

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{P}_0}$ 6. Construct \mathcal{L} Summary

VVin sequence Lex Lemma

Conclusion

Learning Deterministic One-Counter Automata

OL*: Polynomial-time active-learning algorithm for DOCA

Sreejith A V

IIT Goa

IARCS, 20th May 2025

Prince Mathew

Vincent Penelle

One counter automata

Learn DOCA

Sreejith

Introduction

DOCA

Motivation Active Learnin SOA

Configuration

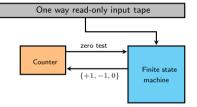
Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

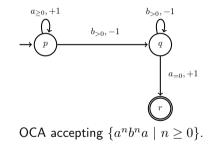
Lex Lemma

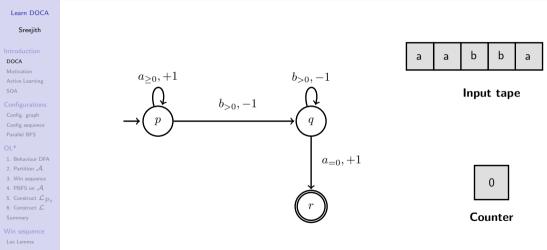
Conclusion

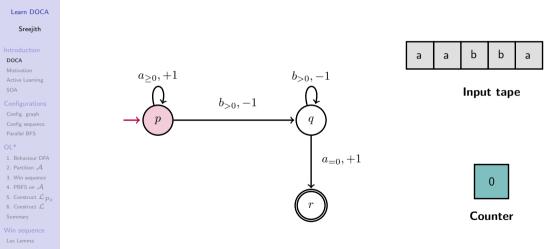


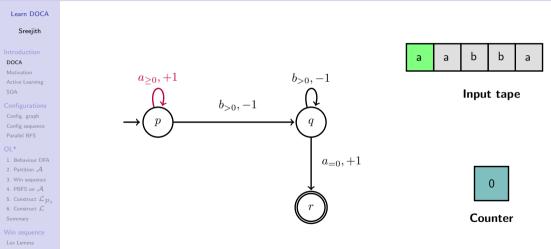
Counter: Can be incremented, decremented or tested for zero.

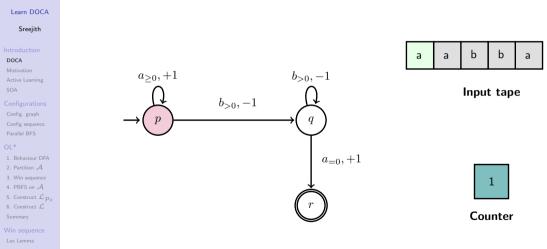
DOCA: Deterministic One Counter Automata.

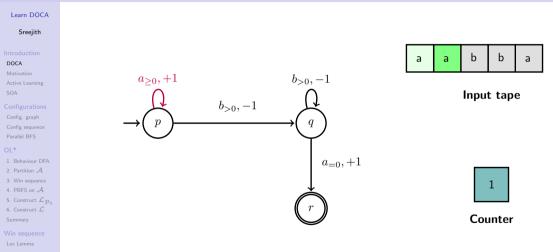


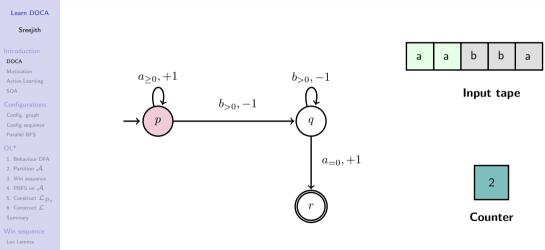


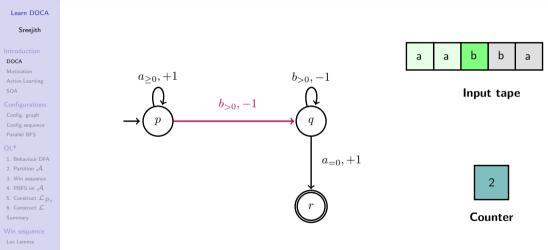


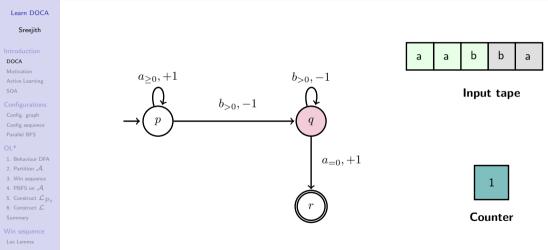


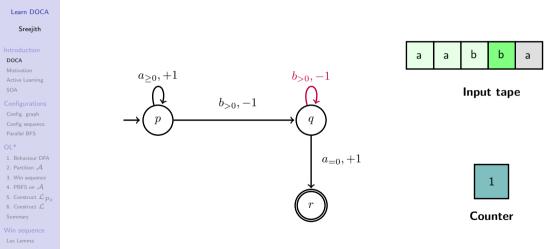


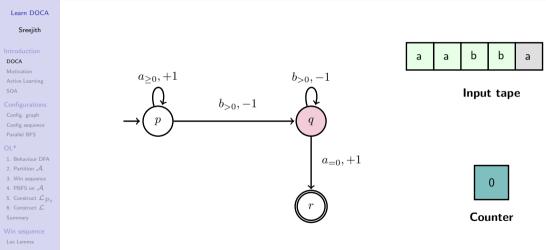


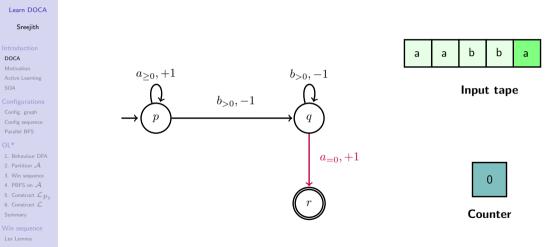


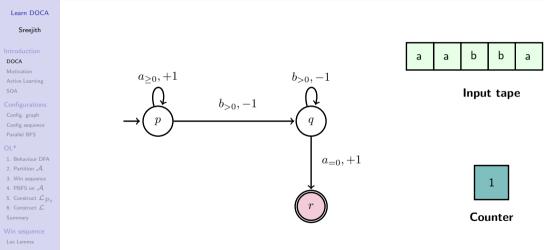












Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learn SOA

Configurations

- Config. graph Config sequence Parallel BFS
- OL*
- Behaviour DF
 Partition A
 Win sequence
 PBFS on A
 Construct C
 Construct C

Win sequence Lex Lemma

Conclusion

Finite Automata $\ \ \subseteq$ One-Counter Automata (OCA) $\ \ \subseteq$ Pushdown Automata

Modelling systems

- Finite automata used extensively eg. hardware verification.
- Pushdown automata can model highly complex systems eg. Softwares.

Algorithmic complexity

- Finite automata: Fast, mostly linear.
- Pushdown automata: Hard, non-elementary to undecidable.
- One-counter automata: Shows promise, some problems are theoretically good.

\circ Major challenges in OCA:

- Equivalence polynomial but $O(n^{20})$.
 - Active Learning exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learni SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{PG} 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma

Conclusion

Finite Automata $\ \ \, \subseteq$ One-Counter Automata (OCA) $\ \ \, \subseteq$ Pushdown Automata

Modelling systems

- Finite automata used extensively eg. hardware verification.
- Pushdown automata can model highly complex systems eg. Softwares.

Algorithmic complexity

- Finite automata: Fast, mostly linear.
- Pushdown automata: Hard, non-elementary to undecidable.
- One-counter automata: Shows promise, some problems are theoretically good.

\circ Major challenges in OCA:

- Equivalence polynomial but $O(n^{20})$.
- Active Learning exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learn SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{F}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

Finite Automata $\ \ \subseteq$ One-Counter Automata (OCA) $\ \ \subseteq$ Pushdown Automata

- Modelling systems
 - Finite automata used extensively eg. hardware verification.
 - Pushdown automata can model highly complex systems eg. Softwares.

Algorithmic complexity

- Finite automata: Fast, mostly linear.
- Pushdown automata: Hard, non-elementary to undecidable.
- One-counter automata: Shows promise, some problems are theoretically good.

Major challenges in OCA:

- Equivalence polynomial but $O(n^{20})$.
- Active Learning exponential.

Learn DOCA

Sreejith

Introduction

DOCA

Motivation

Active Learn SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_p 6. Construct \mathcal{L} Summary

Win sequence

Finite Automata

```
omata      ⊊      One-Counter Automata (OCA)     ⊊     Pushdown Automata
```

- \circ Modelling systems
 - Finite automata used extensively eg. hardware verification.
 - Pushdown automata can model highly complex systems eg. Softwares.

Algorithmic complexity

- Finite automata: Fast, mostly linear.
- Pushdown automata: Hard, non-elementary to undecidable.
- One-counter automata: Shows promise, some problems are theoretically good.

\circ Major challenges in OCA:

- Equivalence polynomial but $O(n^{20})$.
- Active Learning exponential.

