A Game of Pawns

Shibashis Guha
Tata Institute of Fundamental Research

Joint work with Guy Avni and Pranav Ghorpade

November 1, 2022

Reactive Systems

Environment

System

non-terminating interaction

p = (e, %) %, (e1,51) LGN (e2,5) ... (infinite execution)

Reactive Systems

Verification: Model Checking

Verification

I~

- 10) (LTL Spec)

Environment System

L(E x S) C L(Ay)?

Synthesis

2]
Env1r%nment 2 Eo ¢ (LTL Spec)

to be synthesized

L(Ex?) C L(Ag)?

Synthesis

Envir%nment 2 Eo ¢ (LTL Spec)

to be synthesized

L(Ex?) C L(Ay)?
» E and S are two players.

» Interaction: p = (e, S) fo/ev, (e1,s1) aler, (e2,%) ...

» Objective of S: ¢, and Objective of E : —¢ (adversarial
environment)

Synthesis

Envir%nment 2 Eo ¢ (LTL Spec)

to be synthesized

L(Ex?) C L(Ay)?
» E and S are two players.

» Interaction: p = (e, S) fo/ev, (e1,s1) aler, (e2,%) ...

» Objective of S: ¢, and Objective of E : —¢ (adversarial
environment)

» S wins if p € L(¢), otherwise E wins.
» We want og that wins against any o

Winning strategy = Correct system

Two-player reachability games

Mathematical model for controller synthesis.

(b))
4
Environment/ / (
Player Max vertices / N

Round: Player owning /'

current location moves edges model
the token .
choices

System / Player Min / Player 1
Environment / Player Max / Player 2

Two-player reachability games

Mathematical model for controller synthesis.

token \(N

\ ly)
4
Environment/ / (
Player Max vertices / N

Round: Player owning /’ 43

current location moves edges model
the token

choices

System / Player Min / Player 1
Environment / Player Max / Player 2
Reachability objective: Does Player 1 have a strategy to reach /37

A strategy for a player from a vertex v that he owns is an
chosen from v given a finite run ending in v.

Solving reachability games: Attractor computation
Controlled predecessor operator:

CPre(T)={v e V4|V €T for some successor v/ of v} U
{ve Vo]V €T forall successors v’ of v}.

Player 1 attractor: Attri(T) of T is defined inductively by
applying the controlled predecessor operator as:

> Attrd(T) =T,
> Attr7tH(T) = Attr](T) U CPre(Attr]), and
> Attri(T) = U,y Attri(T).

vV v v YV

Pawn games

Two players
Finite set P of pawns; each pawn owns some vertices.
Pawns are partitioned among players.

Pawns dynamically change hands modelling dynamic change
of resources.

Pawns are entities controlling resources without having their
own objectives.

Always-grabbing pawn games

» Two players: Player 1 and Player 2

» Starts from an initial configuration: (v, W), a vertex v and a
set W of pawns being controlled by Player 1 to start with.

» Rules of the game: How pawns change hands.

If Player i makes a move, then the other player grabs a pawn.

v3, V4 belong to the same pawn.

10

Always-grabbing pawn games

v3, v4 belong to the same pawn.

Pl P2 Pl
(i1 4)—>.\éw—+%> S OGN
uow ol (1) TID 5107 T
oy 11 dnikitly.

11

Pawn game: Configuration graph

Pl P2]
(v,§1 4)_>.\(Va,i“o—+%) —(B (45 154) N
Pwows Taebeo) (n,81) — _’(Vz,»fhs-l&)/ !

oy 1 okl

» A configuration is of the form (v, W) for v € V and W C P.

> Size of configuration graph is exponential in the size of the
input.

12

Pawn game: Configuration graph

id P2 P
@I |)5 4 >_>.\£Vq/ft"o’+%> ﬁ®—>(vsﬁ 1,5—[’1) \
Pavows W/LW A (\’L;i ‘1) — W [\I4 A |,g-z,§) / T

by 7| jondheally.

> Size of configuration graph is exponential in the size of the
input.

» Traditional reachability games can be solved in PTIME.

Pawn games with reachability objective can be solved in
EXPTIME.

13

Non-monotonicity of pawn games

Pown L owio varkex V) ‘?wf,éfl;%bg.

Pl P Pl
Wiy iy Laiy ot
Pl P\ PL

v, 3,23 <\J1}§2’,7 <v3’737 a

Pawn i owns vertex v; for i € {1,2,3}.

» Player i wins with with an initial set of pawns {1} while loses
with the initial set {1,2}.

14

Grabbing mechanisms in pawn games

Player i's opponent is Player 3 — i (Player —i).

> always grabbing: Following a move of Player i, Player —i
always has to grab one of Player i's pawns.

> always grabbing-or-giving: Following a move of Player i,
Player —i always either has to grab one of Player i's pawns or
give Player i one of his pawns.

> optional grabbing: Following a move of Player i, Player —i
has the option of grabbing one of Player i’s pawns.

» k-grabbing: Following a move by one of the players, Player 1
has the option of grabbing a pawn from Player 2, and he can
grab at most k pawns.

15

Ownership of vertices

one vertex per pawn: Each V; is a singleton; a pawn owns
exactly one vertex.

multiple vertices per pawn: Vi,..., V, is a partition of V.

overlapping multiple vertices per pawn: Each pawn may
own multiple vertices, and each vertex may be owned by
multiple pawns.

16

Problem Definition

Let a € {OVPP, MVPP, OMVPP} and § € {always-grabbing,
always grabbing-or-giving, optional-grabbing, k-grabbing }.

