# Resolving Nondeterminism by Chance

Soumyajit Paul

IARCS Verification Seminar Series 16 Sep, 2025

Joint work with
David Purser, Sven Schewe, Qiyi Tang, Patrick Totze, Di-de Yen









$$\mathcal{R}: \Sigma^* \times Q \times \Sigma \mapsto Q$$



$$\mathcal{R}: \Sigma^* \times Q \times \Sigma \mapsto Q$$

$$\mathcal{R}(\epsilon, q_0, a) = q_1 \mid \mathcal{R}(\Sigma^* c, q_0, a) = q_2 \mid \mathcal{R}(\Sigma^* b, q_0, a) = q_1$$



$$\mathcal{R}: \Sigma^* \times Q \times \Sigma \mapsto Q$$

$$\mathcal{R}(\epsilon, q_0, a) = q_1 \mid \mathcal{R}(\Sigma^* c, q_0, a) = q_2 \mid \mathcal{R}(\Sigma^* b, q_0, a) = q_1$$
  
Run on *acabab*

$$q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{c}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{b}{\rightarrow} q_f$$



Resolver: strategy to choose next transition based on history

$$\mathcal{R}: \Sigma^* \times Q \times \Sigma \mapsto Q$$

$$\mathcal{R}(\epsilon, q_0, a) = q_1 \mid \mathcal{R}(\Sigma^* c, q_0, a) = q_2 \mid \mathcal{R}(\Sigma^* b, q_0, a) = q_1$$
  
Run on  $acabab$ 

$$q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{c}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{b}{\rightarrow} q_f$$

Doesn't give accepting run for acacac



Resolver: strategy to choose next transition based on history

$$\mathcal{R}: \Sigma^* \times Q \times \Sigma \mapsto Q$$

$$\mathcal{R}(\epsilon, q_0, a) = q_1 \mid \mathcal{R}(\Sigma^* c, q_0, a) = q_2 \mid \mathcal{R}(\Sigma^* b, q_0, a) = q_1$$
  
Run on *acabab*

$$q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{c}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_2 \stackrel{b}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{b}{\rightarrow} q_f$$

Doesn't give accepting run for acacac

No uniform strategy for accepting all words

Resolvable : If a resolver accepts all words in language

Resolvable: If a resolver accepts all words in language

 $\exists \mathcal{R}, \forall w \in \mathcal{L}(\mathcal{A}), \mathcal{R}$  produces accepting run of w

Resolvable: If a resolver accepts all words in language

 $\exists \mathcal{R}, \forall w \in \mathcal{L}(\mathcal{A}), \mathcal{R}$  produces accepting run of w



Resolvable: If a resolver accepts all words in language

 $\exists \mathcal{R}, \forall w \in \mathcal{L}(\mathcal{A}), \mathcal{R}$  produces accepting run of w



Commonly known as History Deterministic (HD) or Good for Games (GFG) automata

#### What are they good for?

Good for games automata studied for reactive synthesis [Henzinger, Piterman'06]

### What are they good for?

Good for games automata studied for reactive synthesis [Henzinger, Piterman'06]

#### Has been studied for several models

- ightharpoonup  $\omega$ -regular automata
- Pushdown systems
- ▶ Timed automata
- ► VASS, etc

#### What are they good for?

Good for games automata studied for reactive synthesis [Henzinger, Piterman'06]

#### Has been studied for several models

- ightharpoonup  $\omega$ -regular automata
- Pushdown systems
- ▶ Timed automata
- ► VASS, etc

This work : Generalise resolver strategies

Stochastic Resolver

Resolve using randomised strategy

Stochastic Resolver

Resolve using randomised strategy

Produces probabilistic finite automaton (PFA) from NFA

Stochastic Resolver

Resolve using randomised strategy

Produces probabilistic finite automaton (PFA) from NFA

Accept all words in language with some threshold probability

#### Overview

- Stochastic resolvers
- Classification of resolvable automata
- Complexity of recognising stochastic resolvability

