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One counter automata

One way read-only input tape

Finite state
Counter

zero test

{+1,−1, 0}
machine

Counter: Can be incremented,
decremented or tested for zero.

p q

r

a≥0,+1

b>0,−1

b>0,−1

a=0,+1

OCA accepting {anbna | n ≥ 0}.

DOCA: Deterministic One Counter Automata.
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Motivation

Finite Automata ⊊ One-Counter Automata (OCA) ⊊ Pushdown Automata

◦ Modelling systems

• Finite automata used extensively - eg. hardware verification.

• Pushdown automata can model highly complex systems - eg. Softwares.

◦ Algorithmic complexity

• Finite automata: Fast, mostly linear.

• Pushdown automata: Hard, non-elementary to undecidable.

• One-counter automata: Shows promise, some problems are theoretically good.

◦ Major challenges in OCA:

• Equivalence - polynomial but O(n20).

• Active Learning - exponential.
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Active Learning Framework

◦ There are two parties: Learner and Teacher.

◦ The teacher knows the language of a doca T .

◦ The learner wants to learn a doca L such that T and L accept the same language.

◦ The learner can ask the teacher questions about the language of T .

◦ The teacher answers the questions.

◦ The learner use the answers to learn the doca L.
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Queries

Membership query

Learner: Is w in the language of T ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a counter
example w that distinguishes L and T ”.

Minimal-equivalence query

Learner: Is a doca L equivalent to T ?

Teacher: Yes or “No and a minimal word
w that distinguishes L and T ”.

Counter value query

Learner: What is the value of the
counter in T after reading w?

Teacher: Counter value reached on w.
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OL* - Active learning of doca1

Theorem (OL* in P)

◦ Let teacher know a doca language.

◦ Let T be a minimal doca that accepts the language.

◦ Let n = |T | be the number of states in T .

◦ The OL* algorithm learns a doca L that is equivalent to T in time polynomial in n,
using membership and minimal-equivalence queries.

1P. Mathew, V. Penelle, S. Learning deterministic one-counter automata in polynomial time, LICS 2025.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Literature review: Active learning of doca

Angluin, 1987 DFA – Membership, Equivalence

P

Fahmy & Roos, 1995 DOCA1 – Membership, Min. Equivalence
EXPTIME

Neider & Löding, 2010 VOCA2 – Membership, Min. Equivalence
EXPTIME

Bruyère et. al, 2022 DOCA1 – Membership, Min. Equivalence, Counter Value
EXPTIME

Mathew et. al, 2025 DOCA1 – Membership, Min. Equivalence, Counter Value
EXPTIME, Polynomial queries

1realtime doca: strict subclass of doca, 2 voca: visibly oca
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The Configuration graph of a DOCA
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Configuration graph of a doca

◦ Configuration: A pair (p, i) where p is a state and i is a counter value.

◦ Configuration graph:
• States: all configurations (p, i).
• Transitions: (p, i)

a−→ (q, j) if there is a transition from p to q on letter a and the
counter value changes from i to j.

• Final states: (p, i) where p is a final state.
• Initial state: (s, 0) where s is the start state.

◦ The configuration graph is infinite, if the oca is not a finite automata.
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Configuration graph - Example
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Configuration sequences

◦ Consider a doca with n states.

◦ Let p be a state, and integers d ≤ n2, and i > n3.

◦ Consider sequence of configurations

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ On taking letter a from these configurations, we get sequence

(q, i+ c), (q, i+ d+ c), (q, i+ 2d+ c) . . .

for some state q and c ∈ {−1, 0,+1}.
◦ For any word w, where |w| ≤ n3, there is a state r and counter j

(p, i), (p, i+ d), . . .
w−−→ (r, j), (r, j + d), . . .

◦ What is unique about each sequence? state, counter value (mod d) pair
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Configuration sequences contd.

◦ Number of “non-intersecting” sequences are

| number of states | × d = nd ≤ n3 (since d ≤ n2)

◦ Let (p, i+ nd)
v−→ (q, k) and the run do not touch a configuration with zero counter.

• Then there is a w where |w| ≤ n3 such that

(p, i), (p, i+ d), . . .
w−−−→ (q, j), (q, j + d), . . . , (q, k = j + td), . . .

• Proof: Let (p, i+ nd)
v−→ (q, k) where |v| > n3.

• Hence, there is a c ≥ −n such that

(p, i+ nd)
u−−−→ (r, l)

y−−−→ (r, l + cd)
v−−−→ (q, k).

• Then,
(p, i+ cd)

u−−−→ (r, l + cd)
v−−−→ (q, k).
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Parallel Breadth First Search

◦ Consider the sequence

(p, i), (p, i+ d), (p, i+ 2d) . . .

◦ A parallel breadth first search (PBFS) will generate all sequences reachable without
touching a zero configuration.

◦ The PBFS depth will be at most n3.