Given an input an af8 pawn game G with target set T and
an initial configuration ¢, decide if Player 1 has a strategy to
reach T from c.

17

Pawn games: Applications

» For modelling dynamic resource contention in general.

18

Pawn games: Applications

» For modelling dynamic resource contention in general.

Shield synthesis

Shield synthesis (Konighofer et al. 2017): Consider an agent which
is trained to do a specific task in an optimal manner but it violates

the safety objective .

Loput | Ment

Oubput Loy 014 Madifed

U output

Q,Ur?)rlj f"“”‘”—'f‘t'y ¢

A shield modifies the output so that safety is not violated.

Consider the Kripke structure modelling the agent, at most
k-pawns may be grabbed to model that the shield can change the
action of the agent at most k times.

18

Pawn games: Applications

Sabotage games

Sabotage games (Loding, Rohde. 2003). Two-player game on a
graph in which a saboteur crashes an edge in the graph with the
goal of preventing Player 1 reaching its target.

Think of Player 2 to grab and crash an edge.

10

k-grabbing mechanism

NP-hardness of MVPP

Checking existence of winning strategy in MVPP k-grabbing
game is NP-hard.

U=1{1,2,3}, and S = {{1},{1,2},{2,3}}

Each neighbour of i € U corresponds to a set S € S such that
ieS.

20

k-grabbing mechanism

PSPACE-hardness of OMVPP
Reduction from TQBF: Vx3yVz(x V =y) A (-y V z).

For every variable x, there is a vertex X with neighbours x; and —x;.
Initial configuration: Player 1 controls only pawn pj.

Player 2 has a winning strategy with n grabs iff the TQBF formula

is satisfiable. o

k-grabbing mechanism

PSPACE-membership of OMVPP

If Player 1 has a winning strategy, then he has one which
ends in n- (k + 1) rounds, where n is the number of vertices
in the pawn game.

Every n rounds, Player 1 must grab a pawn; otherwise, there exists
a cycle in the configuration graph that Player 2 can enforce and T
is not reached.

Consider a game tree obtained by unwinding the configuration
graph n- (k + 1) times.

PSPACE-membership as we only need to store a branch of the
tree; branch can be of length at most n- (k + 1).

29

k-grabbing mechanism

» MVPP is NP-hard.
» OMVPP is PSPACE-complete.
» OVPP is in PTIME.

23

Optional-grabbing mechanism

Following a move of Player i, Player —i has the option of grabbing
one of Player i's pawns.

Lock & key game

> Each edge has some locks and some keys.
> L:€17---,£n, and K:kl,...,kn.

» Complexity of optional-grabbing using Lock & key game.

24

vV v v VY

Lock & Key game

Each edge has some locks and some keys.
L:€17~-,£n, and K:kl,...,kn.
An edge with only open locks can be crossed.

While crossing an edge labelled with a key changes the state
of the corresponding lock.

A configuration is of the form (v, A), where A C 2 leading to
EXPTIME-membership.

EXPTIME-hardness follows from a reduction from
APSPACE-TM.

25

Lock & Key game to MVPP optional-grabbing game

» For each lock and each key, we have a gadget in the MVPP
optional-grab game.

MVPP optional-grabbing game is EXPTIME-complete.]

26

Lock & Key game to MVPP optional-grabbing game

» For each lock and each key, we have a gadget in the MVPP
optional-grab game.

MVPP optional-grabbing game is EXPTIME-complete.

OVPP optional-grabbing game is in PTIME.

26

Always-grabbing game

Following a move of Player i, Player —/ always has to grab one of
Player i's pawns.

MVPP always-grabbing game is EXPTIME-complete.

» Reduce an instance of optional-grabbing game obtained from
APSPACE-TM to an instance of always-grabbing game.

> We add some isolated vertices and one-vertex pawns owning
them.

» The action of not grabbing in the optional-grabbing game can
be replaced with grabbing a pawn owning an isolated vertex in
the always-grabbing game.

» Consider Player 1 has a winning strategy in the
optional-grabbing game. The challenge is to ensure that there
will be enough isolated pawns with Player 2 for Player 1 to
grab.

27

Always-grabbing-or-giving game

Every time Player i moves the token from vertex some v to
some vertex u, it entirely depends on Player —i to decide
whether he wants to control u or not.

» If Player —i does not have the pawn p, that owns u and he
wants to control u, he can grab p, from Player i.

> If he does not want to control v and if he has p,, he can give
it to Player i.

Configuration graph has two copies of each vertex: One controlled
by Player 1, and the other controlled by Player 2.

[MVPP always-grab-or-give game is in PTIME.]

28

Discussions: Alternating-time temporal logic. (Alur
Henzinger, Kupferman. 2002)
> Extends computational tree logic to multiple players:
for example, it allows specifications of the form

(({a, b}))(Fp A Gq).

» Players are grouped as protagonist and antagonist, and
becomes a two player game.

» For synchronous turn-based game, vertices are partitioned
among the players.

20

Conclusion: Pawn Games

Class of two-player turn-based zero-sum games in which
control of vertices changes dynamically.

Constitute succinctly represented turn-based games.
Complexity results from PTIME to EXPTIME-complete.

We considered reachability games: Other w-regular objectives,
mean-payoff etc.

Concurrent, stochastic games ...

20

Conclusion: Pawn Games

Class of two-player turn-based zero-sum games in which
control of vertices changes dynamically.

Constitute succinctly represented turn-based games.
Complexity results from PTIME to EXPTIME-complete.

We considered reachability games: Other w-regular objectives,
mean-payoff etc.

Concurrent, stochastic games ...

Thank you for your attention!

20