Focus on automata over finite words





$$Pr(ab \text{ is accepted}) = \frac{1}{4}$$

$$Pr(ac \text{ is accepted}) = \frac{3}{4}$$



$$Pr(ab \text{ is accepted}) = \frac{1}{4}$$

$$Pr(ac \text{ is accepted}) = \frac{3}{4}$$

$$\mathcal{L}(\mathcal{P}_{\lambda}) = \{ w \mid Pr(w \text{ is accepted}) \geq \lambda \}$$



$$Pr(ab \text{ is accepted}) = \frac{1}{4}$$

$$Pr(ac \text{ is accepted}) = \frac{3}{4}$$

$$\mathcal{L}(\mathcal{P}_{\lambda}) = \{ w \mid Pr(w \text{ is accepted}) \geq \lambda \}$$

$$\mathcal{L}(\mathcal{P}_{\frac{1}{4}}) = \{ab, ac\}$$
  
$$\mathcal{L}(\mathcal{P}_{\frac{3}{4}}) = \{ac\}$$

#### Stochastic Resolver

#### Stochastic Resolver

Resolve using randomised (memoryless) strategy

Resolver  $\mathcal{R}: Q \times \Sigma \mapsto \Delta(Q)$ 

#### Stochastic Resolver

Resolve using randomised (memoryless) strategy

Resolver  $\mathcal{R}: Q \times \Sigma \mapsto \Delta(Q)$ 

 ${\cal R}$  produces probabilistic finite automaton (PFA) from NFA  ${\cal A}$ 



$$\mathcal{R}(q_0, a, q_1) = \frac{1}{4} | \mathcal{R}(q_0, a, q_2) = \frac{3}{4}$$

Resolver accepts all words in  $\mathcal{L}(A)$  with probability above a threshold

Resolver accepts all words in  $\mathcal{L}(\mathcal{A})$  with probability above a threshold

```
\mathcal{A} is \lambda-resolvable if \exists resolver \mathcal{R} s.t. \forall w \in \mathcal{L}(\mathcal{A}), Pr_{\mathcal{R}}(w \text{ is accepted}) \geq \lambda
```

Resolver accepts all words in  $\mathcal{L}(\mathcal{A})$  with probability above a threshold

 $\mathcal{A}$  is  $\lambda$ -resolvable if

 $\exists$  resolver  $\mathcal{R}$  s.t.  $\forall w \in \mathcal{L}(\mathcal{A}), Pr_{\mathcal{R}}(w \text{ is accepted}) \geq \lambda$ 



Resolver accepts all words in  $\mathcal{L}(A)$  with probability above a threshold

 $\mathcal{A}$  is  $\lambda$ -resolvable if

 $\exists$  resolver  $\mathcal{R}$  s.t.  $\forall w \in \mathcal{L}(\mathcal{A}), Pr_{\mathcal{R}}(w \text{ is accepted}) \geq \lambda$ 



$$\mathcal{R}(q_0, a, q_1) = p \mid \mathcal{R}(q_0, a, q_2) = 1 - p$$

 $\lambda$ -resolvable with  $\lambda = \min(p, 1 - p)$ 

Resolver accepts all words in  $\mathcal{L}(A)$  with probability above a threshold

 $\mathcal{A}$  is  $\lambda$ -resolvable if

 $\exists$  resolver  $\mathcal{R}$  s.t.  $\forall w \in \mathcal{L}(\mathcal{A}), Pr_{\mathcal{R}}(w \text{ is accepted}) \geq \lambda$ 



$$\mathcal{R}(q_0, a, q_1) = p \mid \mathcal{R}(q_0, a, q_2) = 1 - p$$

 $\lambda$ -resolvable with  $\lambda = \min(p, 1 - p)$ 

Next: Importance of threshold





Uniform resolver  $\mathcal{R}$ , resolves with  $\lambda = \frac{2}{3}$ 



$$\mathcal{L} = \{a, aa, aaa\}$$

Uniform resolver  $\mathcal{R}$ , resolves with  $\lambda = \frac{2}{3}$ 

Cannot do better that  $\frac{2}{3}$ 

#### Theorem

For each  $\lambda \in \mathcal{Q}$  in (0, 1), there is unary  $\mathcal{A}_{\lambda}$  s.t.

#### Theorem

For each  $\lambda \in \mathcal{Q}$  in (0, 1), there is unary  $\mathcal{A}_{\lambda}$  s.t.

 $\triangleright$   $A_{\lambda}$  is  $\lambda$ -resolvable

#### Theorem

For each  $\lambda \in \mathcal{Q}$  in (0, 1), there is unary  $\mathcal{A}_{\lambda}$  s.t.

- $\triangleright$   $A_{\lambda}$  is  $\lambda$ -resolvable
- $\blacktriangleright$  ∀κ >  $\lambda$ ,  $A_{\lambda}$  is not κ-resolvable

#### Theorem

For each  $\lambda \in \mathcal{Q}$  in (0, 1), there is unary  $\mathcal{A}_{\lambda}$  s.t.

