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Games in Formal Verification

• Door opens iff the lift is at the 
correct level


• Stops when someone calls 
EMERGENCY!!


….

System

Controller??

Environement

Specifications 
written in LTL etc….

i

o
Given a model of 

interactions with the 
environment, and a 

specification that the system 
needs to satisfy, does there 
exist a controller who can 

guarantee that?

We construct a two-player zero-sum game which 
models the interactions, encode specs in winning 

conditions, and  
Winning strategy == correct-by-design controller
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Background: Turn-based Graph Games

Decision Problem:

Input: A game graph , a winning condition  for Bart, and initial 
configuration (vertex) . 

Output: Yes, iff Bart has a winning strategy for  from  in  

𝒢 𝒲
v

𝒲 v 𝒢

Bart Lisa
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Given a game and initial budgets, decide which player has 
a winning bidding strategy from a given vertex.
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(1) Threshold budgets exist

(2) They satisfy an average property

(3) Optimal bids can be derived from the threshold budgets

(4) In NP  co-NP via a (simple) reduction to stochastic games∩

Optimal bids: b(v) =
Th(v+) − Th(v−)

2 Th(v) =
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2

P.S.  and  are the max/min neighbours wrt Th()v+ v−

Theorem:
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v > Th(v)
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Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena:  ⟨k, V, E⟩
where  is the total budgetk ∈ ℕ
A configuration is  with (v, B1, B2) B1 + B2 = k

At each turn, Player  bids an integer  i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

4       4

8             10

12                              6

4                              14
Budgets are of the 

form  or B B*

Discrete

Tie breaking (when )b1 = b2

The possible budgets are as follows: 
0 < 0* < 1 < 1 * …k < k* < k + 1



Reachability first-price Richman discrete

[Develin & Payne. 2009]

A bidding games is played on an arena:  𝒜 = ⟨k, V, E⟩
where  is the total budgetk ∈ ℕ
A configuration is  with (v, B1, B2) B1 + B2 = k

At each turn, Player  bids an integer  i bi ≤ Bi

If , then Player 1 moves, and b1 > b2 B′￼1 = B1 − b1, B′￼2 = B2 + b2

Decision Problem:

Input: A game graph , total budget  (encoded in binary), 
Winning condition , and initial configuration , 
where Bart’s initial budget

Output: Yes iff Bart wins the game from  with budget 

𝒢 k
𝒲 ⟨v, B1, k ⊖ B1⟩

B1 =
v B1
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Continuous vs Discrete Bidding 

Theorem[LLPU ’96, LLPSU ’99]:


(1) Threshold budgets exist

(2) Threshold budgets satisfy average 

property

(3) Bids are derived from the 

thresholds

(4) Computing threshold budgets is in 

NP  coNP∩

Reachabilityarbitrary

Theorem[Develin & Payne ’09]:
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Keep only ’s such that 
these budgets are in  

 
 

ui

{T(ui), T(ui) ⊕ 1}

⟨u3, ⊤ ⟩
If these are not in  

, then  {T(ui), T(ui) ⊕ 1} ⊤

  Theorem: [Avni & S.] 
  1. If Player 1 wins from every vertex, then  
  2. If , then Player 1 wins from each vertex of  

T ≥ ThG
T = ThG GT

Remark:

Both  and the winning strategy of  

are the certificates.
T : V → [k + 1] GT

No known structure on the threshold budgets

- Do Threshold budgets satisfy the average property?

- Do threshold budgets give rise to bids?

- Algorithm: membership in NP  co-NP∩

Repeat the same 
with respect to 
Player 2 (Lisa)
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Take Away - Part I

Theorem:

Finding Threshold budgets in parity discrete bidding games is NP  co-NP.
∩

Imrovement: Earlier only EXPTIME 
algorithm was known for discrete 
bidding (including Reachability)

Corollary:

Polynomial size winning strategies exist.

Food for thought?


• Turn-based parity games are in NP  co-NP, but not known to be in P.

