
Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Learning Deterministic One-Counter Automata
OL*: Polynomial-time active-learning algorithm for DOCA

Sreejith A V

IIT Goa

IARCS, 20th May 2025

Prince Mathew Vincent Penelle

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

One counter automata

One way read-only input tape

Finite state
Counter

zero test

{+1,−1, 0}
machine

Counter: Can be incremented,
decremented or tested for zero.

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

OCA accepting {anbna | n ≥ 0}.

DOCA: Deterministic One Counter Automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

0

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

0

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

0

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

1

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

1

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

2

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

2

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

1

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

1

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

0

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

0

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Example: anbna

abbaa

1

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

Counter

Input tape

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Motivation

Finite Automata ⊊ One-Counter Automata (OCA) ⊊ Pushdown Automata

◦ Modelling systems

• Finite automata used extensively - eg. hardware verification.

• Pushdown automata can model highly complex systems - eg. Softwares.

◦ Algorithmic complexity

• Finite automata: Fast, mostly linear.

• Pushdown automata: Hard, non-elementary to undecidable.

• One-counter automata: Shows promise, some problems are theoretically good.

◦ Major challenges in OCA:

• Equivalence - polynomial but O(n20).

• Active Learning - exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Motivation

Finite Automata ⊊ One-Counter Automata (OCA) ⊊ Pushdown Automata

◦ Modelling systems

• Finite automata used extensively - eg. hardware verification.

• Pushdown automata can model highly complex systems - eg. Softwares.

◦ Algorithmic complexity

• Finite automata: Fast, mostly linear.

• Pushdown automata: Hard, non-elementary to undecidable.

• One-counter automata: Shows promise, some problems are theoretically good.

◦ Major challenges in OCA:

• Equivalence - polynomial but O(n20).

• Active Learning - exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Motivation

Finite Automata ⊊ One-Counter Automata (OCA) ⊊ Pushdown Automata

◦ Modelling systems

• Finite automata used extensively - eg. hardware verification.

• Pushdown automata can model highly complex systems - eg. Softwares.

◦ Algorithmic complexity

• Finite automata: Fast, mostly linear.

• Pushdown automata: Hard, non-elementary to undecidable.

• One-counter automata: Shows promise, some problems are theoretically good.

◦ Major challenges in OCA:

• Equivalence - polynomial but O(n20).

• Active Learning - exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Motivation

Finite Automata ⊊ One-Counter Automata (OCA) ⊊ Pushdown Automata

◦ Modelling systems

• Finite automata used extensively - eg. hardware verification.

• Pushdown automata can model highly complex systems - eg. Softwares.

◦ Algorithmic complexity

• Finite automata: Fast, mostly linear.

• Pushdown automata: Hard, non-elementary to undecidable.

• One-counter automata: Shows promise, some problems are theoretically good.

◦ Major challenges in OCA:

• Equivalence - polynomial but O(n20).

• Active Learning - exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Active Learning Framework

◦ There are two parties: Learner and Teacher.

◦ The teacher knows the language of a doca T .

◦ The learner wants to learn a doca L such that T and L accept the same language.

◦ The learner can ask the teacher questions about the language of T .

◦ The teacher answers the questions.

◦ The learner use the answers to learn the doca L.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Queries

Membership query

Learner: Is w in the language of T ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a counter
example w that distinguishes L and T ”.

Minimal-equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a minimal word
w that distinguishes L and T ”.

Counter value query

Learner: What is the value of the
counter in T after reading w?

Teacher: Counter value reached on w.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Queries

Membership query

Learner: Is w in the language of T ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a counter
example w that distinguishes L and T ”.

Minimal-equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a minimal word
w that distinguishes L and T ”.

Counter value query

Learner: What is the value of the
counter in T after reading w?

Teacher: Counter value reached on w.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Queries

Membership query

Learner: Is w in the language of T ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a counter
example w that distinguishes L and T ”.

Minimal-equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a minimal word
w that distinguishes L and T ”.

Counter value query

Learner: What is the value of the
counter in T after reading w?

Teacher: Counter value reached on w.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Queries

Membership query

Learner: Is w in the language of T ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a counter
example w that distinguishes L and T ”.

Minimal-equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a minimal word
w that distinguishes L and T ”.

Counter value query

Learner: What is the value of the
counter in T after reading w?