- $\blacktriangleright$   $\mathcal{A}_{\lambda}$  is  $\lambda$ -resolvable
- $\blacktriangleright$   $\forall \kappa > \lambda$ ,  $\mathcal{A}_{\lambda}$  is not  $\kappa$ -resolvable



Set of all NFA  $\lambda$ -resolvable for some  $\lambda > 0$ 

# Resolvability with any threshold

## Resolvability with any threshold



## Resolvability with any threshold



Not  $\lambda$ -resolvable for any  $\lambda > 0$ 



Set of all NFA

For automata over finite words

► Expressiveness (Same as regular languages)

- ► Expressiveness (Same as regular languages)
- Succinctness

- ► Expressiveness (Same as regular languages)
- Succinctness
- ► Memory needed for resolver (We focus on memoryless)

- ► Expressiveness (Same as regular languages)
- Succinctness
- ► Memory needed for resolver (We focus on memoryless)
- ► Complexity of checking stochastic resolvability (Next)

- ► Expressiveness (Same as regular languages)
- Succinctness
- ► Memory needed for resolver (We focus on memoryless)
- ► Complexity of checking stochastic resolvability (Next)

Given an NFA  $\mathcal{A}$ , is it stochastically resolvable with

Given an NFA A, is it stochastically resolvable with

- ► a specific threshold?
- ▶ with any positive threshold?

Given an NFA A, is it stochastically resolvable with

- ► a specific threshold?
- with any positive threshold?

Decision problems

#### Given an NFA A, is it stochastically resolvable with

- ► a specific threshold?
- with any positive threshold?

#### Decision problems

 $\lambda$ -RES : Given  $\lambda$  and  $\mathcal{A}$ , is NFA  $\mathcal{A}$   $\lambda$ -resolvable?

#### Given an NFA A, is it stochastically resolvable with

- ► a specific threshold?
- with any positive threshold?

#### Decision problems

 $\lambda$ -RES : Given  $\lambda$  and  $\mathcal{A}$ , is NFA  $\mathcal{A}$   $\lambda$ -resolvable?

Positive Resolvability

Given  $A \exists \lambda \in (0, 1]$  s.t. A is  $\lambda$ -resolvable?

# Complexity

# Complexity

|                          |           | unambiguous | finitely-ambiguous         | general     |
|--------------------------|-----------|-------------|----------------------------|-------------|
| Positive-resolvability   | unary     | NL          | coNP-hard $\Sigma_2^P$     |             |
|                          | non-unary | NL-complete | PSPACE-complete            | open        |
| $\lambda$ -resolvability | unary     | Р           | coNP-hard <b>decidable</b> | open        |
|                          | non-unary | NL-hard P   | PSPACE-hard decidable      | undecidable |

Reduction from universality of PFA

Reduction from universality of PFA

Given a PFA with probabilities in  $\{0, 1, \frac{1}{2}\}$ , it is universal?

Reduction from universality of PFA

Given a PFA with probabilities in  $\{0, 1, \frac{1}{2}\}$ , it is universal?



Optimal resolver  $\mathcal R$  should have same support as PFA

Reduction from universality of PFA

Given a PFA with probabilities in  $\{0, 1, \frac{1}{2}\}$ , it is universal?



Optimal resolver  $\mathcal R$  should have same support as PFA

Corollary :  $\lambda$ -RES is undecidable even for fixed  $\lambda$ . ( $\lambda = \frac{1}{4}$ )

Reduction from universality of PFA

Given a PFA with probabilities in  $\{0, 1, \frac{1}{2}\}$ , it is universal?



Optimal resolver  $\mathcal R$  should have same support as PFA

Corollary :  $\lambda$ -RES is undecidable even for fixed  $\lambda$ . ( $\lambda = \frac{1}{4}$ )

Decidable for finitely ambiguous NFA

## Positive resolvability

## Positive resolvability

Decidability still open for general case

## Positive resolvability

#### Decidability still open for general case

#### Theorem

Positive-Resolvability is decidable for

- unary NFA
- ► finitely ambiguous NFA

## Finitely Ambiguous Automata

#### Finitely Ambiguous Automata

*k*-ambiguous automata : every word *w* has at most *k* accepting runs

#### Finitely Ambiguous Automata

*k*-ambiguous automata : every word *w* has at most *k* accepting runs

Finitely ambiguous : *k*-ambiguous for some *k* 

Unambiguous : 1-ambiguous

#### Finitely Ambiguous Automata

*k*-ambiguous automata : every word *w* has at most *k* accepting runs

Finitely ambiguous : *k*-ambiguous for some *k* 

Unambiguous: 1-ambiguous



2-ambiguous



# Complexity of positive resolvability

#### Theorem

The positive resolvability problem is

- ► PSPACE-complete for finitely ambiguous automata
- ► NL-complete for unambiguous automata

### Complexity of positive resolvability

#### Theorem

The positive resolvability problem is

- ► PSPACE-complete for finitely ambiguous automata
- ► NL-complete for unambiguous automata

Next : Positive resolvability for finitely ambiguous automata

When is a resolver  $\mathcal{R}$  good for positive resolvability of  $\mathcal{A}$ ?