Active Learning Framework

Sreejith

Introduction

DOCA Motivation Active Learning SOA

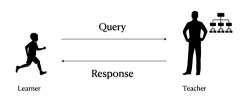
Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P_1} 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma



- There are two parties: Learner and Teacher.
- $\circ~$ The teacher knows the language of a doca $\mathcal{T}.$
- $\,\circ\,$ The learner wants to learn a doca ${\cal L}$ such that ${\cal T}$ and ${\cal L}$ accept the same language.
- $\,\circ\,$ The learner can ask the teacher questions about the language of $\mathcal{T}.$
- The teacher answers the questions.
- $\,\circ\,$ The learner use the answers to learn the doca $\mathcal{L}.$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P_1} 6. Construct \mathcal{L} Summary

Lex Lemma

Conclusion

Membership query

Learner: Is w in the language of \mathcal{T} ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a counter example w that distinguishes $\mathcal L$ and $\mathcal T"$

Minimal-equivalence query

_earner: Is a doca $\mathcal L$ equivalent to $\mathcal T$?

Teacher: Yes or "No and a minimal word w that distinguishes ${\cal L}$ and ${\cal T}$ ".

Counter value query

Learner: What is the value of the counter in T after reading w?

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P_1} 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

Membership query

Learner: Is w in the language of \mathcal{T} ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a counter example w that distinguishes ${\mathcal L}$ and ${\mathcal T}".$

Minimal-equivalence query

_earner: Is a doca $\mathcal L$ equivalent to $\mathcal T$?

Teacher: Yes or "No and a minimal word w that distinguishes ${\cal L}$ and ${\cal T}$ ".

Counter value query

Learner: What is the value of the counter in T after reading w?

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{0}}$ 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma

Conclusion

Membership query

Learner: Is w in the language of \mathcal{T} ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a counter example w that distinguishes ${\mathcal L}$ and ${\mathcal T}$ ".

Minimal-equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a minimal word w that distinguishes ${\mathcal L}$ and ${\mathcal T}".$

Counter value query

Learner: What is the value of the counter in \mathcal{T} after reading w?

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{0}}$ 6. Construct \mathcal{L} Summary

VVin sequence Lex Lemma

Conclusion

Membership query

Learner: Is w in the language of \mathcal{T} ?

Teacher: Yes or No.

Equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a counter example w that distinguishes ${\mathcal L}$ and ${\mathcal T}".$

Minimal-equivalence query

Learner: Is a doca \mathcal{L} equivalent to \mathcal{T} ?

Teacher: Yes or "No and a minimal word w that distinguishes ${\mathcal L}$ and ${\mathcal T}".$

Counter value query

Learner: What is the value of the counter in \mathcal{T} after reading w?

$\mathsf{OL}^{\boldsymbol{*}}$ - Active learning of doca 1

Learn DOCA

Sreejith

Introduction

DOCA

- Motivation
- Active Learning
- SOA

Configurations

Config. graph Config sequence Parallel BFS

- OL*
- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary
- Win sequence

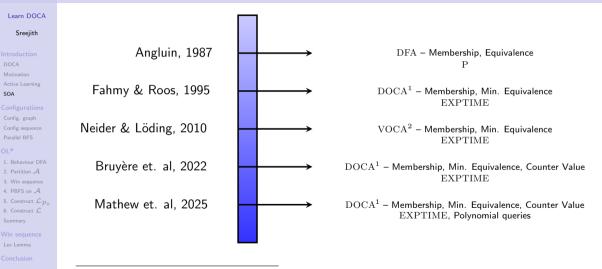
Conclusion

Theorem (OL* in P)

- Let teacher know a doca language.
- \circ Let \mathcal{T} be a minimal doca that accepts the language.
- Let $n = |\mathcal{T}|$ be the number of states in \mathcal{T} .
- The OL* algorithm learns a doca \mathcal{L} that is equivalent to \mathcal{T} in time polynomial in n, using membership and minimal-equivalence queries.

¹P. Mathew, V. Penelle, S. Learning deterministic one-counter automata in polynomial time, LICS 2025.

Literature review: Active learning of doca



¹realtime doca: strict subclass of doca,

 $^{2}\,$ voca: visibly oca

Learn DOCA

Sreejith

Configurations

1. Behaviour DFA 4. PBES on A

The Configuration graph of a DOCA

Learn DOCA

Sreeiith

Config. graph

1. Behaviour DEA 4. PBES on A

• Configuration: A pair (p, i) where p is a state and i is a counter value.

- States: all configurations (*p*, *i*).
- Transitions: $(p,i) \xrightarrow{a} (q,j)$ if there is a transition from p to q on letter a and the
- Final states: (p, i) where p is a final state.
- Initial state: (s, 0) where s is the start state.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configurations

Config. graph

Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p
 Construct C

- Summary
- Win sequence
- Conclusion

- Configuration: A pair (p, i) where p is a state and i is a counter value.
 - Configuration graph:
 - States: all configurations (p, i).
 - Transitions: $(p,i) \xrightarrow{a} (q,j)$ if there is a transition from p to q on letter a and the counter value changes from i to j.
 - Final states: (p, i) where p is a final state.
 - Initial state: (s, 0) where s is the start state.
 - The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configurations

Config. graph

Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_P

6. Construct

Win sequence Lex Lemma

- Configuration: A pair (p, i) where p is a state and i is a counter value.
- Configuration graph:
 - States: all configurations (p, i).
 - Transitions: $(p, i) \xrightarrow{a} (q, j)$ if there is a transition from p to q on letter a and the counter value changes from i to j.
 - Final states: (p, i) where p is a final state.
 - Initial state: (s, 0) where s is the start state.
- $\circ\,$ The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configurations

Config. graph

Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L

Summary

Win sequence Lex Lemma

- \circ Configuration: A pair (p, i) where p is a state and i is a counter value.
- Configuration graph:
 - States: all configurations (p, i).
 - Transitions: $(p, i) \xrightarrow{a} (q, j)$ if there is a transition from p to q on letter a and the counter value changes from i to j.
 - Final states: (p, i) where p is a final state.
 - Initial state: (s, 0) where s is the start state.
- The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configurations

Config. graph

Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

- Configuration: A pair (p, i) where p is a state and i is a counter value.
- Configuration graph:
 - States: all configurations (p, i).
 - Transitions: $(p, i) \xrightarrow{a} (q, j)$ if there is a transition from p to q on letter a and the counter value changes from i to j.
 - Final states: (p, i) where p is a final state.
 - Initial state: (s, 0) where s is the start state.

• The configuration graph is infinite, if the oca is not a finite automata.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configurations

Config. graph

Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L}

6. Construct *L* Summary

Win sequence Lex Lemma

- Configuration: A pair (p, i) where p is a state and i is a counter value.
- Configuration graph:
 - States: all configurations (p, i).
 - Transitions: $(p, i) \xrightarrow{a} (q, j)$ if there is a transition from p to q on letter a and the counter value changes from i to j.
 - Final states: (p, i) where p is a final state.
 - Initial state: (s, 0) where s is the start state.
- The configuration graph is infinite, if the oca is not a finite automata.

Configuration graph - Example

Introductior

DOCA Motivation Active Learnin; SOA

Configuration

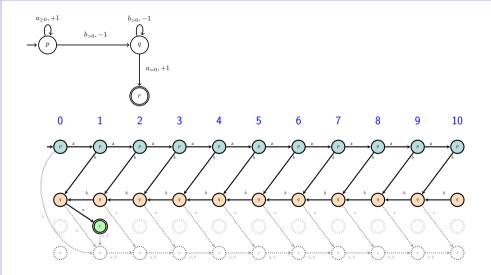
Config. graph

Config sequence Parallel BFS

OL'

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_p 6. Construct \mathcal{L} Summary

Lex Lemma



Configuration sequences

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}_{1}}$ 6. Construct \mathcal{L} Summary

Lex Lemma

Conclusion

- $\circ\;$ Consider a doca with n states.
- Let p be a state, and integers $d \le n^2$, and $i > n^3$.
- Consider sequence of configurations

$$(p,i), (p,i+d), (p,i+2d) \dots$$

 $_{
m O}$ On taking letter a from these configurations, we get sequence

$$(q, i+c), (q, i+d+c), (q, i+2d+c) \dots$$

for some state q and $c \in \{-1, 0, +1\}$.

. For any word w, where $|w| \leq n^3$, there is a state r and counter j

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (r,j), (r,j+d), \ldots$$

 $_{
m >}$ What is unique about each sequence? state, counter value (mod d) pair

Configuration sequences

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P0} 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

Conclusion

- $\circ\;$ Consider a doca with n states.
- Let p be a state, and integers $d \le n^2$, and $i > n^3$.
- Consider sequence of configurations

 $(p,i), (p,i+d), (p,i+2d) \dots$

 $\circ~$ On taking letter a from these configurations, we get sequence

$$(q, i + c), (q, i + d + c), (q, i + 2d + c) \dots$$

for some state q and $c \in \{-1, 0, +1\}$.

For any word w, where $|w| \leq n^3$, there is a state r and counter j

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (r,j), (r,j+d), \ldots$$

 $_{
m D}$ What is unique about each sequence? state, counter value (mod d) pair

Configuration sequences

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}_{1}}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

 \circ Consider a doca with n states.

- Let p be a state, and integers $d \le n^2$, and $i > n^3$.
- Consider sequence of configurations

 $(p,i), (p,i+d), (p,i+2d) \dots$

 $\,\circ\,$ On taking letter a from these configurations, we get sequence

$$(q, i+c), (q, i+d+c), (q, i+2d+c) \dots$$

for some state q and $c \in \{-1, 0, +1\}$.