Teacher: Counter value reached on w.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Active learning of doca1

Theorem (OL* in P)

◦ Let teacher know a doca language.

◦ Let T be a minimal doca that accepts the language.

◦ Let n = |T | be the number of states in T .

◦ The OL* algorithm learns a doca L that is equivalent to T in time polynomial in n,
using membership and minimal-equivalence queries.

1P. Mathew, V. Penelle, S. Learning deterministic one-counter automata in polynomial time, LICS 2025.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Literature review: Active learning of doca

Angluin, 1987 DFA – Membership, Equivalence

P

Fahmy & Roos, 1995 DOCA1 – Membership, Min. Equivalence
EXPTIME

Neider & Löding, 2010 VOCA2 – Membership, Min. Equivalence
EXPTIME

Bruyère et. al, 2022 DOCA1 – Membership, Min. Equivalence, Counter Value
EXPTIME

Mathew et. al, 2025 DOCA1 – Membership, Min. Equivalence, Counter Value
EXPTIME, Polynomial queries

1realtime doca: strict subclass of doca, 2 voca: visibly oca

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

The Configuration graph of a DOCA

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration graph - Example

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

p

0

p

q

r

s

1

p

q

r

s

2

p

q

r

s

3

p

q

r

s

4

p

q

r

s

5

p

q

r

s

6

p

q

r

s

7

p

q

r

s

8

p

q

r

s

9

p

q

r

s

10

q

r

s

r

a a

b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

a

b

b

a

a, b

b

b

a

a, b

a

b

b
a, b

b

· · ·

· · ·

· · ·

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences

◦ Consider a doca with n states.

◦ Let p be a state, and integers d ≤ n2, and i > n3.

◦ Consider sequence of configurations

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ On taking letter a from these configurations, we get sequence

(q, i+ c), (q, i+ d+ c), (q, i+ 2d+ c) . . .

for some state q and c ∈ {−1, 0,+1}.
◦ For any word w, where |w| ≤ n3, there is a state r and counter j

(p, i), (p, i+ d), . . .
w−−→ (r, j), (r, j + d), . . .

◦ What is unique about each sequence? state, counter value (mod d) pair

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences

◦ Consider a doca with n states.

◦ Let p be a state, and integers d ≤ n2, and i > n3.

◦ Consider sequence of configurations

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ On taking letter a from these configurations, we get sequence

(q, i+ c), (q, i+ d+ c), (q, i+ 2d+ c) . . .

for some state q and c ∈ {−1, 0,+1}.
◦ For any word w, where |w| ≤ n3, there is a state r and counter j

(p, i), (p, i+ d), . . .
w−−→ (r, j), (r, j + d), . . .

◦ What is unique about each sequence? state, counter value (mod d) pair

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences

◦ Consider a doca with n states.

◦ Let p be a state, and integers d ≤ n2, and i > n3.

◦ Consider sequence of configurations

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ On taking letter a from these configurations, we get sequence

(q, i+ c), (q, i+ d+ c), (q, i+ 2d+ c) . . .

for some state q and c ∈ {−1, 0,+1}.
◦ For any word w, where |w| ≤ n3, there is a state r and counter j

(p, i), (p, i+ d), . . .
w−−→ (r, j), (r, j + d), . . .

◦ What is unique about each sequence? state, counter value (mod d) pair

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences

◦ Consider a doca with n states.

◦ Let p be a state, and integers d ≤ n2, and i > n3.

◦ Consider sequence of configurations

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ On taking letter a from these configurations, we get sequence

(q, i+ c), (q, i+ d+ c), (q, i+ 2d+ c) . . .

for some state q and c ∈ {−1, 0,+1}.
◦ For any word w, where |w| ≤ n3, there is a state r and counter j

(p, i), (p, i+ d), . . .
w−−→ (r, j), (r, j + d), . . .

◦ What is unique about each sequence? state, counter value (mod d) pair

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Parallel Breadth First Search

◦ Consider the sequence

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ A parallel breadth first search (PBFS) will generate all sequences reachable without
touching a zero configuration.

◦ The PBFS depth will be at most n3.

◦ For a polynomially bounded sequence,

(p, i), (p, i+ d), (p, i+ 2d) . . . (p, i+Kd)

PBFS will run in polynomial time.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Parallel Breadth First Search

◦ Consider the sequence

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ A parallel breadth first search (PBFS) will generate all sequences reachable without
touching a zero configuration.

