
A Game of Pawns

Shibashis Guha

Tata Institute of Fundamental Research

Joint work with Guy Avni and Pranav Ghorpade

November 1, 2022



Reactive Systems

Environment {System

i

o

non-terminating interaction

ρ = (e0, s0)
i0,o0−−→ (e1, s1)

i1,o1−−→ (e2, s2) . . . (infinite execution)

2



Reactive Systems

3



Verification: Model Checking

4



Verification

Environment System
E S

|= φ (LTL Spec)
?

L(E × S) ⊆ L(Aϕ)?

5



Synthesis

Environment
E

? |= φ (LTL Spec)
?

to be synthesized

L(E×?) ⊆ L(Aϕ)?

▶ E and S are two players.

▶ Interaction: ρ = (e0, s0)
i0/o0−−−→ (e1, s1)

i1/o1−−−→ (e2, s2) . . .

▶ Objective of S : ϕ, and Objective of E : ¬ϕ (adversarial
environment)

▶ S wins if ρ ∈ L(ϕ), otherwise E wins.

▶ We want σS that wins against any σE

Winning strategy = Correct system

6



Synthesis

Environment
E

? |= φ (LTL Spec)
?

to be synthesized

L(E×?) ⊆ L(Aϕ)?

▶ E and S are two players.

▶ Interaction: ρ = (e0, s0)
i0/o0−−−→ (e1, s1)

i1/o1−−−→ (e2, s2) . . .

▶ Objective of S : ϕ, and Objective of E : ¬ϕ (adversarial
environment)

▶ S wins if ρ ∈ L(ϕ), otherwise E wins.

▶ We want σS that wins against any σE

Winning strategy = Correct system

6



Synthesis

Environment
E

? |= φ (LTL Spec)
?

to be synthesized

L(E×?) ⊆ L(Aϕ)?

▶ E and S are two players.

▶ Interaction: ρ = (e0, s0)
i0/o0−−−→ (e1, s1)

i1/o1−−−→ (e2, s2) . . .

▶ Objective of S : ϕ, and Objective of E : ¬ϕ (adversarial
environment)

▶ S wins if ρ ∈ L(ϕ), otherwise E wins.

▶ We want σS that wins against any σE

Winning strategy = Correct system

6



Two-player reachability games

Mathematical model for controller synthesis.

`1

`2

`3

`4

`5

Controller/Player Min vertices

Environment/
Player Max vertices

token

Round: Player owning
current location moves
the token

edges model
choices

System / Player Min / Player 1

Environment / Player Max / Player 2

Reachability objective: Does Player 1 have a strategy to reach ℓ3?

A strategy for a player from a vertex v that he owns is an
edge/action chosen from v given a finite run ending in v .

7



Two-player reachability games

Mathematical model for controller synthesis.

`1

`2

`3

`4

`5

Controller/Player Min vertices

Environment/
Player Max vertices

token

Round: Player owning
current location moves
the token

edges model
choices

System / Player Min / Player 1

Environment / Player Max / Player 2

Reachability objective: Does Player 1 have a strategy to reach ℓ3?

A strategy for a player from a vertex v that he owns is an
edge/action chosen from v given a finite run ending in v .

7



Solving reachability games: Attractor computation
Controlled predecessor operator:

CPre(T ) = {v ∈ V1 | v ′ ∈ T for some successor v ′ of v} ∪
{v ∈ V2 | v ′ ∈ T for all successors v ′ of v}.

Player 1 attractor: Attr1(T ) of T is defined inductively by
applying the controlled predecessor operator as:

▶ Attr01(T ) = T ,

▶ Attrn+1
1 (T ) = Attrn1(T ) ∪ CPre(Attrn1), and

▶ Attr1(T ) =
⋃

n∈N Attrn1(T ).
8



Pawn games

▶ Two players

▶ Finite set P of pawns; each pawn owns some vertices.

▶ Pawns are partitioned among players.

▶ Pawns dynamically change hands modelling dynamic change
of resources.

▶ Pawns are entities controlling resources without having their
own objectives.

9



Always-grabbing pawn games

▶ Two players: Player 1 and Player 2

▶ Starts from an initial configuration: (v ,W ), a vertex v and a
set W of pawns being controlled by Player 1 to start with.