 $\,\circ\,$ For any word w, where $|w|\leq n^3,$ there is a state r and counter j

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (r,j), (r,j+d), \ldots$$

• What is unique about each sequence? state, counter value (mod d) pair

Configuration sequences

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}_{1}}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

Conclusion

- $\circ\;$ Consider a doca with n states.
- Let p be a state, and integers $d \le n^2$, and $i > n^3$.
- Consider sequence of configurations

 $(p,i), (p,i+d), (p,i+2d) \dots$

 $\,\circ\,$ On taking letter a from these configurations, we get sequence

$$(q, i+c), (q, i+d+c), (q, i+2d+c) \dots$$

for some state q and $c \in \{-1, 0, +1\}$.

 $\,\circ\,$ For any word w, where $|w|\leq n^3,$ there is a state r and counter j

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (r,j), (r,j+d), \ldots$$

• What is unique about each sequence? state, counter value (mod d) pair

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

Number of "non-intersecting" sequences are

| number of states | $\times d = nd \leq n^3$ (since $d \leq n^2$)

• Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \quad \dots \quad \xrightarrow{w} \quad (q,j), (q,j+d), \quad \dots, (q,k=j+td), \dots$$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \ge -n$ such that

$$(p,i+nd) \xrightarrow{\ u \ } (r,l) \xrightarrow{\ y \ } (r,l+cd) \xrightarrow{\ v \ } (q,k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

Number of "non-intersecting" sequences are

| number of states $| \times d = nd \le n^3$ (since $d \le n^2$)

Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \ge -n$ such that

$$(p,i+nd) \xrightarrow{u} (r,l) \xrightarrow{y} (r,l+cd) \xrightarrow{v} (q,k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

• Number of "non-intersecting" sequences are

| number of states $| \times d = nd \le n^3$ (since $d \le n^2$)

- Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter.
 - Then there is a w where $|w| \leq n^3$ such that

 $(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \ge -n$ such that

$$(p, i + nd) \xrightarrow{u} (r, l) \xrightarrow{y} (r, l + cd) \xrightarrow{v} (q, k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

• Number of "non-intersecting" sequences are

| number of states | $\times d = nd \leq n^3$ (since $d \leq n^2$)

• Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$$

- **Proof.** Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \ge -n$ such that

$$(p,i+nd) \xrightarrow{u} (r,l) \xrightarrow{y} (r,l+cd) \xrightarrow{v} (q,k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BES

OL

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L
 Construct L
 Summary

Lex Lemma

Conclusion

• Number of "non-intersecting" sequences are

| number of states | $\times d = nd \leq n^3$ (since $d \leq n^2$)

• Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \ge -n$ such that

$$(p,i+nd) \xrightarrow{u} (r,l) \xrightarrow{y} (r,l+cd) \xrightarrow{v} (q,k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary

Lex Lemma

Conclusion

• Number of "non-intersecting" sequences are

| number of states | $\times d = nd \leq n^3$ (since $d \leq n^2$)

• Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \geq -n$ such that

$$(p,i+nd) \xrightarrow{u} (r,l) \xrightarrow{y} (r,l+cd) \xrightarrow{v} (q,k).$$

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary

Lex Lemma

Conclusion

• Number of "non-intersecting" sequences are

| number of states | $\times d = nd \leq n^3$ (since $d \leq n^2$)

• Let $(p, i + nd) \xrightarrow{v} (q, k)$ and the run do not touch a configuration with zero counter. • Then there is a w where $|w| \le n^3$ such that

$$(p,i), (p,i+d), \ldots \xrightarrow{w} (q,j), (q,j+d), \ldots, (q,k=j+td), \ldots$$

- Proof. Let $(p, i + nd) \xrightarrow{v} (q, k)$ where $|v| > n^3$.
- Hence, there is a $c \geq -n$ such that

$$(p,i+nd) \xrightarrow{\ u \ } (r,l) \xrightarrow{\ y \ } (r,l+cd) \xrightarrow{\ v \ } (q,k).$$

Then,

$$(p, i + cd) \xrightarrow{u} (r, l + cd) \xrightarrow{v} (q, k).$$

Parallel Breadth First Search

Learn DOCA

Sreejith

Introduction

- DOCA Motivation Active Learning SOA
- Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary

Lex Lemma

Conclusion

• Consider the sequence

$$(p,i), (p,i+d), (p,i+2d) \dots$$

- A parallel breadth first search (PBFS) will generate all sequences reachable without touching a zero configuration.
- The PBFS depth will be at most n^3 .
- For a polynomially bounded sequence,

$$(p,i), (p,i+d), (p,i+2d) \dots (p,i+Kd)$$

PBFS will run in polynomial time.

Parallel Breadth First Search

Learn DOCA

Sreejith

Introduction

- DOCA Motivation Active Learning SOA
- Configuration Config. graph
- Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary
- Lex Lemma
- Conclusion

• Consider the sequence

$$(p,i), (p,i+d), (p,i+2d) \dots$$

- A parallel breadth first search (PBFS) will generate all sequences reachable without touching a zero configuration.
- The PBFS depth will be at most n^3 .
- For a polynomially bounded sequence,

$$(p,i), (p,i+d), (p,i+2d) \dots (p,i+Kd)$$

PBFS will run in polynomial time.

Parallel Breadth First Search

Learn DOCA

Sreejith

Introduction

- DOCA Motivation Active Learning SOA
- Configuration Config. graph

Config sequent

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L
 Construct L
 Summary

Lex Lemma

Conclusion

• Consider the sequence

$$(p,i), (p,i+d), (p,i+2d) \dots$$

- A parallel breadth first search (PBFS) will generate all sequences reachable without touching a zero configuration.
- The PBFS depth will be at most n^3 .
- For a polynomially bounded sequence,

$$(p,i), (p,i+d), (p,i+2d) \dots (p,i+Kd)$$

PBFS will run in polynomial time.

Learn DOCA

Sreejith

Introduction

- DOCA Motivation
- SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p₁
 Construct L
 Summary
 Win sequence
 Lex Lemma

The OL* Algorithm

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{P}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

$\circ\;$ The teacher knows a language accepted by a doca.

- \mathcal{T} is a minimal doca equivalent to teacher's doca language.
- We denote by $n = |\mathcal{T}|$, the number of states.

$\circ\,$ To make the presentation simpler, we assume the following about \mathcal{T} :

- There are no ε transitions.
- In a transition, the counter is incremented or decremented at most by one.
- \circ Learner wants to learn a doca ${\cal L}$ equivalent to ${\cal T}.$

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Lex Lemma

- $\circ\;$ The teacher knows a language accepted by a doca.
 - \mathcal{T} is a minimal doca equivalent to teacher's doca language.
 - We denote by $n = |\mathcal{T}|$, the number of states.
- $\circ\,$ To make the presentation simpler, we assume the following about \mathcal{T} :
 - There are no ε transitions.
 - In a transition, the counter is incremented or decremented at most by one.
- \circ Learner wants to learn a doca ${\cal L}$ equivalent to ${\cal T}.$

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p
 Construct L

Lex Lemma

- $\circ\;$ The teacher knows a language accepted by a doca.
 - \mathcal{T} is a minimal doca equivalent to teacher's doca language.
 - We denote by $n = |\mathcal{T}|$, the number of states.
- $\,\circ\,$ To make the presentation simpler, we assume the following about $\mathcal{T}{:}$
 - There are no ε transitions.
 - In a transition, the counter is incremented or decremented at most by one.
- \circ Learner wants to learn a doca ${\cal L}$ equivalent to ${\cal T}.$

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_p 6. Construct \mathcal{L} Summary

VVin sequenc

- The teacher knows a language accepted by a doca.
 - \mathcal{T} is a minimal doca equivalent to teacher's doca language.
 - We denote by $n = |\mathcal{T}|$, the number of states.
- $\,\circ\,$ To make the presentation simpler, we assume the following about $\mathcal{T}{:}$
 - There are no ε transitions.
 - In a transition, the counter is incremented or decremented at most by one.
- $\,\circ\,$ Learner wants to learn a doca ${\cal L}$ equivalent to ${\cal T}.$

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{Pq} 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

Conclusion

• OL* first assumes n = 1.

- $_{
 m D}$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ\,$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented
- \circ Process continues with incremented n.
- $\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T}$, then OL* terminates
- $\circ\,$ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}p_0$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

Conclusion

• OL* first assumes n = 1.

$\circ~$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.

-) If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented
- \circ Process continues with incremented n.
- $\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T}$, then OL* terminates
- $\circ\,$ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

- OL* first assumes n = 1.
- $\,\circ\,$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- \sim Process continues with incremented n.
- $\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T}$, then OL* terminates
- $\circ\,$ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{Pq} 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

- OL^* first assumes n = 1.
- $\circ~$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- $\circ\,$ Process continues with incremented n.
- $_{2}$ If teacher says ${\cal L}$ is equivalent to ${\cal T}$, then OL* terminates
- \circ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}p_{0}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma

Conclusion

- OL^* first assumes n = 1.
- $\,\circ\,$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- \circ Process continues with incremented n.
- $\,\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T}$, then OL* terminates.

$\circ\,$ For proof of correctness, it suffices to show the following

- For every n, OL* runs in time polynomial in n.
- OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}p_0$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma
- Conclusion

- OL^* first assumes n = 1.
- $\,\circ\,$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- \circ Process continues with incremented n.
- $\,\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T},$ then OL* terminates.