◦ The PBFS depth will be at most n3.

◦ For a polynomially bounded sequence,

(p, i), (p, i+ d), (p, i+ 2d) . . . (p, i+Kd)

PBFS will run in polynomial time.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Parallel Breadth First Search

◦ Consider the sequence

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ A parallel breadth first search (PBFS) will generate all sequences reachable without
touching a zero configuration.

◦ The PBFS depth will be at most n3.

◦ For a polynomially bounded sequence,

(p, i), (p, i+ d), (p, i+ 2d) . . . (p, i+Kd)

PBFS will run in polynomial time.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

The OL* Algorithm

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Assumptions on DOCA

◦ The teacher knows a language accepted by a doca.
• T is a minimal doca equivalent to teacher’s doca language.
• We denote by n = |T |, the number of states.

◦ To make the presentation simpler, we assume the following about T :
• There are no ε transitions.
• In a transition, the counter is incremented or decremented at most by one.

◦ Learner wants to learn a doca L equivalent to T .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Assumptions on DOCA

◦ The teacher knows a language accepted by a doca.
• T is a minimal doca equivalent to teacher’s doca language.
• We denote by n = |T |, the number of states.

◦ To make the presentation simpler, we assume the following about T :
• There are no ε transitions.
• In a transition, the counter is incremented or decremented at most by one.

◦ Learner wants to learn a doca L equivalent to T .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Assumptions on DOCA

◦ The teacher knows a language accepted by a doca.
• T is a minimal doca equivalent to teacher’s doca language.
• We denote by n = |T |, the number of states.

◦ To make the presentation simpler, we assume the following about T :
• There are no ε transitions.
• In a transition, the counter is incremented or decremented at most by one.

◦ Learner wants to learn a doca L equivalent to T .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Assumptions on DOCA

◦ The teacher knows a language accepted by a doca.
• T is a minimal doca equivalent to teacher’s doca language.
• We denote by n = |T |, the number of states.

◦ To make the presentation simpler, we assume the following about T :
• There are no ε transitions.
• In a transition, the counter is incremented or decremented at most by one.

◦ Learner wants to learn a doca L equivalent to T .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 2. Partitioning the behaviour DFA

The dfa A is partitioned into:

• Initial region: States reachable by words
of length < n4.

• Border region: States reachable by
words of length n4 but not less.

• Region of interest: Remaining states. initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

◦ A path from initial region to region of interest should traverse via some border state.

◦ Partial OCA construction
• Pick a border state p0.
• DFA Ap0 : Remove all states other than p0 from border.
• Learner constructs a partial OCA, Lp0 that is poly(n)-equivalent to Ap0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 2. Partitioning the behaviour DFA

The dfa A is partitioned into:

• Initial region: States reachable by words
of length < n4.

• Border region: States reachable by
words of length n4 but not less.

• Region of interest: Remaining states. initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

◦ A path from initial region to region of interest should traverse via some border state.

◦ Partial OCA construction
• Pick a border state p0.
• DFA Ap0 : Remove all states other than p0 from border.
• Learner constructs a partial OCA, Lp0 that is poly(n)-equivalent to Ap0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 2. Partitioning the behaviour DFA

The dfa A is partitioned into:

• Initial region: States reachable by words
of length < n4.

• Border region: States reachable by
words of length n4 but not less.

• Region of interest: Remaining states. initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

◦ A path from initial region to region of interest should traverse via some border state.

◦ Partial OCA construction
• Pick a border state p0.
• DFA Ap0 : Remove all states other than p0 from border.
• Learner constructs a partial OCA, Lp0 that is poly(n)-equivalent to Ap0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 2. Partitioning the behaviour DFA

The dfa A is partitioned into:

• Initial region: States reachable by words
of length < n4.

• Border region: States reachable by
words of length n4 but not less.

• Region of interest: Remaining states. initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

◦ A path from initial region to region of interest should traverse via some border state.