◦ For a polynomially bounded sequence,

(p, i), (p, i+ d), (p, i+ 2d) . . . (p, i+Kd)

PBFS will run in polynomial time.
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The OL* Algorithm
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Assumptions on DOCA

◦ The teacher knows a language accepted by a doca.
• T is a minimal doca equivalent to teacher’s doca language.
• We denote by n = |T |, the number of states.

◦ To make the presentation simpler, we assume the following about T :
• There are no ε transitions.
• In a transition, the counter is incremented or decremented at most by one.

◦ Learner wants to learn a doca L equivalent to T .
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OL* - Algorithm

◦ OL* first assumes n = 1.

◦ It learns a doca L that is checked for equivalence with teacher.

◦ If teacher says L is not equivalent to T , then n is incremented.

◦ Process continues with incremented n.

◦ If teacher says L is equivalent to T , then OL* terminates.

◦ For proof of correctness, it suffices to show the following
• For every n, OL* runs in time polynomial in n.
• OL* learns an equivalent doca, when n = |T |.
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OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 1. Learning Behaviour DFA

◦ Learner do not have access to the configuration graph of T .

◦ A is a k-behaviour dfa if A is k-equivalent to T . That is,

w is accepted by A iff w is accepted by T , for all |w| ≤ k.

◦ Angluin’s L∗ algorithm can learn a k-behaviour dfa in time polynomial in k and n.
• This is where minimal-equivalence is used.

◦ Step 1. of learner is to learn a poly(n)-behaviour dfa.

◦ We will fix poly(n) later.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

OL*: Step 2. Partitioning the behaviour DFA

The dfa A is partitioned into:

• Initial region: States reachable by words
of length < n4.

• Border region: States reachable by
words of length n4 but not less.

• Region of interest: Remaining states. initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

◦ A path from initial region to region of interest should traverse via some border state.

◦ Partial OCA construction
• Pick a border state p0.
• DFA Ap0 : Remove all states other than p0 from border.
• Learner constructs a partial OCA, Lp0 that is poly(n)-equivalent to Ap0 .
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OL*: Step 3. Finding a winning sequence

Definition

w0, w1, w2, . . . , wK

is a winning sequence if the run of these words on T reach configurations

(p, i), (p, i+ d), (p, i+ 2d), . . . , (p, i+Kd)

respectively, for some state p, and d ≤ n2 and i > n3.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.
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OL*: Step 4. Parallel BFS on A

◦ Consider a winning sequence

w0, w1, w2, . . . , wK

◦ Run these words on the behaviour dfa. We reach state sequence

p0, p1, p2, . . . , pK

◦ Run parallel BFS (depth at most n3) from this sequence.
• All distinct sequences identified.
• At most n3 distinct sequences.
• These sequences are the states of doca Lp0 .
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OL*: Step 5. Constructing Lp0

◦ The states of the partial OCA are the sequences.
• Let (p0, pK) be one sequence - call this Red sequence.
• Let (q0, qK) be another sequence - call this Blue sequence.
• Then Red and Blue are states of partial OCA.

◦ Transitions:

• If (p0, pK)
a−→ (q0, qK), add transition Red

a≥0,0−−−−→ Blue.

• If (p0, pK−1)
a−→ (q1, qK), add transition Red

a≥0,+1
−−−−−→ Blue.1

• If (p1, pK)
a−→ (q0, qK−1), add transition Red

a>0,−1−−−−−→ Blue.1

◦ Hence:
• pi

a−→ qj if and only if (Red, i)
a−→ (Blue, j).

• If (Red, i)
w−→ (Blue, j), then pi

w−→ qj .

• If pi
a−→ rk

b−→ sl . . .
a−→ qj , then (Red, i)

ab...a−−−→ (Blue, j).

1pn
a−→ qℓ for 0 ≤ ℓ ≤ 2n is possible.
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Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Patch work - Missing states

◦ The parallel BFS colors “most” of the reachable states from border state p.

◦ However, upto n3 number of states are not colored (called Neg states)
• eg. the state r−1 in the example, and some states reachable from r−1.

◦ The Neg states are added to the partial OCA.

◦ Neg states are always with zero counter value.

◦ Transitions between Neg states do not increment or decrement counter.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

rk+1

b

b

b

b

t

r

q

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

a≥0,+1

b≥0, 0

a≥0, 0

b≥0,+1



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

p0

p1

··
·

pk−1

pk

q0

q1
··
·

qk−1

qk

r0

r1

··
·

rk−1

rk

t0

t1

··
·

tk−1

tk

a

a

a

a

b

b

b

b

a

a

a

a

r−1

b

b

b

b

tk+1

a

a

a

a

b

b

b

b

a

a

a

a

rk+1

b

b

b

b

t

r

q r−1

p

a≥0, 0

b≥0, 0

a≥0, 0

b>0,−1

b=0, 0

a=0,+1

b=0, 0

a≥0,+1

b≥0, 0

a≥0, 0

b≥0,+1



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Adding initial region

◦ The initial-region is added to the partial
OCA.