When is a resolver  $\mathcal{R}$  good for positive resolvability of  $\mathcal{A}$ ?

No diminishing sequence of words in resulting PFA

There is no sequence of words  $w_1, \ldots, w_i, \ldots$  in  $\mathcal{L}(\mathcal{A})$  s.t.  $\lim_{i \to \infty} Pr_{\mathcal{R}}(w) = 0$ 

When is a resolver  $\mathcal{R}$  good for positive resolvability of  $\mathcal{A}$ ?

No diminishing sequence of words in resulting PFA

There is no sequence of words  $w_1, \ldots, w_i, \ldots$  in  $\mathcal{L}(\mathcal{A})$  s.t.  $\lim_{i \to \infty} Pr_{\mathcal{R}}(w) = 0$ 



Diminishig sequence :  $b, bb, \dots, b^i, \dots$ 

$$Pr_{\mathcal{R}}(b^i \text{ is accepted}) = (\frac{2}{3})^{i-1} \frac{1}{3}$$

Set of transitions assigned positive probability by resolver

Support of 
$$\mathcal{R}$$
: { $(q, a, q') \mid \mathcal{R}(q, a, q') > 0$ }

Set of transitions assigned positive probability by resolver

Support of 
$$\mathcal{R}: \{(q, a, q') \mid \mathcal{R}(q, a, q') > 0\}$$

Observation : Probability values over a support do not matter for positive resolvability

Set of transitions assigned positive probability by resolver

Support of 
$$\mathcal{R}: \{(q, a, q') \mid \mathcal{R}(q, a, q') > 0\}$$

Observation: Probability values over a support do not matter for positive resolvability

Bad support : A support over which no probability assignments works

# Bad support



# Bad support



#### Bad support



- $\blacktriangleright \mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\mathcal{A}_{\mathcal{S}})$
- ► Some condition equivalent to existence of diminishing sequence

# Idea behind algorithm

Check if support is bad using the two conditions

First step: trim the automata

First step: trim the automata

Now there is unique support S, with  $\mathcal{L}(A) = \mathcal{L}(A_S)$ 

First step: trim the automata

Now there is unique support S, with  $\mathcal{L}(A) = \mathcal{L}(A_S)$ 

Cond. equivalent to diminishing sequence

Support *S* is bad iff there is an SCC in  $A_S$  with non-det transition

First step: trim the automata

Now there is unique support S, with  $\mathcal{L}(A) = \mathcal{L}(A_S)$ 

Cond. equivalent to diminishing sequence

Support *S* is bad iff there is an SCC in  $A_S$  with non-det transition

Can construct diminishing sequence by pumping loop containing non-det transition

First step: trim the automata

Now there is unique support S, with  $\mathcal{L}(A) = \mathcal{L}(A_S)$ 

Cond. equivalent to diminishing sequence

Support S is bad iff there is an SCC in  $A_S$  with non-det transition

Can construct diminishing sequence by pumping loop containing non-det transition





First step: trim the automata

Now there is unique support S, with  $\mathcal{L}(A) = \mathcal{L}(A_S)$ 

Cond. equivalent to diminishing sequence

Support S is bad iff there is an SCC in  $A_S$  with non-det transition

Can construct diminishing sequence by pumping loop containing non-det transition





Positive resolvability for unambiguous automata is in NL

Generalise bad support from unambiguous to k-ambiguous

Generalise bad support from unambiguous to *k*-ambiguous

Bad support S : every run has non-det transition in some SCC of product  $\mathcal{A}_S^k$ 

Generalise bad support from unambiguous to *k*-ambiguous

Bad support S : every run has non-det transition in some SCC of product  $\mathcal{A}_S^k$ 



4-ambiguous automata

Generalise bad support from unambiguous to *k*-ambiguous

Bad support S : every run has non-det transition in some SCC of product  $\mathcal{A}_{S}^{k}$ 