◦ Partial OCA construction
• Pick a border state p0.
• DFA Ap0 : Remove all states other than p0 from border.
• Learner constructs a partial OCA, Lp0 that is poly(n)-equivalent to Ap0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p−1

p0

p1

r−1

r0

r1

r2

q−1

q0

q1

q2

c

a

b

b

b

b

b

b

t

a

a

a

b

a

a

a a

a

a
initial region

region of interest

border

a

a a

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p−1

p0

p1

r−1

r0

r1

r2

q−1

q0

q1

q2

t

a

a

a

b

b

b

b

b

b

b

a

a

a a

a

a

c

a
initial region

region of interest

border

a

a a

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 3. Finding a winning sequence

Definition

w0, w1, w2, . . . , wK

is a winning sequence if the run of these words on T reach configurations

(p, i), (p, i+ d), (p, i+ 2d), . . . , (p, i+Kd)

respectively, for some state p, and d ≤ n2 and i > n3.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 3. Finding a winning sequence

Definition

w0, w1, w2, . . . , wK

is a winning sequence if the run of these words on T reach configurations

(p, i), (p, i+ d), (p, i+ 2d), . . . , (p, i+Kd)

respectively, for some state p, and d ≤ n2 and i > n3.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

a

a

a

a

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1

··
·

qk−1

qk

a

a

a

a

q

p

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1

··
·

qk−1

qk

··
·

a

a

a

a

b

b

b

b
q

p

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1

··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

a

a

a

a

b

b

b

b

r

q

p

a≥0, 0

b≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1

··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

a

a

a

a

b

b

b

b

··
·

a

a

a

a

r

q

p

a≥0, 0

b≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1

··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a
b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

a

a

a

a

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

a≥0, 0

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

rk+1

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

a≥0, 0

b≥0,+1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 5. Constructing Lp0

◦ The states of the partial OCA are the sequences.
• Let (p0, pK) be one sequence - call this Red sequence.
• Let (q0, qK) be another sequence - call this Blue sequence.
• Then Red and Blue are states of partial OCA.

◦ Transitions:

• If (p0, pK)
a−→ (q0, qK), add transition Red

a≥0,0−−−−→ Blue.

• If (p0, pK−1)
a−→ (q1, qK), add transition Red

a≥0,+1
−−−−−→ Blue.1

• If (p1, pK)
a−→ (q0, qK−1), add transition Red

a>0,−1−−−−−→ Blue.1

◦ Hence:
• pi

a−→ qj if and only if (Red, i)
a−→ (Blue, j).

• If (Red, i)
w−→ (Blue, j), then pi

w−→ qj .

• If pi
a−→ rk

b−→ sl . . .
a−→ qj , then (Red, i)

ab...a−−−→ (Blue, j).

1pn
a−→ qℓ for 0 ≤ ℓ ≤ 2n is possible.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 5. Constructing Lp0

◦ The states of the partial OCA are the sequences.
• Let (p0, pK) be one sequence - call this Red sequence.
• Let (q0, qK) be another sequence - call this Blue sequence.
• Then Red and Blue are states of partial OCA.

◦ Transitions:

• If (p0, pK)
a−→ (q0, qK), add transition Red

a≥0,0−−−−→ Blue.

• If (p0, pK−1)
a−→ (q1, qK), add transition Red

a≥0,+1
−−−−−→ Blue.1

• If (p1, pK)
a−→ (q0, qK−1), add transition Red

a>0,−1−−−−−→ Blue.1

◦ Hence:
• pi

a−→ qj if and only if (Red, i)
a−→ (Blue, j).

• If (Red, i)
w−→ (Blue, j), then pi

w−→ qj .

• If pi
a−→ rk

b−→ sl . . .
a−→ qj , then (Red, i)

ab...a−−−→ (Blue, j).

1pn
a−→ qℓ for 0 ≤ ℓ ≤ 2n is possible.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 5. Constructing Lp0

◦ The states of the partial OCA are the sequences.
• Let (p0, pK) be one sequence - call this Red sequence.
• Let (q0, qK) be another sequence - call this Blue sequence.
• Then Red and Blue are states of partial OCA.

◦ Transitions:

• If (p0, pK)
a−→ (q0, qK), add transition Red

a≥0,0−−−−→ Blue.

• If (p0, pK−1)
a−→ (q1, qK), add transition Red

a≥0,+1
−−−−−→ Blue.1

• If (p1, pK)
a−→ (q0, qK−1), add transition Red

a>0,−1−−−−−→ Blue.1

◦ Hence:
• pi

a−→ qj if and only if (Red, i)
a−→ (Blue, j).

• If (Red, i)
w−→ (Blue, j), then pi

w−→ qj .

• If pi
a−→ rk

b−→ sl . . .
a−→ qj , then (Red, i)

ab...a−−−→ (Blue, j).