▶ Rules of the game: How pawns change hands.

If Player i makes a move, then the other player grabs a pawn.

v3, v4 belong to the same pawn.
10



Always-grabbing pawn games

v3, v4 belong to the same pawn.

11



Pawn game: Configuration graph

▶ A configuration is of the form ⟨v ,W ⟩ for v ∈ V and W ⊆ P.

▶ Size of configuration graph is exponential in the size of the
input.

12



Pawn game: Configuration graph

▶ Size of configuration graph is exponential in the size of the
input.

▶ Traditional reachability games can be solved in PTIME.

Pawn games with reachability objective can be solved in
EXPTIME.

13



Non-monotonicity of pawn games

Pawn i owns vertex vi for i ∈ {1, 2, 3}.
▶ Player i wins with with an initial set of pawns {1} while loses

with the initial set {1, 2}.

14



Grabbing mechanisms in pawn games

Player i ’s opponent is Player 3− i (Player −i).

▶ always grabbing: Following a move of Player i , Player −i
always has to grab one of Player i ’s pawns.

▶ always grabbing-or-giving: Following a move of Player i ,
Player −i always either has to grab one of Player i ’s pawns or
give Player i one of his pawns.

▶ optional grabbing: Following a move of Player i , Player −i
has the option of grabbing one of Player i ’s pawns.

▶ k-grabbing: Following a move by one of the players, Player 1
has the option of grabbing a pawn from Player 2, and he can
grab at most k pawns.

15



Ownership of vertices

▶ one vertex per pawn: Each Vi is a singleton; a pawn owns
exactly one vertex.

▶ multiple vertices per pawn: V1, . . . ,Vd is a partition of V .

▶ overlapping multiple vertices per pawn: Each pawn may
own multiple vertices, and each vertex may be owned by
multiple pawns.

16



Problem Definition

Let α ∈ {OVPP,MVPP,OMVPP} and β ∈ {always-grabbing,
always grabbing-or-giving, optional-grabbing, k-grabbing }.

Given an input an αβ pawn game G with target set T and
an initial configuration c, decide if Player 1 has a strategy to
reach T from c .

17



Pawn games: Applications

▶ For modelling dynamic resource contention in general.

Shield synthesis

Shield synthesis (Könighofer et al. 2017): Consider an agent which
is trained to do a specific task in an optimal manner but it violates
the safety objective φ.

A shield modifies the output so that safety is not violated.

Consider the Kripke structure modelling the agent, at most
k-pawns may be grabbed to model that the shield can change the
action of the agent at most k times.

18



Pawn games: Applications

▶ For modelling dynamic resource contention in general.

Shield synthesis

Shield synthesis (Könighofer et al. 2017): Consider an agent which
is trained to do a specific task in an optimal manner but it violates
the safety objective φ.

A shield modifies the output so that safety is not violated.

Consider the Kripke structure modelling the agent, at most
k-pawns may be grabbed to model that the shield can change the
action of the agent at most k times.

18



Pawn games: Applications

Sabotage games

Sabotage games (Löding, Rohde. 2003). Two-player game on a
graph in which a saboteur crashes an edge in the graph with the
goal of preventing Player 1 reaching its target.

Think of Player 2 to grab and crash an edge.

19



k-grabbing mechanism

NP-hardness of MVPP

Checking existence of winning strategy in MVPP k-grabbing
game is NP-hard.

U = {1, 2, 3}, and S = {{1}, {1, 2}, {2, 3}}

Each neighbour of i ∈ U corresponds to a set S ∈ S such that
i ∈ S .

20



k-grabbing mechanism

PSPACE-hardness of OMVPP
Reduction from TQBF: ∀x∃y∀z(x ∨ ¬y) ∧ (¬y ∨ z).

For every variable x , there is a vertex x̂ with neighbours xi and ¬xi .

Initial configuration: Player 1 controls only pawn p1.

Player 2 has a winning strategy with n grabs iff the TQBF formula
is satisfiable.

21



k-grabbing mechanism

PSPACE-membership of OMVPP

If Player 1 has a winning strategy, then he has one which
ends in n · (k + 1) rounds, where n is the number of vertices
in the pawn game.