$\circ\,$ For proof of correctness, it suffices to show the following

- For every n, OL* runs in time polynomial in n.
- OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{0}}$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma

- OL* first assumes n = 1.
- $\,\circ\,$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- \circ Process continues with incremented n.
- $\,\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T},$ then OL* terminates.
- $\circ\,$ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{0}}$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma

- OL* first assumes n = 1.
- $\,\circ\,$ It learns a doca ${\cal L}$ that is checked for equivalence with teacher.
- $\circ~$ If teacher says ${\cal L}$ is not equivalent to ${\cal T}$, then n is incremented.
- \circ Process continues with incremented n.
- $\,\circ\,$ If teacher says ${\cal L}$ is equivalent to ${\cal T},$ then OL* terminates.
- $\circ\,$ For proof of correctness, it suffices to show the following
 - For every n, OL* runs in time polynomial in n.
 - OL* learns an equivalent doca, when $n = |\mathcal{T}|$.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L
 Construct L
 Summary

VVin sequence

Conclusion

$\circ~$ Learner do not have access to the configuration graph of $\mathcal{T}.$

 \mathcal{A} is a k-behaviour dfa if \mathcal{A} is k-equivalent to \mathcal{T} . That is,

- Angluin's L^* algorithm can learn a k-behaviour dfa in time polynomial in k and n. • This is where minimal-equivalence is used.
- Step 1. of learner is to learn a poly(n)-behaviour dfa.
- $\circ~\mbox{We will fix }poly(n)$ later.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_D
 Construct L

Win sequence

Conclusion

- $\,\circ\,$ Learner do not have access to the configuration graph of $\mathcal{T}.$
- \mathcal{A} is a *k*-behaviour dfa if \mathcal{A} is *k*-equivalent to \mathcal{T} . That is,

- Angluin's L* algorithm can learn a k-behaviour dfa in time polynomial in k and n.
 This is where minimal-equivalence is used.
- $\circ~$ Step 1. of learner is to learn a poly(n)-behaviour dfa.
- $\circ~$ We will fix poly(n) later.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_p
 Construct L

Win sequence

Conclusion

- $\,\circ\,$ Learner do not have access to the configuration graph of $\mathcal{T}.$
- \mathcal{A} is a *k*-behaviour dfa if \mathcal{A} is *k*-equivalent to \mathcal{T} . That is,

w is accepted by \mathcal{A} iff w is accepted by \mathcal{T} , for all $|w| \leq k$.

Angluin's L* algorithm can learn a k-behaviour dfa in time polynomial in k and n. This is where minimal-equivalence is used.

- $\circ~$ Step 1. of learner is to learn a poly(n)-behaviour dfa
- We will fix poly(n) later.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p
 Construct L

VVin sequenc

Conclusion

- $\circ\,$ Learner do not have access to the configuration graph of ${\cal T}.$
- \mathcal{A} is a *k*-behaviour dfa if \mathcal{A} is *k*-equivalent to \mathcal{T} . That is,

- Angluin's L* algorithm can learn a k-behaviour dfa in time polynomial in k and n.
 This is where minimal-equivalence is used.
- Step 1. of learner is to learn a poly(n)-behaviour dfa.
- We will fix poly(n) later.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{\mathcal{C}}}$ 6. Construct \mathcal{L} Summary

Lex Lemma

Conclusion

- $\circ\,$ Learner do not have access to the configuration graph of ${\cal T}.$
- \mathcal{A} is a *k*-behaviour dfa if \mathcal{A} is *k*-equivalent to \mathcal{T} . That is,

- Angluin's L^* algorithm can learn a k-behaviour dfa in time polynomial in k and n. • This is where minimal-equivalence is used.
- Step 1. of learner is to learn a poly(n)-behaviour dfa.
- We will fix poly(n) later.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_P
 Construct L

Win sequence

Conclusion

- $\circ\,$ Learner do not have access to the configuration graph of ${\cal T}.$
- $\circ~\mathcal{A}$ is a k-behaviour dfa if \mathcal{A} is $k\text{-equivalent to}~\mathcal{T}.$ That is,

- Angluin's L^* algorithm can learn a k-behaviour dfa in time polynomial in k and n. • This is where minimal-equivalence is used.
- Step 1. of learner is to learn a poly(n)-behaviour dfa.
- We will fix poly(n) later.

Learn DOCA

Sreejith

ntroduction

DOCA Motivation Active Learning SOA

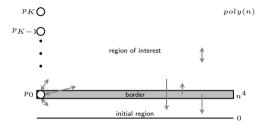
Configurations

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DF/ 2. Partition \mathcal{A}
- 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{I}}$
- Summary
- Win sequence
- Conclusion

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.



- A path from initial region to region of interest should traverse via some border state.
- Partial OCA construction
 - Pick a border state p_0 .
 - DFA \mathcal{A}_{p_0} : Remove all states other than p_0 from border.
 - Learner constructs a partial OCA, \mathcal{L}_{p_0} that is poly(n)-equivalent to \mathcal{A}_{p_0} .

Learn DOCA

Sreejith

ntroduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA

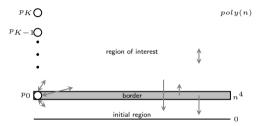
2. Partition \mathcal{A}

Win sequence
 PBFS on A
 Construct L_I
 Construct L

Win sequence

Conclusion

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.



- A path from initial region to region of interest should traverse via some border state.
- Partial OCA construction
 - Pick a border state p_0 .
 - DFA \mathcal{A}_{p_0} : Remove all states other than p_0 from border.
 - Learner constructs a partial OCA, \mathcal{L}_{p_0} that is poly(n)-equivalent to \mathcal{A}_{p_0} .

Learn DOCA

Sreejith

ntroduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

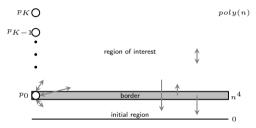
1. Behaviour DF

2. Partition A

- 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{F}}$ 6. Construct \mathcal{L}
- Win sequence Lex Lemma
- Conclusion

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.

- Partial OCA construction
 - Pick a border state p_0 .
 - DFA \mathcal{A}_{p_0} : Remove all states other than p_0 from border.
 - Learner constructs a partial OCA, L_{p0} that is poly(n)-equivalent to A_{p0}.



Learn DOCA

Sreejith

ntroduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA

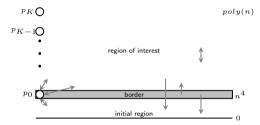
Win sequence

4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\tilde{I}}$ 6. Construct \mathcal{L}

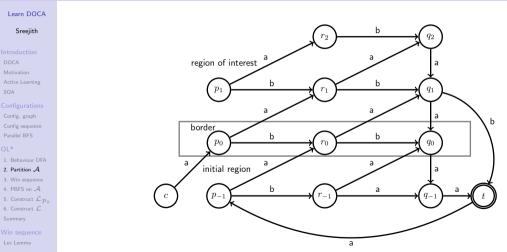
Win sequence

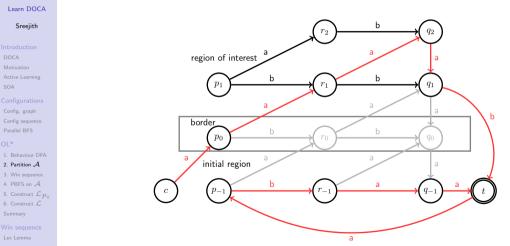
Conclusion

- Initial region: States reachable by words of length $< n^4$.
- Border region: States reachable by words of length n^4 but not less.
- Region of interest: Remaining states.



- A path from initial region to region of interest should traverse via some border state.
- Partial OCA construction
 - Pick a border state p_0 .
 - DFA \mathcal{A}_{p_0} : Remove all states other than p_0 from border.
 - Learner constructs a partial OCA, \mathcal{L}_{p_0} that is poly(n)-equivalent to \mathcal{A}_{p_0} .





OL*: Step 3. Finding a winning sequence

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_p
 Construct L
 Summary

Win sequence

Conclusion

Definition

 $w_0, w_1, w_2, \ldots, w_K$

is a winning sequence if the run of these words on ${\mathcal T}$ reach configurations

 $(p,i), (p,i+d), (p,i+2d), \ldots, (p,i+Kd)$

respectively, for some state p, and $d \le n^2$ and $i > n^3$.

_emma (Winning sequence lemma)

For any state p_0 in behaviour dfa \mathcal{A} , a winning sequence

 $w_0, w_1, w_2, \ldots, w_K$

an be found in polynomial time, such that the run of w_0 on ${\mathcal A}$ reaches state $p_0.$

OL*: Step 3. Finding a winning sequence

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma

Conclusion

Definition

 $w_0, w_1, w_2, \ldots, w_K$

is a winning sequence if the run of these words on ${\mathcal T}$ reach configurations

 $(p,i), (p,i+d), (p,i+2d), \dots, (p,i+Kd)$

respectively, for some state p, and $d \le n^2$ and $i > n^3$.

