConErol Problem

Mutki-objective ConErol Problem

Objective $2\left(\psi_{2}\right)$:
Recharge before ballery ruhs out

Objective $1\left(\psi_{1}\right)$:
Repeatedly emply all Erash cans

Multi-objective Control Problem

Objective 2 $\left(\psi_{2}\right)$:

Recharge before baltery runs out

Centralised Controller Synthesis

Multi-objective Control Problem

Centralised Controller Synthesis
De-centralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Multi-objective Decentralised Controller Synthesis

Auction-Based Scheduling

Auction-Based Scheduling

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$

Auction-Based Scheduling

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$

Auction-Based Scheduling

$$
\frac{1}{2}+\epsilon_{2}
$$

Wauls to recharge the baltery
Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\frac{1}{2}+\epsilon_{2}
$$

Wauls to recharge the baltery
Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auclion-Based Scheduling

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$\frac{3}{4}-\epsilon$

Wauls to recharge the baltery
Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$\frac{3}{4}-\epsilon$

Wauls to recharge the baltery
Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\epsilon<\frac{1}{4}
$$

Wambs to recharge the ballery
Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\epsilon<\frac{1}{4}
$$

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\epsilon<\frac{1}{4}
$$

$1-\epsilon$

Wauls to recharge the baltery
Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\epsilon<\frac{1}{4}
$$

$1-\epsilon$

Wauls to recharge the battery
Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

$$
\epsilon<\frac{1}{4}
$$

$1-\epsilon$
$1-\epsilon$

Wauls to recharge the baltery
Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auction-Based Scheduling

Wauls to recharge the baltery
Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auclion-Based Scheduling

Claim 1: Homer can fulfil his objective with any budget of $>\frac{1}{4}$
Claim 2: Marge can fulfil his objective with any budget of $>\frac{1}{2}$

Auclion-Based Scheduling

Wauts to recharge the battery
Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$

Claim 2: Marge can fulful his o
"Strong" Synthesis: Winking strategies can be synthesized (in decentralised manner) AND composed withouk knowing other playen's objective

Auclion-Based Scheduling

Claim 1: Homer can fulful his objective with any budget of $>\frac{1}{4}$

Claim 2: Marge can fulful his o
"Strong" Synthesis: Winking strategies can be synthesized (in decentralised manner) AND composed without knowing other player's objective

Classification based on Assumption

Wanls to clear trash-cans

Classificalion based on Assumption

$$
\frac{7}{8}+c_{1}
$$

$$
\frac{1}{8}+\epsilon_{2}
$$

Wanls to clear Erash-cans

Classificalion based on Assumption

Classification based on Assumption

$$
\frac{7}{8}+c_{1} \text { sum of the budgets > } 1>\frac{1}{8}+c_{2}
$$

Classification based on Assumption

Solution? We tet them know what the other one's objective is, and that they play "rakionally"

Classification based on Assumption

Homer Knows Mlarge wouldut take this edge and vice-versa

Wants to recharge the battery

Solution? we let them know what the other one's objective is, and that they play "rationally"

Classification based on Assumption

Solution? We let them know what the other one's objective is, and that they play "rakionally"

Classification based on Assumption

$$
>\frac{3}{4}
$$

$$
>0
$$

Wanks to clear trash-cans
Wambs to recharge the battery

Solution? We let them know what the other one's objective is, and that they play "rationally"

Classification based on Assumption

Wants to recharge the battery

Solution? We let them know what the other one's objective is, and that they play "rakionally"

Classification based on Assumption

Wants to recharge the battery

Soltwitions wie tet them know what the
"Assume-admissible" Synthesis: Winhing strategies can be synkhesized (in decentralised manner) AND composed after knowing the other player's objective, and their rational behaviour

Auction-based Scheduling Problem - (somewhal) Formally

Input: A graph-arena G and kwo non-conflicking objectives Output: Yes, if we can synlhesise kwo controllers and schedule chem via bidding so that they fulfil their own objectives.

Auction-based Scheduling Problem - (somewhab) Formally

Input: A graph-arena \mathcal{C} and kwo non-conflicking objectives Output: Yes, if we can synlhesise kwo controllers and schedule them via bidding so that they fulfil theil own objeckives.

For a given sek of assumptions abouk the other conkroller

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena \& and two non-conflicting objectives Output: Yes, if we can synthesise two controllers and schedurte them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller

Strong synthesis:
No knowledge about objective, no assumption about behaviour, quite flexible if solution exists Restricted solution space

Auction-based Scheduling Problem - (somewhab) Formally

Input: A graph-arena G and two non-conflicting objectives Qutput: Yes, if we can syntilesise two controllers and schedurte them via bidding so that they fulfil thei own objectives.

For a given set of assumpltions about the other controller

Strong Syuthesis:
No knowledge about objective, no assumption about behaviour, quite flexible if solution exists Restricted solution space

Assume-admissible synthesis:

- Knowledge about objective, rational behavioural assumption, less flexible Solution space expanded

Auction-based Scheduling Problem - (somewhab) Formally

Input: A graph-arena $\&$ and two non-conflicting objectives Qutput: Yes, if we can synthesise two controllers and schedule them via bidding so that they fulfil thei own objectives.