1pn
a−→ qℓ for 0 ≤ ℓ ≤ 2n is possible.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

rk+1

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

a≥0, 0

b≥0,+1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

rk+1

b

b

b

b

t

r

q r−1

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

b=0, 0

a=0,+1

b=0, 0

a≥0,+1

b≥0, 0

a≥0, 0

b≥0,+1

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Adding initial region

◦ The initial-region is added to the partial
OCA.

◦ Like Neg states, initial region do not
increment or decrement counter.

initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

This concludes the construction of partial OCA Lp0
.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Adding initial region

◦ The initial-region is added to the partial
OCA.

◦ Like Neg states, initial region do not
increment or decrement counter.

initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

This concludes the construction of partial OCA Lp0
.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Partial OCA Lp0 - Properties

Theorem

Let w be a word of length ≤ poly(n). Then one of the following holds:

◦ Either
Lp accepts w iff A accepts w

◦ or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Proof of winning sequence lemma

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Winning sequence lemma

Definition

w0, w1, w2, . . . , wK

is a winning sequence if the run of these words on T reach configurations

(p, i), (p, i+ d), (p, i+ 2d), . . . , (p, i+Kd)

respectively, for some state p, and d ≤ n2 and i > n3.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Proof of winning sequence lemma

◦ Let (s, 0) be the start configuration of a doca.

◦ For a configuration (p, i), we say

w = llex(p, i)

if w is the lexicographically minimal word that takes (s, 0) to (p, i).

◦ That is,
(s, 0)

w−→ (p, i), and

(s, 0)
u−→ (p, i) =⇒ (|w|, w) ≤ (|u|, u), for all u.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Proof of winning sequence lemma contd.

Lemma

◦ Let (p, i) be a configuration where i > n3. Then,

llex(p, i) = xyrz, where |x|, |y|, |z| ≤ n3, and y increases counter by ≤ n2.

◦ Furthermore,

(s, 0)
xyr+jz−−−−→ (p, i+ jd), for all j ≥ 0, and d ≤ n2.

Proof:

◦ Let w = llex(p, i).

◦ Let ci be the last configuration where counter value i is seen for the last time.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

• ci is the configuration where counter value i is seen for the last time.

• there are ci and cj with same state and c′i and c′j with same state.

x1 u z1

x2 u z2

cj
ci

c′j

c′i

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2

y

y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2

y

y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y

y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y

y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y

y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y

y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y

y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y

y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y

y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y

y y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y

y y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y

y y y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y v′

y y y y y y

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y v′

y y y y y y v′

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Proof of winning sequence lemma contd.

Lemma

◦ Let (p, i) be a configuration where i > n3. Then,

llex(p, i) = xyrz, where |x|, |y|, |z| ≤ n3, and y increases counter by ≤ n2.

◦ Furthermore,

(s, 0)
xyr+jz−−−−→ (p, i+ jd), for all j ≥ 0, and d ≤ n2.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Conclusion

Theorem

OL* learns a doca equivalent to the teacher’s doca using membership and
minimal-equivalence queries, and in time polynomial in the size of a smallest doca
recognizing the language.

In the talk we skipped ε transitions in the doca. However that can also be done using the
same technique.

Corollary

Polynomial approximation for minimization of doca.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Conclusion

Theorem

OL* learns a doca equivalent to the teacher’s doca using membership and
minimal-equivalence queries, and in time polynomial in the size of a smallest doca
recognizing the language.

In the talk we skipped ε transitions in the doca. However that can also be done using the
same technique.

Corollary

Polynomial approximation for minimization of doca.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Future work

◦ Replacing minimal-equivalence with equivalence query.

◦ Practical OL* algorithm.

◦ Improving running time of equivalence.

◦ Learning weighted models (like visibly OCA).

Thank You!

	Introduction
	Deterministic one-counter automata
	Motivation
	Active Learning
	Literature review: State of the art

	Configuration graph of DOCA
	Configuration graph
	Configuration sequences
	Parallel Breadth First Search

	OL* - Active learning of OCA
	OL*: Step 1. Learning Behaviour DFA
	OL*: Step 2. Partitioning the behaviour DFA
	Winning sequence
	OL*: Step 4. Parallel BFS
	OL*: Step 5. Constructing Lp0
	OL*: Step 6. Constructing L
	Summary of OL*

	Win sequence
	Lexmin lemma

	Conclusion