4-ambiguous automata

Diminishing sequence :  $abb^i abb^i ac$ 

Generalise bad support from unambiguous to *k*-ambiguous

Bad support S : every run has non-det transition in some SCC of product  $\mathcal{A}_S^k$ 



4-ambiguous automata

Diminishing sequence :  $abb^i abb^i ac$ 

Need to conserve number of runs in the pumped words

#### Need to store more

#### Need to store more



*R* stores states from which there is no accepting run of suffix after reading prefix from start state

#### Need to store more



*R* stores states from which there is no accepting run of suffix after reading prefix from start state

Bad support S : every run has non-det transition in some SCC of product  $A_S^k \times Q$  under this transition system

# PSPACE algorithm

#### PSPACE algorithm

- Guess support
- ► Guess a short word in the transition system witnessing bad support

### PSPACE algorithm

- Guess support
- ► Guess a short word in the transition system witnessing bad support

Ambiguity can be exponential

# PSPACE algorithm

- Guess support
- Guess a short word in the transition system witnessing bad support

#### Ambiguity can be exponential

Store useful abstractions of the system and guess word on the fly

 $\lambda$ -resolvability is defined similarly for Parity automata

 $\lambda$ -resolvability is defined similarly for Parity automata

Some complexity results for stochastic resolvability extends

 $\lambda$ -resolvability is defined similarly for Parity automata

Some complexity results for stochastic resolvability extends

#### Theorem

- $ightharpoonup \lambda$ -Resolvability is undecidable
- $\blacktriangleright$   $\lambda$ -Resolvability is decidable for finitely ambiguous
- ► Positive-Resolvability is in PSPACE for finitely ambiguous

 $\lambda$ -resolvability is defined similarly for Parity automata

Some complexity results for stochastic resolvability extends

#### **Theorem**

- $ightharpoonup \lambda$ -Resolvability is undecidable
- $\blacktriangleright$   $\lambda$ -Resolvability is decidable for finitely ambiguous
- ► Positive-Resolvability is in PSPACE for finitely ambiguous

Independent work for 1-resolvability (almost sure acceptance) [Henzinger, Prakash, Thejaswini'25]

 $\lambda$ -resolvability is defined similarly for Parity automata

Some complexity results for stochastic resolvability extends

#### Theorem

- $ightharpoonup \lambda$ -Resolvability is undecidable
- $ightharpoonup \lambda$ -Resolvability is decidable for finitely ambiguous
- ► Positive-Resolvability is in PSPACE for finitely ambiguous

Independent work for 1-resolvability (almost sure acceptance) [Henzinger, Prakash, Thejaswini'25]

Application: 1-resolvable Büchi automaton used in faster Markov Chain verification for UBA specifications

[Li, P, Schewe, Tang'25]

Given unary A, is A  $\lambda$ -resolvable?

Given unary A, is A  $\lambda$ -resolvable?

The related problem for PFA is still open: Positivity of linear recurrence sequences

Given unary A, is A  $\lambda$ -resolvable?

The related problem for PFA is still open: Positivity of linear recurrence sequences

Given A, is A positively resolvable?

Given unary A, is  $A \lambda$ -resolvable?

The related problem for PFA is still open: Positivity of linear recurrence sequences

Given A, is A positively resolvable?

Decidable for unary: analysis of periodic behaviour of support matrix

Given unary A, is  $A \lambda$ -resolvable?

The related problem for PFA is still open: Positivity of linear recurrence sequences

Given A, is A positively resolvable?

Decidable for unary: analysis of periodic behaviour of support matrix

Requires analysis of matrices obtained as product of support matrices of each letter

What's next?

## What's next?

- ► Closing complexity gaps
- ▶ Other models : Pushdown, Timed Automata, VASS,...
- ► Applications in reactive synthesis

## What's next?

- ► Closing complexity gaps
- ► Other models: Pushdown, Timed Automata, VASS,...
- ► Applications in reactive synthesis

## Thank You

# Summary: Automata on finite words



|                          |           | unambiguous | finitely-ambiguous         | general     |
|--------------------------|-----------|-------------|----------------------------|-------------|
| Positive-resolvability   | unary     | NL          | coNP-hard $\Sigma_2^P$     |             |
|                          | non-unary | NL-complete | PSPACE-complete            | open        |
| $\lambda$ -resolvability | unary     | Р           | coNP-hard <b>decidable</b> | open        |
|                          | non-unary | NL-hard P   | PSPACE-hard decidable      | undecidable |