For a given set of assumpltions about the other controller

Strong Syuthesis:

- No knowledge about objective, no assumption about behaviour, quite flexible if solution exists
- Restricted solution space

Assume-admissible synthesis:

- Knowledge about objective, rational behavioural assumption, less flexible Solution space expanded

Assume-guarantee synthesis:

- Knowledge about objective, exack behavioural assumption, least flexible
- Solution space expanded more

Auction-based Scheduling Problem - (somewhal) Formally

Input: A graph-arena G and two non-conflicting objectives Output: Yes, if we can synthesise two controllers and schedulte them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

- No knowledge about objective, no assumption about behaviour, quite flexible if solution exists
- Restricted solution space

Assume-admissible synthesis: Knowledge about objective, rational behavioural assumption, less flexible Solution space expanded

Assume-guarantee synthesis:

- Knowledge about objective, exack behavioural assumption, least flexible
- Solution space expanded more

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena G and two non-conflicking objectives Output: Yes, if we can synthesise two controllers and schedule them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller (Some of the) Theorems (Avi, Mallik, and S. 24):

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

- No knowledge about objective, no assumption about behaviour, quite flexible if solution exists
- Restricted solution space

Assume-admissible synthesis: Knowledge about objective, rational behavioural assumption, less flexible Solution space expanded

Assume-guarantee synthesis:

- Knowledge about objective, exact behavioural assumption, least flexible
- Solution space expanded more

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena G and two non-conflicting objectives output: Yes, if we can synthesise two controllers and schedule them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller (Some of the) Theorems (Avi, Mallik, and S. 24):

- Strong synthesis can be solved in NP $\cap \operatorname{coNP}$, and in PTIME for binary graphs. Moreover, for SCC and Buchi objectives, strong synthesis is always possible.

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

- No knowledge about objective, no assumption about behaviour, quite flexible if solution exists - Restricted solution space

Assume-admissible synthesis:

Knowledge about objective, rational behavioural assumption, Less flexible
Solution space expanded

Assume-guarantee synthesis:

- Knowledge about objective, exact behavioural assumption, least flexible
- Solution space expanded more

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena G and two non-conflicting objectives output: Yes, if we can synthesise two controllers and schedule them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller (Some of the) Theorems (Avn, Mallik, and S. 24):

- Strong synthesis can be solved in NP \cap coN, and in PTIME for binary graphs, Moreover, for SCC and Buchi objectives, strong synthesis is always possible.
- Strong-synthesised controller in redundant-vertex-removed graph (if exists) \Rightarrow Assume-admissible controller for original graph [Sound solution but not complete]

Tradeoff between knowledge/assumption/flexibility vs solution

Strong Synthesis:

- No knowledge about objective, no assumption about behaviour, quite flexible if solution exists - Restricted solution space

Assume-admissible synthesis:
Knowledge about objective, rational behavioural assumption, Less flexible
Solution space expanded

Assume-guarankee synthesis:

- Knowledge about objective, exact behavioural assumption, least flexible
- Solution space expanded more

Auction-based Scheduling Problem - (somewhat) Formally

Input: A graph-arena G and two non-conflicting objectives output: Yes, if we can synthesise two controllers and schedule them via bidding so that they fulfil thei own objectives.

For a given set of assumptions about the other controller

Take Away - Part II

Decentralised Synthesis Problem:
Given a game arena \mathscr{G}, kwo overlapping winning objeckives, when can we synthesize kwo controllers and schedute them so that both the objectives are salisfied.

Take Away - Part II

Decentralised Synthesis Problem:
Given a game arena \mathscr{G}, two overlapping winning objectives, when can we synthesize two controllers and schedule them so that both the objectives are satisfied.
©
We propose a solution using bidding games

- We identify where some solution always exists, and analyse complexity for finding solutions for qualitative objectives
- We show knowledge/assunplion/flexibility tradeoff with solution space

Future work:

- Quantitative objectives?
- Complete solutions for assumeadmissibility, assume-guarantee?
- Multi-player bidding?

Recap: Bidding Sames on sEraphs

In Theory

Studied Richman first-price discrete parity bidding games:

- Fixed-point algorithm gives nice structure to the threshold budgets, and optimal bids
- Showed membership in NP \cap coNT by using that structure and algorithm for turn-based parity games

In Practice
Auction-Based Scheduling:

- Proposed a solution for decentralised synthesis problem using bidding for scheduling mechanism
- Studied where such solution always exists (graph arena, objectives), where it gives sound-but-incomplete solution, and complexity result es
- Tradeoff between solution space and behavioural solution

Recap: Bidding Sames on sEraphs

In Theory

Studied Richman first-price discrete parity bidding games:

- Fixed-point algorithm gives nice structure to the threshold budgets, and optimal bids
- Showed membership in NP \cap coNT by using that structure and algorithm for turn-based parity games

In Practice
Auction-Based Scheduling:

- Proposed a solution for decentralised synthesis problem using bidding for scheduling mechanism
- Studied where such solution always exists (graph arena, objectives), where it gives sound-but-incomplete solution, and complexity result es
- Tradeoff between solution space and behavioural solution