• Turn-based parity games -> discrete bidding games with fixed budgets

• Discrete bidding parity games with budgets in binary -> membership in 

NP  co-NP

∩

∩



Part II (in Practice):  
Continuous Bidding Games in Multi-

objective Decentralised Synthesis
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Multi-objective Control Problem

…bid value  scheduling urgency…bid value  scheduling urgency

Objective 2 ( ):

Recharge before battery runs out

ψ2

Objective 1 ( ): 
Repeatedly empty all trash cans


ψ1

System

Controller

Env

ψ1 ∧ ψ2

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Centralised Controller Synthesis De-centralised Controller Synthesis



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



Objective 2:

Recharge before battery runs out

System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Multi-objective Decentralised Controller Synthesis

Objective 1:

• Repeatedly empty all trash cans


…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge



System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans


Objective 2:

Recharge before battery runs out

…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge

Multi-objective Decentralised Controller Synthesis



System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans


Auction-Based Scheduling:

Controllers = bidding strategies, scheduler 

= bidding mechanism, 


Objective 2:

Recharge before battery runs out

…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge

Multi-objective Decentralised Controller Synthesis



System

Controller 1

Env

Controller 2

Scheduler

ψ1 ψ2

Objective 1:

• Repeatedly empty all trash cans


Auction-Based Scheduling:

Controllers = bidding strategies, scheduler 

= bidding mechanism, 


Objective 2:

Recharge before battery runs out

…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge

fairness: bid value  scheduling urgency∝

Multi-objective Decentralised Controller Synthesis



System

Controller 1
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Controller 2

Scheduler
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Objective 1:

• Repeatedly empty all trash cans


Auction-Based Scheduling:

Controllers = bidding strategies, scheduler 

= bidding mechanism, 


Objective 2:

Recharge before battery runs out

…bid value  scheduling urgency…bid value  scheduling urgency

Homer Marge

Modularity: If one objective changes, no 
need to design a new controller for the 

other objective as well. 

fairness: bid value  scheduling urgency∝

Multi-objective Decentralised Controller Synthesis
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But what if the 
sum is ≥ 1

“Strong” Synthesis: Winning strategies can be 
synthesized (in decentralised manner) AND 

composed without knowing other player’s objective 
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Classification based on Assumption

Wants to clear trash-cans

Wants to recharge the battery

Solution? We let them know what the 
other one’s objective is, and that they 

play ``rationally”

>
3
4

> 0   Sum of the budgets < 1

“Assume-admissible” Synthesis: Winning strategies 
can be synthesized (in decentralised manner) AND 

composed after knowing the other player’s 
objective, and their rational behaviour 
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Decentralised Synthesis Problem:

Given a game arena , two overlapping winning objectives, 
when can we synthesize two controllers and schedule them 

so that both the objectives are satisfied. 

𝒢



Take Away - Part II

• We propose a solution using bidding games

• We identify where some solution always exists, and analyse complexity 

for finding solutions for qualitative objectives

• We show knowledge/assumption/flexibility tradeoff with solution space

Future work:

• Quantitative objectives?


• Complete solutions for assume-
admissibility, assume-guarantee?


• Multi-player bidding?

Decentralised Synthesis Problem:

Given a game arena , two overlapping winning objectives, 
when can we synthesize two controllers and schedule them 

so that both the objectives are satisfied. 

𝒢



Recap: Bidding Games on Graphs
In Theory In Practice

Studied Richman first-price discrete 
parity bidding games:


• Fixed-point algorithm gives nice 
structure to the threshold budgets, 

and optimal bids

• Showed membership in NP  coNP by 

using that structure and algorithm 
for turn-based parity games

∩

Auction-Based Scheduling:

• Proposed a solution for 

decentralised synthesis problem 
using bidding for scheduling 

mechanism

• Studied where such solution 

always exists (graph arena, 
objectives), where it gives 

sound-but-incomplete 
solution , and complexity 

results

• Tradeoff between solution 

space and behavioural solution
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