Lemma (Winning sequence lemma)

```
For any state p_0 in behaviour dfa A, a winning sequence
```

 $w_0, w_1, w_2, \ldots, w_K$

can be found in polynomial time, such that the run of w_0 on A reaches state p_0 .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_p
 Construct L
 Summary

Win sequence Lex Lemma

Conclusion

• Consider a *winning sequence*

 $w_0, w_1, w_2, \ldots, w_K$

Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

 $\circ\,$ Run parallel BFS (depth at most $n^3)$ from this sequence

- All distinct sequences identified.
- At most n^3 distinct sequences.
- These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin; SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary
- Win sequence Lex Lemma
- Conclusion

• Consider a *winning sequence*

 $w_0, w_1, w_2, \ldots, w_K$

 $\circ\,$ Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

 $\,$ Run parallel BFS (depth at most $n^3)$ from this sequence

- All distinct sequences identified.
- At most n^3 distinct sequences.
- These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin; SOA

Configuration

Config. graph Config sequence Parallel BFS

OL'

- Behaviour DFA
 Partition *A* Win sequence
 PBFS on *A* Construct *L*_D
 Construct *L*
- Win sequence
- Conclusion

• Consider a *winning sequence*

 $w_0, w_1, w_2, \ldots, w_K$

 $\circ\,$ Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

$\,\circ\,$ Run parallel BFS (depth at most $n^3)$ from this sequence.

- All distinct sequences identified.
- At most n^3 distinct sequences.
- These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin; SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary
- Win sequence
- Conclusion

- Consider a *winning sequence*
- $w_0, w_1, w_2, \ldots, w_K$

 $\circ\,$ Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

- $\,\circ\,$ Run parallel BFS (depth at most $n^3)$ from this sequence.
 - All distinct sequences identified.
 - At most n^3 distinct sequences.
 - These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL'

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_P
 Construct L
 Summary

Win sequence

Conclusion

• Consider a *winning sequence*

 $w_0, w_1, w_2, \ldots, w_K$

 $\circ~$ Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

 $\,\circ\,$ Run parallel BFS (depth at most $n^3)$ from this sequence.

- All distinct sequences identified.
- At most n^3 distinct sequences.

• These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin; SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_P
 Construct L
 Summary
- Win sequence
- Conclusion

• Consider a *winning sequence*

 $w_0, w_1, w_2, \ldots, w_K$

 $\circ~$ Run these words on the behaviour dfa. We reach state sequence

 $p_0, p_1, p_2, \ldots, p_K$

- $\,\circ\,$ Run parallel BFS (depth at most $n^3)$ from this sequence.
 - All distinct sequences identified.
 - At most n^3 distinct sequences.
 - These sequences are the states of doca \mathcal{L}_{p_0} .

Learn DOCA Sreejith Active Learning p_{k-1} Parallel BFS 2. Partition \mathcal{A} 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{p_0} *p*₀

Introductio

DOCA Motivation Active Learnin SOA

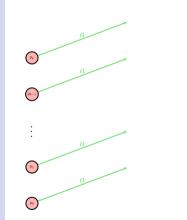
Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{P}_0}$ 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma



Introduction

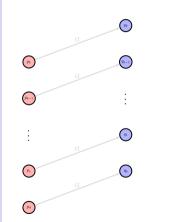
DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. **PBFS on \mathcal{A}** 5. Construct $\mathcal{L}_{\mathcal{P}_0}$ 6. Construct \mathcal{L} Summary
- Win sequence



Introductio

DOCA Motivation Active Learnin SOA

Configurations

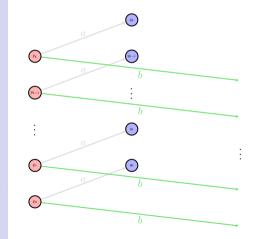
Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{p_0} 6. Construct \mathcal{L} Summary

Win sequence

Conclusion



 $a_{\geq 0}, 0$

Introductio

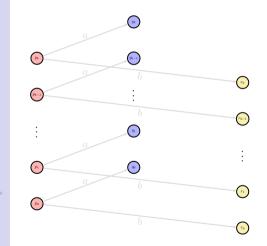
DOCA Motivation Active Learnin SOA

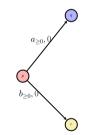
Configurations

Config. graph Config sequence Parallel BFS

OL'

Win sequence





Introduction

DOCA Motivation Active Learning SOA

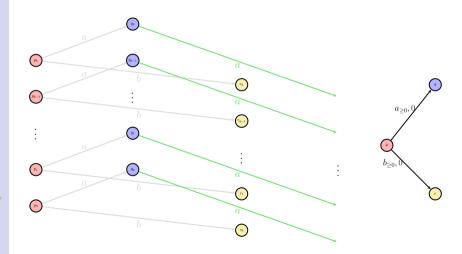
Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P_0} 6. Construct \mathcal{L} Summary

Lex Lemma



Learn DOCA Sreejith p_k q_{k-1} p_{k-1} (Lk $a_{\geq 0}, 0$ $a_{\geq 0}, 0$ (r_{k-1}) t_{k-1} $b_{\geq 0}$, 2. Partition \mathcal{A} 90 p_1 4. PBFS on \mathcal{A} (r1) 5. Construct \mathcal{L}_{p_0} P0 $\begin{pmatrix} t_1 \end{pmatrix}$ (t_0)

Learn DOCA Sreejith Pk q_{k-1} p_{k-1} t_k $a_{\geq 0}, 0$ $a_{\geq 0}$, r_{k-1} t_{k-1} q_1 $b_{\geq 0}$, 90 2. Partition \mathcal{A} (r1) 4. PBFS on \mathcal{A} Po (t1) r_0 t_{\circ}

Introductio

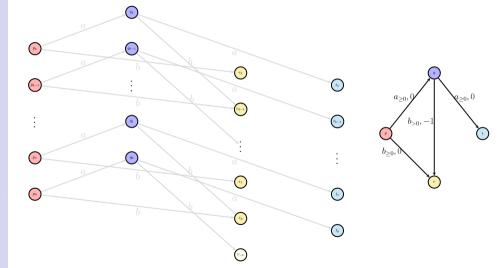
DOCA Motivation Active Learning SOA

Configurations

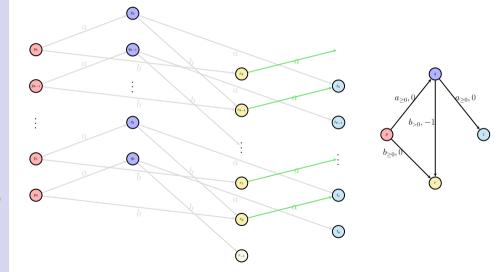
Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{l}}$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma
- Conclusion



2. Partition \mathcal{A} 4. PBFS on \mathcal{A}



Introduction

DOCA Motivation Active Learning SOA

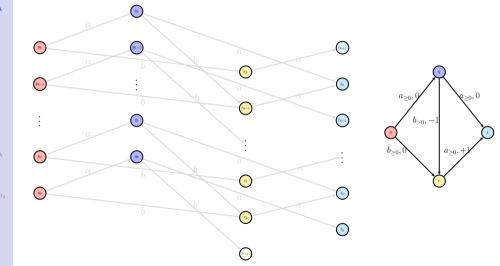
Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{l}}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma



Introductio

DOCA Motivation Active Learning SOA

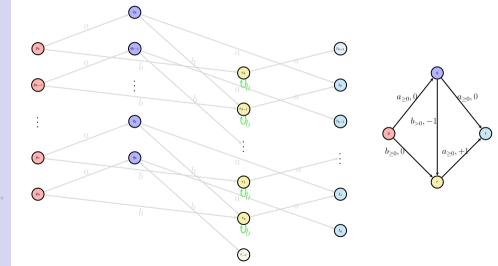
Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p
 Construct L
 Summary
 Win sequence

Lex Lemma



Introductio

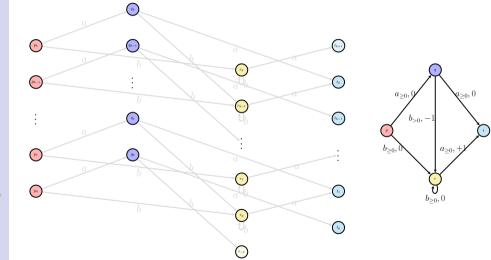
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p₀
 Construct L
 Summary
 Win sequence



Introduction

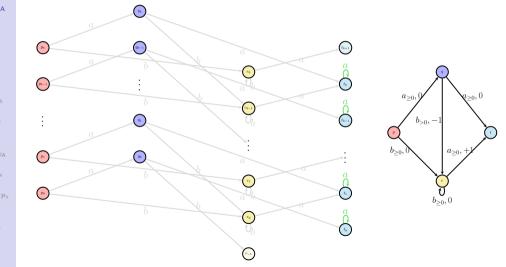
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{l}}$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma
- Conclusion



Introduction

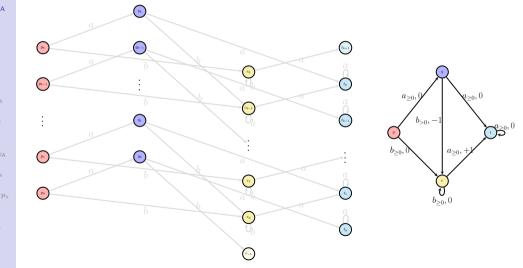
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p₀
 Construct L
 Summary
 Win sequence
- Lex Lemma
- Conclusion



Introductio

DOCA Motivation Active Learning SOA

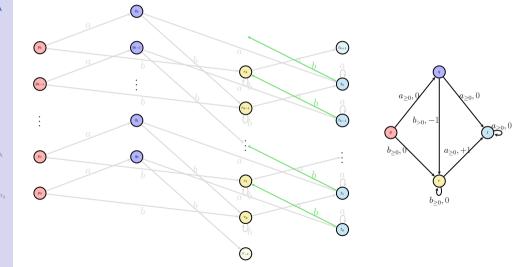
Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{l}}$ 6. Construct \mathcal{L} Summary Win sequence

Lex Lemma



Introduction

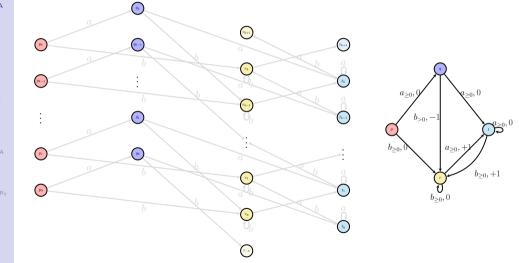
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p₀
 Construct L
 Summary
 Win sequence



OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learn DOCA

Sreejith

Introduction

- DOCA Motivati
- Active Lea
- Configuration
- Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L po
- 6. Construct J Summary
- Win sequence
- Conclusion

• The states of the partial OCA are the sequences.