Every n rounds, Player 1 must grab a pawn; otherwise, there exists
a cycle in the configuration graph that Player 2 can enforce and T
is not reached.

Consider a game tree obtained by unwinding the configuration
graph n · (k + 1) times.

PSPACE-membership as we only need to store a branch of the
tree; branch can be of length at most n · (k + 1).

22



k-grabbing mechanism

▶ MVPP is NP-hard.

▶ OMVPP is PSPACE-complete.

▶ OVPP is in PTIME.

23



Optional-grabbing mechanism

Following a move of Player i , Player −i has the option of grabbing
one of Player i ’s pawns.

Lock & key game

▶ Each edge has some locks and some keys.

▶ L = ℓ1, . . . , ℓn, and K = k1, . . . , kn.

▶ Complexity of optional-grabbing using Lock & key game.

24



Lock & Key game

▶ Each edge has some locks and some keys.

▶ L = ℓ1, . . . , ℓn, and K = k1, . . . , kn.

▶ An edge with only open locks can be crossed.

▶ While crossing an edge labelled with a key changes the state
of the corresponding lock.

▶ A configuration is of the form ⟨v ,A⟩, where A ⊆ 2L leading to
EXPTIME-membership.

▶ EXPTIME-hardness follows from a reduction from
APSPACE-TM.

25



Lock & Key game to MVPP optional-grabbing game

▶ For each lock and each key, we have a gadget in the MVPP
optional-grab game.

MVPP optional-grabbing game is EXPTIME-complete.

OVPP optional-grabbing game is in PTIME.

26



Lock & Key game to MVPP optional-grabbing game

▶ For each lock and each key, we have a gadget in the MVPP
optional-grab game.

MVPP optional-grabbing game is EXPTIME-complete.

OVPP optional-grabbing game is in PTIME.

26



Always-grabbing game
Following a move of Player i , Player −i always has to grab one of
Player i ’s pawns.

MVPP always-grabbing game is EXPTIME-complete.

▶ Reduce an instance of optional-grabbing game obtained from
APSPACE-TM to an instance of always-grabbing game.

▶ We add some isolated vertices and one-vertex pawns owning
them.

▶ The action of not grabbing in the optional-grabbing game can
be replaced with grabbing a pawn owning an isolated vertex in
the always-grabbing game.

▶ Consider Player 1 has a winning strategy in the
optional-grabbing game. The challenge is to ensure that there
will be enough isolated pawns with Player 2 for Player 1 to
grab.

27



Always-grabbing-or-giving game

Every time Player i moves the token from vertex some v to
some vertex u, it entirely depends on Player −i to decide
whether he wants to control u or not.

▶ If Player −i does not have the pawn pu that owns u and he
wants to control u, he can grab pu from Player i .

▶ If he does not want to control u and if he has pu, he can give
it to Player i .

Configuration graph has two copies of each vertex: One controlled
by Player 1, and the other controlled by Player 2.

MVPP always-grab-or-give game is in PTIME.

28



Discussions: Alternating-time temporal logic. (Alur,
Henzinger, Kupferman. 2002)

▶ Extends computational tree logic to multiple players:

for example, it allows specifications of the form
⟨⟨{a, b}⟩⟩(Fp ∧ Gq).

▶ Players are grouped as protagonist and antagonist, and
becomes a two player game.

▶ For synchronous turn-based game, vertices are partitioned
among the players.

29



Conclusion: Pawn Games

▶ Class of two-player turn-based zero-sum games in which
control of vertices changes dynamically.

▶ Constitute succinctly represented turn-based games.

▶ Complexity results from PTIME to EXPTIME-complete.

▶ We considered reachability games: Other ω-regular objectives,
mean-payoff etc.

▶ Concurrent, stochastic games ...

Thank you for your attention!

30



Conclusion: Pawn Games

▶ Class of two-player turn-based zero-sum games in which
control of vertices changes dynamically.

▶ Constitute succinctly represented turn-based games.

▶ Complexity results from PTIME to EXPTIME-complete.

▶ We considered reachability games: Other ω-regular objectives,
mean-payoff etc.

▶ Concurrent, stochastic games ...

Thank you for your attention!

30