◦ Like Neg states, initial region do not
increment or decrement counter.

initial region

region of interest

borderp0

..
.

pK

pK−1

n4

poly(n)

0

This concludes the construction of partial OCA Lp0
.
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Partial OCA Lp0 - Properties

Theorem

Let w be a word of length ≤ poly(n). Then one of the following holds:

◦ Either
Lp accepts w iff A accepts w

◦ or there is a prefix u such that the run of u on A reaches a border state q ̸= p.
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OL*: Step 6. Constructing L

◦ The final OCA L is union of partial OCAs Lp,Lq, . . . ,Lr where border = {p, q, . . . , r}
◦ From, construction of Lp: for any word w where |w| ≤ poly(n):

Lp accepts w iff A accepts w

or there is a prefix u such that the run of u on A reaches a border state q ̸= p.

◦ Hence, for any word w where |w| ≤ poly(n):

L accepts w iff A accepts w

◦ [Böhm et. al., 2013] There is a polynomial poly(n) such that if L is
poly(n)-equivalent to T , then L is equivalent to T .

◦ Hence:
L is equivalent to T
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Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Summary of OL*

◦ Construct poly(n)-behaviour DFA using L* algorithm.

◦ Partition the behaviour DFA into initial region, border, and region of interest.

◦ For each border state:
• Generate a winning sequence of words: w0, w1, . . . , wK .
• Run these words on the DFA to get sequence of states: p0, p1, . . . , pK .
• Run parallel BFS from this sequence.
• All reachable sequences of parallel BFS form states of partial OCA.
• Counter values are incremented / decremented based on sequence shift.
• Add Neg and initial region to get partial OCA.

◦ Construct final OCA by combining partial OCAs.
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Proof of winning sequence lemma
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Winning sequence lemma

Definition

w0, w1, w2, . . . , wK

is a winning sequence if the run of these words on T reach configurations

(p, i), (p, i+ d), (p, i+ 2d), . . . , (p, i+Kd)

respectively, for some state p, and d ≤ n2 and i > n3.

Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence

w0, w1, w2, . . . , wK

can be found in polynomial time, such that the run of w0 on A reaches state p0.
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Proof of winning sequence lemma

◦ Let (s, 0) be the start configuration of a doca.

◦ For a configuration (p, i), we say

w = llex(p, i)

if w is the lexicographically minimal word that takes (s, 0) to (p, i).

◦ That is,
(s, 0)

w−→ (p, i), and

(s, 0)
u−→ (p, i) =⇒ (|w|, w) ≤ (|u|, u), for all u.
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Proof of winning sequence lemma contd.

Lemma

◦ Let (p, i) be a configuration where i > n3. Then,

llex(p, i) = xyrz, where |x|, |y|, |z| ≤ n3, and y increases counter by ≤ n2.

◦ Furthermore,

(s, 0)
xyr+jz−−−−→ (p, i+ jd), for all j ≥ 0, and d ≤ n2.

Proof:

◦ Let w = llex(p, i).

◦ Let ci be the last configuration where counter value i is seen for the last time.
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Repeating Factor

• ci is the configuration where counter value i is seen for the last time.

• there are ci and cj with same state and c′i and c′j with same state.

x1 u z1

x2 u z2

cj
ci

c′j

c′i
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Repeating Factor

x1 u z1

x2 u z2

y

y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2

y

y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y

y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y

y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y

y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y

y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y

y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y

y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y

y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y

y y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y

y y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y

y y y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y v′

y y y y y y



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Repeating Factor

x1 u z1

x2 u z2
y

y y y y y y v′

y y y y y y v′



Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learning

SOA

Configurations

Config. graph

Config sequence

Parallel BFS

OL*

1. Behaviour DFA

2. Partition A
3. Win sequence

4. PBFS on A
5. Construct Lp0

6. Construct L
Summary

Win sequence

Lex Lemma

Conclusion

Proof of winning sequence lemma contd.

Lemma

◦ Let (p, i) be a configuration where i > n3. Then,

llex(p, i) = xyrz, where |x|, |y|, |z| ≤ n3, and y increases counter by ≤ n2.

◦ Furthermore,
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Lemma (Winning sequence lemma)

For any state p0 in behaviour dfa A, a winning sequence
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can be found in polynomial time, such that the run of w0 on A reaches state p0.
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Conclusion

Theorem

OL* learns a doca equivalent to the teacher’s doca using membership and
minimal-equivalence queries, and in time polynomial in the size of a smallest doca
recognizing the language.

In the talk we skipped ε transitions in the doca. However that can also be done using the
same technique.

Corollary

Polynomial approximation for minimization of doca.
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Future work

◦ Replacing minimal-equivalence with equivalence query.

◦ Practical OL* algorithm.

◦ Improving running time of equivalence.

◦ Learning weighted models (like visibly OCA).



Thank You!
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