- Let (p_0, p_K) be one sequence call this Red sequence.
- Let (q_0, q_K) be another sequence call this Blue sequence.
- Then *Red* and *Blue* are states of partial OCA.

Transitions:

- If $(p_0, p_K) \xrightarrow{a} (q_0, q_K)$, add transition $Red \xrightarrow{a_{\geq 0}, 0} Blue$.
- If $(p_0, p_{K-1}) \xrightarrow{a} (q_1, q_K)$, add transition $Red \xrightarrow{a_{\geq 0}, +1} Blue.^1$
- If $(p_1, p_K) \xrightarrow{a} (q_0, q_{K-1})$, add transition $Red \xrightarrow{a_{\geq 0}, -1} Blue$.¹

• Hence:

- $p_i \xrightarrow{a} q_j$ if and only if $(Red, i) \xrightarrow{a} (Blue, j)$.
- If $(Red, i) \xrightarrow{w} (Blue, j)$, then $p_i \xrightarrow{w} q_j$.
- If $p_i \xrightarrow{a} r_k \xrightarrow{b} s_l \dots \xrightarrow{a} q_j$, then $(Red, i) \xrightarrow{ab\dots a} (Blue, j)$.

 $^{{}^1}p_n \xrightarrow{a} q_\ell$ for $0 \le \ell \le 2n$ is possible.

OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learn DOCA

Sreejith

Introduction

- DOCA Motivation Active Lear
- SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L po
- 6. Construct & Summary
- Win sequence
- Conclusion

- The states of the partial OCA are the sequences.
 - Let (p_0, p_K) be one sequence call this Red sequence.
 - Let (q_0, q_K) be another sequence call this Blue sequence.
 - Then *Red* and *Blue* are states of partial OCA.
- Transitions:
 - If $(p_0, p_K) \xrightarrow{a} (q_0, q_K)$, add transition $Red \xrightarrow{a \ge 0, 0} Blue$.
 - If $(p_0, p_{K-1}) \xrightarrow{a} (q_1, q_K)$, add transition $Red \xrightarrow{a_{\geq 0}, +1} Blue.^1$
 - If $(p_1, p_K) \xrightarrow{a} (q_0, q_{K-1})$, add transition $Red \xrightarrow{a_{\geq 0}, -1} Blue.^1$
- Hence:
 - $p_i \xrightarrow{a} q_j$ if and only if $(Red, i) \xrightarrow{a} (Blue, j)$.
 - If $(Red, i) \xrightarrow{w} (Blue, j)$, then $p_i \xrightarrow{w} q_j$.
 - If $p_i \xrightarrow{a} r_k \xrightarrow{b} s_l \dots \xrightarrow{a} q_j$, then $(Red, i) \xrightarrow{ab\dots a} (Blue, j)$.

 ${}^1p_n \xrightarrow{a} q_\ell$ for $0 \le \ell \le 2n$ is possible.

OL*: Step 5. Constructing \mathcal{L}_{p_0}

Learn DOCA

Sreejith

Introduction

- DOCA Motivation Active Lear
- SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Ln
- 6. Construct $\mathcal L$ Summary
- Win sequence Lex Lemma
- Conclusion

- The states of the partial OCA are the sequences.
 - Let (p_0, p_K) be one sequence call this Red sequence.
 - Let (q_0, q_K) be another sequence call this Blue sequence.
 - Then *Red* and *Blue* are states of partial OCA.
- Transitions:
 - If $(p_0, p_K) \xrightarrow{a} (q_0, q_K)$, add transition $Red \xrightarrow{a \ge 0, 0} Blue$.
 - If $(p_0, p_{K-1}) \xrightarrow{a} (q_1, q_K)$, add transition $Red \xrightarrow{a_{\geq 0}, +1} Blue.^1$
 - If $(p_1, p_K) \xrightarrow{a} (q_0, q_{K-1})$, add transition $Red \xrightarrow{a_{\geq 0}, -1} Blue.^1$

• Hence:

- $p_i \xrightarrow{a} q_j$ if and only if $(Red, i) \xrightarrow{a} (Blue, j)$.
- If $(Red, i) \xrightarrow{w} (Blue, j)$, then $p_i \xrightarrow{w} q_j$.
- If $p_i \xrightarrow{a} r_k \xrightarrow{b} s_l \dots \xrightarrow{a} q_j$, then $(Red, i) \xrightarrow{ab\dots a} (Blue, j)$.

 ${}^1p_n \xrightarrow{a} q_\ell$ for $0 \le \ell \le 2n$ is possible.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0
 Construct L

Summary

Lex Lemma

Conclusion

$\,\circ\,$ The parallel BFS colors "most" of the reachable states from border state p.

- $_{
 m D}$ However, upto n^3 number of states are not colored (called Neg states
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- \circ The Neg states are added to the partial OCA.
- \circ Neg states are always with zero counter value.
- \circ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}p_0$ 6. Construct \mathcal{L}

Summary

Lex Lemma

- $\,\circ\,$ The parallel BFS colors "most" of the reachable states from border state p.
- $\,\circ\,$ However, upto n^3 number of states are not colored (called Neg states)
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- $\circ~$ The Neg states are added to the partial OCA.
- Neg states are always with zero counter value.
- $\circ\,$ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0

- Summary
- Win sequence

- $\circ~$ The parallel BFS colors "most" of the reachable states from border state p.
- $\,\circ\,$ However, upto n^3 number of states are not colored (called Neg states)
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- $\circ~$ The Neg states are added to the partial OCA.
- $\circ \ Neg$ states are always with zero counter value.
- \circ Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}p_0$

6. Construct & Summary

Win sequence

- $\circ~$ The parallel BFS colors "most" of the reachable states from border state p.
- $\,\circ\,$ However, upto n^3 number of states are not colored (called Neg states)
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- $\circ~$ The Neg states are added to the partial OCA.
- \circ Neg states are always with zero counter value.
 - Transitions between Neg states do not increment or decrement counter.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBES on A

- 5. Construct $\mathcal{L}_{\mathcal{P}_0}$ 6. Construct $\mathcal L$
- Summary

Win sequence

- $\circ~$ The parallel BFS colors "most" of the reachable states from border state p.
- $\,\circ\,$ However, upto n^3 number of states are not colored (called Neg states)
 - eg. the state r_{-1} in the example, and some states reachable from r_{-1} .
- $\circ~$ The Neg states are added to the partial OCA.
- \circ Neg states are always with zero counter value.
- $\circ~$ Transitions between Neg states do not increment or decrement counter.

Introduction

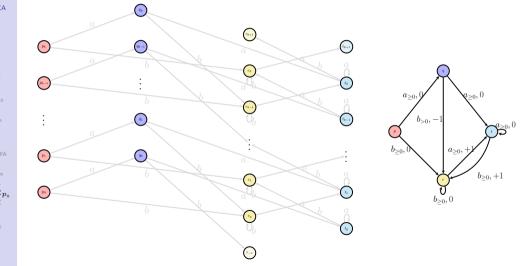
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0
 Construct L
- Win sequence Lex Lemma
- Conclusion



Introduction

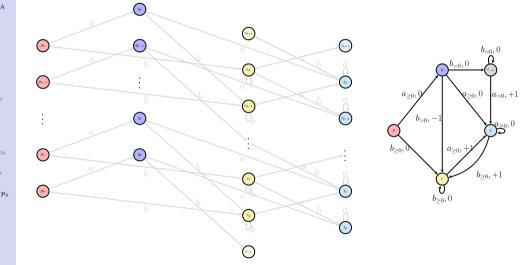
DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

- Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L_{P0}
 Construct L
- Win sequence Lex Lemma
- Conclusion



Adding initial region

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration:

Config. graph Config sequence Parallel BFS

OL*

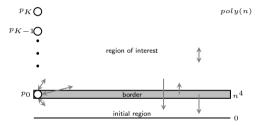
Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0
 Construct L

Summary

Win sequence

Conclusion

- The initial-region is added to the partial OCA.
- Like *Neg* states, initial region do not increment or decrement counter.



This concludes the construction of partial OCA \mathcal{L}_{p_0} .

Adding initial region

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration:

Config. graph Config sequence Parallel BFS

OL*

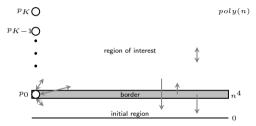
Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0
 Construct L

Summary

Win sequence

Conclusion

- The initial-region is added to the partial OCA.
- Like *Neg* states, initial region do not increment or decrement counter.



This concludes the construction of partial OCA \mathcal{L}_{p_0} .

Partial OCA \mathcal{L}_{p_0} - Properties

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp0
 Construct L

Win sequence Lex Lemma

Conclusion

Theorem

Let w be a word of length $\leq poly(n)$. Then one of the following holds:

• Either

 \mathcal{L}_p accepts w iff \mathcal{A} accepts w

• or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$.

OL*: Step 6. Constructing \mathcal{L}

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{C}}$ 6. Construct \mathcal{L} Summary

Lex Lemma

The final OCA *L* is union of partial OCAs *L_p*, *L_q*,..., *L_r* where *border* = {*p*, *q*,...,*r*}
From, construction of *L_p*: for any word *w* where |w| ≤ *poly*(*n*):

 \mathcal{L}_p accepts w iff \mathcal{A} accepts w

or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$. Hence, for any word w where $|w| \leq poly(n)$:

 \mathcal{L} accepts w iff \mathcal{A} accepts w

[Böhm et. al., 2013] There is a polynomial poly(n) such that if \mathcal{L} is poly(n)-equivalent to \mathcal{T} , then \mathcal{L} is equivalent to \mathcal{T} .

Hence:

OL*: Step 6. Constructing ${\cal L}$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

VVin sequenc

Conclusion

- The final OCA \mathcal{L} is union of partial OCAs $\mathcal{L}_p, \mathcal{L}_q, \dots, \mathcal{L}_r$ where $border = \{p, q, \dots, r\}$
- From, construction of \mathcal{L}_p : for any word w where $|w| \leq poly(n)$:

 \mathcal{L}_p accepts w iff \mathcal{A} accepts w

or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$. Hence, for any word w where $|w| \leq poly(n)$:

 \mathcal{L} accepts w iff \mathcal{A} accepts w

[Böhm et. al., 2013] There is a polynomial poly(n) such that if \mathcal{L} is poly(n)-equivalent to \mathcal{T} , then \mathcal{L} is equivalent to \mathcal{T} .

 \mathcal{L} is equivalent to \mathcal{T}

OL*: Step 6. Constructing ${\cal L}$

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

- The final OCA \mathcal{L} is union of partial OCAs $\mathcal{L}_p, \mathcal{L}_q, \dots, \mathcal{L}_r$ where $border = \{p, q, \dots, r\}$
- From, construction of \mathcal{L}_p : for any word w where $|w| \leq poly(n)$:

 \mathcal{L}_p accepts w iff \mathcal{A} accepts w

or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$. • Hence, for any word w where |w| < poly(n):

 \mathcal{L} accepts w iff \mathcal{A} accepts w

• [Böhm et. al., 2013] There is a polynomial poly(n) such that if \mathcal{L} is poly(n)-equivalent to \mathcal{T} , then \mathcal{L} is equivalent to \mathcal{T} .

Hence

OL*: Step 6. Constructing \mathcal{L}

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_{P_1} 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

- The final OCA \mathcal{L} is union of partial OCAs $\mathcal{L}_p, \mathcal{L}_q, \dots, \mathcal{L}_r$ where $border = \{p, q, \dots, r\}$
- From, construction of \mathcal{L}_p : for any word w where $|w| \leq poly(n)$:

 \mathcal{L}_p accepts w iff \mathcal{A} accepts w

or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$.

• Hence, for any word w where $|w| \le poly(n)$:

 \mathcal{L} accepts w iff \mathcal{A} accepts w

• [Böhm et. al., 2013] There is a polynomial poly(n) such that if \mathcal{L} is poly(n)-equivalent to \mathcal{T} , then \mathcal{L} is equivalent to \mathcal{T} .

OL*: Step 6. Constructing \mathcal{L}

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{\ell}}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

The final OCA *L* is union of partial OCAs *L_p*, *L_q*, ..., *L_r* where *border* = {*p*, *q*, ..., *r*}
From, construction of *L_p*: for any word *w* where |*w*| ≤ *poly*(*n*):

 \mathcal{L}_n accepts w iff \mathcal{A} accepts w

or there is a prefix u such that the run of u on \mathcal{A} reaches a border state $q \neq p$.

• Hence, for any word w where $|w| \le poly(n)$:

 \mathcal{L} accepts w iff \mathcal{A} accepts w

- [Böhm et. al., 2013] There is a polynomial poly(n) such that if \mathcal{L} is poly(n)-equivalent to \mathcal{T} , then \mathcal{L} is equivalent to \mathcal{T} .
- Hence:

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A}

4. PBFS on .A

- 5. Construct $\mathcal{L}_{\mathcal{F}}$
- 6. Construct \mathcal{L}
- Summary

Win sequence Lex Lemma

$\circ~$ Construct poly(n)-behaviour DFA using L* algorithm.

Partition the behaviour DFA into initial region, border, and region of interest.

• For each border state:

- Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
- Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
- Run parallel BFS from this sequence.
- All reachable sequences of parallel BFS form states of partial OCA.
- Counter values are incremented / decremented based on sequence shift.
- Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A}

Win sequence
 PBFS on A

- 4.10100104
- 5. Construct Lp
- 6. Construct

Summary

Win sequence

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.

For each border state:

- Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
- Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
- Run parallel BFS from this sequence.
- All reachable sequences of parallel BFS form states of partial OCA.
- Counter values are incremented / decremented based on sequence shift.
- Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition $\mathcal A$

- 4. PBFS on A
- 5. Construct $\mathcal{L}_{\mathcal{F}}$
- 6. Construct $\mathcal L$
- Summary

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A}

3. Win sequent

- 5. Construct \mathcal{L}_1
- 6. Construct $\hat{\mathcal{L}}$

Summary

Win sequence

- \circ Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 W6

- 4. PBFS on \mathcal{A}
- 5. Construct $\mathcal{L}_{\mathcal{P}}$
- 6. Construct $\mathcal L$
- Summary

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence

- 4. PBFS on \mathcal{A}
- 5. Construct \mathcal{L}_p
- 6. Construct $\mathcal L$
- Summary

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 DRES on A

5. Construct $\mathcal{L}_{\mathcal{I}}$

- 6. Construct \mathcal{L}
- Summary

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence

- 4. PBFS on A
- 5. Construct L_p
- 6. Construct L
- Summary

Win sequence

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.

• Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence

- 4. PBFS on A
- 5. Construct \mathcal{L}_p
- 6. Construct L

Summary

Win sequence

- Construct poly(n)-behaviour DFA using L* algorithm.
- Partition the behaviour DFA into initial region, border, and region of interest.
- For each border state:
 - Generate a winning sequence of words: w_0, w_1, \ldots, w_K .
 - Run these words on the DFA to get sequence of states: p_0, p_1, \ldots, p_K .
 - Run parallel BFS from this sequence.
 - All reachable sequences of parallel BFS form states of partial OCA.
 - Counter values are incremented / decremented based on sequence shift.
 - Add Neg and initial region to get partial OCA.
- Construct final OCA by combining partial OCAs.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learn

Configuration

Config. graph Config sequence Parallel BFS

OL'

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{P_{\ell}}$ 6. Construct \mathcal{L} Summary Win sequence

Proof of winning sequence lemma

Winning sequence lemma

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}_0}$ 6. Construct \mathcal{L} Summary

Win sequence

Conclusion

Definition

 $w_0, w_1, w_2, \ldots, w_K$

is a winning sequence if the run of these words on ${\mathcal T}$ reach configurations

 $(p,i), (p,i+d), (p,i+2d), \ldots, (p,i+Kd)$

respectively, for some state p, and $d \le n^2$ and $i > n^3$.

Lemma (Winning sequence lemma)

```
For any state p_0 in behaviour dfa A, a winning sequence
```

 $w_0, w_1, w_2, \ldots, w_K$

can be found in polynomial time, such that the run of w_0 on \mathcal{A} reaches state p_0 .

Proof of winning sequence lemma

Learn DOCA

Sreejith

Introductio

DOCA Motivation Active Learnin; SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{P}}$ 6. Construct \mathcal{L} Summary

Win sequence

Lex Lemma

Conclusion

- Let (s,0) be the start configuration of a doca.
- $\circ\;$ For a configuration (p,i), we say

w = llex(p, i)

if w is the lexicographically minimal word that takes (s,0) to (p,i). \circ That is, $(s,0)\xrightarrow{w}(p,i), \quad \text{and}$

 $(s,0)\xrightarrow{u}(p,i)\implies (|w|,w)\leq (|u|,u), \quad \text{ for all } u.$

Proof of winning sequence lemma contd.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_p 6. Construct \mathcal{L} Summary

Win sequence

Lex Lemma

Conclusion

Lemma

$$\sim$$
 Let (p,i) be a configuration where $i>n^3$. Then,

$$llex(p,i) = xy^r z$$
, where $|x|, |y|, |z| \le n^3$, and y increases counter by $\le n^2$.

• Furthermore,

$$(s,0) \xrightarrow{xy^{r+j}z} (p,i+jd), \quad \text{ for all } j \ge 0, \text{ and } d \le n^2.$$

Proof:

- Let w = llex(p, i).
- Let c_i be the last configuration where counter value i is seen for the last time.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learnin, SOA

Configurations

Config. graph Config sequence Parallel BFS

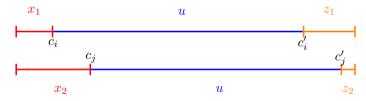
OL*

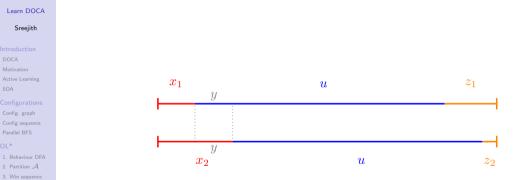
Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct L p
 Construct L

Win sequence

Lex Lemma

- c_i is the configuration where counter value i is seen for the last time.
- there are c_i and c_j with same state and c'_i and c'_j with same state.





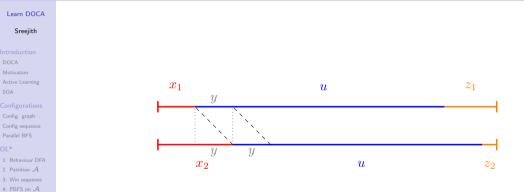
4. PBFS on ${\cal A}$

5. Construct \mathcal{L} 6. Construct \mathcal{L}

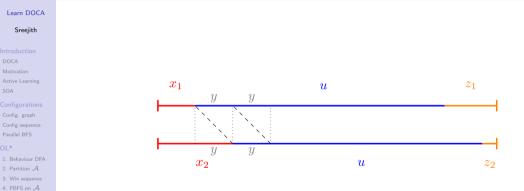
Summary

Win sequence

Lex Lemma

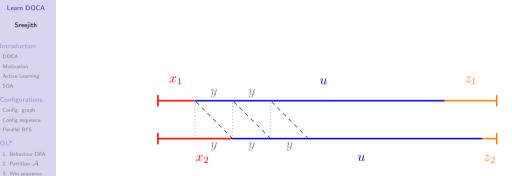


Lex Lemma

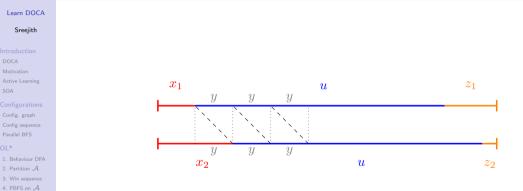


Win sequen

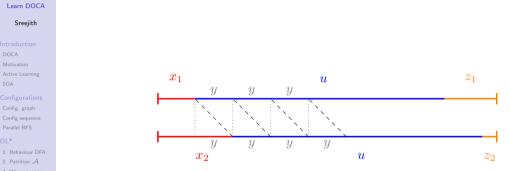
Lex Lemma



- 4. PBFS on \mathcal{A}
- 5. Construct \mathcal{L}_{I} 6. Construct \mathcal{L}
- Summary
- Win sequence
- Lex Lemma
- Conclusion

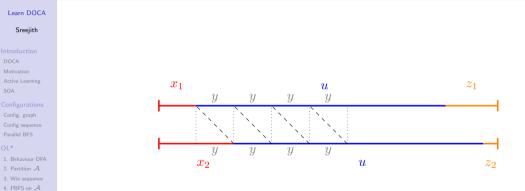


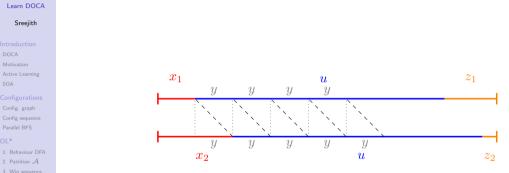
- 5. Construct
- 6. Construct
- Win sequence
- Lex Lemma
- Conclusion



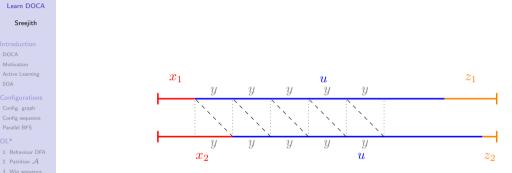
- Win sequence
 PBFS on A
- 5. Construct \mathcal{L}_{I}
- Summary
- Win sequence
- Lex Lemma
- Conclusion

Lex Lemma

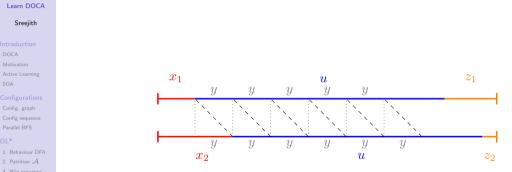




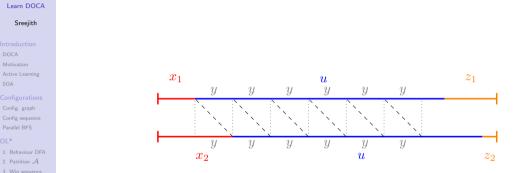
- 4. PBFS on A
- 5. Construct \mathcal{L}_{1}
- Summary
- Win sequence
- Lex Lemma
- Conclusion



- 4. PBFS on A
- 5. Construct \mathcal{L}_{j}
- Summary
- Win sequence
- Lex Lemma
- Conclusion



- 4. PBFS on \mathcal{A}
- 5. Construct \mathcal{L}
- 6. Construct
- Win sequence
- Lex Lemma
- Conclusion



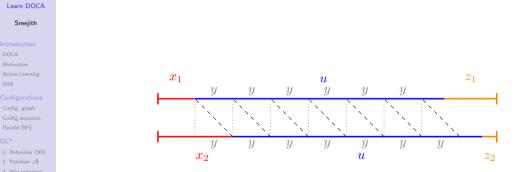
4. PBFS on A

5. Construct \mathcal{L}_{1} 6. Construct \mathcal{L}

Summary

Win sequence

Lex Lemma



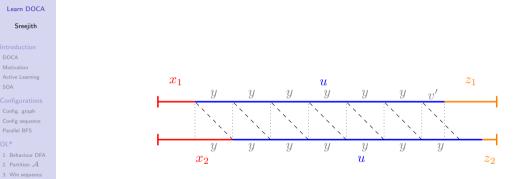
4. PBFS on \mathcal{A}

5. Construct \mathcal{L}_{I}

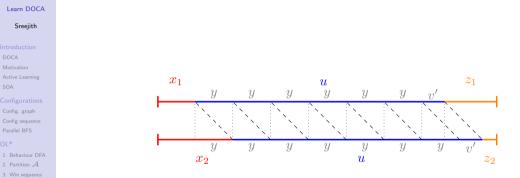
Summary

Win sequence

Lex Lemma



- 4. PBFS on ${\cal A}$
- 5. Construct \mathcal{L}_{I} 6. Construct \mathcal{L}
- Summary
- Win sequence
- Lex Lemma
- Conclusion



- 4. PBFS on ${\cal A}$
- 5. Construct \mathcal{L}_{1}
- Summary
- Win sequence
- Lex Lemma
- Conclusion

Proof of winning sequence lemma contd.

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configuration

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{P}}$ 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma

Conclusion

\circ Let (p,i) be a configuration where $i > n^3$. Then,

 $llex(p,i) = xy^r z$, where $|x|, |y|, |z| \le n^3$, and y increases counter by $\le n^2$.

• Furthermore,

Lemma

$$(s,0) \xrightarrow{xy^{r+j}z} (p,i+jd), \quad \text{ for all } j \ge 0, \text{ and } d \le n^2.$$

Lemma (Winning sequence lemma)

For any state p_0 in behaviour dfa A, a winning sequence

 $w_0, w_1, w_2, \ldots, w_K$

can be found in polynomial time, such that the run of w_0 on A reaches state p_0 .

Conclusion

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

Behaviour DFA
 Partition A
 Win sequence
 PBFS on A
 Construct Lp
 Construct L
 Summary

Conclusion

Theorem

*OL** learns a doca equivalent to the teacher's doca using membership and minimal-equivalence queries, and in time polynomial in the size of a smallest doca recognizing the language.

In the talk we skipped ε transitions in the doca. However that can also be done using the same technique.

Corollary

Polynomial approximation for minimization of doca.

Conclusion

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct \mathcal{L}_p 6. Construct \mathcal{L} Summary

Win sequence Lex Lemma

Theorem

OL* learns a doca equivalent to the teacher's doca using membership and minimal-equivalence queries, and in time polynomial in the size of a smallest doca recognizing the language.

In the talk we skipped ε transitions in the doca. However that can also be done using the same technique.

Corollary

Polynomial approximation for minimization of doca.

Future work

Learn DOCA

Sreejith

Introduction

DOCA Motivation Active Learning SOA

Configurations

Config. graph Config sequence Parallel BFS

OL*

- 1. Behaviour DFA 2. Partition \mathcal{A} 3. Win sequence 4. PBFS on \mathcal{A} 5. Construct $\mathcal{L}_{\mathcal{D}}$ 6. Construct \mathcal{L} Summary Win sequence
- Lex Lemma
- Conclusion

- Replacing minimal-equivalence with equivalence query.
- Practical OL* algorithm.
- Improving running time of equivalence.
- Learning weighted models (like visibly OCA).

Thank You!