
SAT-Based Invariant Inference and
Its Relation to Concept Learning

Sharon Shoham

Supervised Verification of Infinite-State Systems

Mooly SagivYotam Feldman James R. WilcoxNeil Immerman

• predicate abstraction
[CAV’97, POPL’02]

• symbolic abstraction
[VMCAI’04,’16]

• interpolation
[CAV’03, TACAS’06]

• IC3/PDR
[VMCAI’11, FMCAD’11]

• abduction
[OOPSLA’13]

• SyGuS
[FMCAD’13,…]

• ICE learning
[CAV’14, POPL’15]

• …

Why do they succeed?

Why do they fail?

(How can we make them
better?)

SAT-Based Invariant Inference

Goal

Understand SAT-based invariant inference
from the perspective of exact learning with queries

[POPL’20] Complexity and information in invariant inference. Feldman,
Immerman, Sagiv, Shoham
[POPL’21] Learning the boundary of inductive invariants. Feldman, Sagiv,
Shoham, Wilcox
[POPL’22] Property-directed reachability as abstract interpretation in the
monotone theory. Feldman, Sagiv, Shoham, Wilcox
[SAS’22] Invariant Inference With Provable Complexity From the
Monotone Theory. Feldman, Shoham

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety of Transition Systems

Reach

Initial

Bad

Safety: no bad state is reachable from the initial states

Inductive Invariants

Initial

Bad

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety: no bad state is reachable from the initial states

Initiation: Init ⊆ 𝐼
Safety: 𝐼 ∩ Bad = ∅
Consecution: {𝐼} 𝛿 {𝐼}

Initial

Initiation: Init ⊆ 𝐼
Safety: 𝐼 ∩ Bad = ∅
Consecution: {𝐼} 𝛿 {𝐼}

Inductive Invariants

Initial

Bad

𝐼: (𝑥1, … , 𝑥𝑛) ≠ 1…1

Not inductive:

Inductive:

𝐼: 𝑥𝑛 ≠ 1

𝑥𝑛 ≠ 1

𝐼 𝛿

11…100…1

𝐼 ¬𝐼
𝛿

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety: no bad state is reachable from the initial states

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety: no bad state is reachable from the initial states

Invariant Inference

Initial

Bad

Goal: Find inductive invariants automatically

Initiation: Init ⊆ 𝐼
Safety: 𝐼 ∩ Bad = ∅
Consecution: 𝛿(𝐼) ⊆ 𝐼

𝐼: (𝑥1, … , 𝑥𝑛) ≠ 1…1

Not inductive:

Inductive:

𝐼: 𝑥𝑛 ≠ 1

𝑥𝑛 ≠ 1

𝐼 𝛿

11…100…1

𝐼 ¬𝐼
𝛿

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety: no bad state is reachable from the initial states

SAT-based Invariant Inference

Initial

Bad

Goal: Find inductive invariants automatically

Initiation: Init ⊆ 𝐼
Safety: 𝐼 ∩ Bad = ∅
Consecution: 𝛿(𝐼) ⊆ 𝐼

𝐼: (𝑥1, … , 𝑥𝑛) ≠ 1…1

Not inductive:

Inductive:

𝐼: 𝑥𝑛 ≠ 1

𝑥𝑛 ≠ 1

𝐼 𝛿

11…100…1

𝐼 ¬𝐼
𝛿

Means: Employ a SAT solver

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿:

Safety: no bad state is reachable from the initial states

SAT-based Invariant Inference

Initial

Bad

Means: Employ a SAT solver

Initiation: Init ∧ ¬𝑰 unsat?

Safety: 𝑰 ∧ Bad unsat?

Cons.: 𝑰 ∧ 𝜹 ∧ ¬𝑰’ unsat?

SAT query Examples:

* 𝐼′ = 𝐼[𝑉 ↦ 𝑉′]

Init, Bad: formulas over 𝑉
𝜹: formula over 𝑉, 𝑉′

Goal: Find inductive invariants automatically

𝜑

learning algorithm oracle
is it 𝜓1?

✓ / ✘+counterexample

✓ / ✘+counterexample

is it 𝜓2?

[ML’87] Queries and Concept Learning. Angluin

Exact Concept Learning with
Equivalence & Membership Queries

✓ / ✘

does 𝜎3 ⊨?

…

EquivalenceMembership

Goal: learn an unknown concept 𝜑

learning algorithm ↦
inference algorithm

Q

A

A

Q

SAT-Based Invariant Inference as
Inference with Queries

A

Q

…

𝐼
𝛿

oracle ↦
SAT-solver

Goal: infer an unknown inductive invariant 𝐼

Algorithms cannot access the transition relation directly,
only through SAT queries

Which SAT queries?

This Talk

Initial

Invariant Inference

vs.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Exact Concept Learning

- Complexity lower and upper bounds for each model

𝛿

inference algorithm inductiveness-query oracle
𝛼1 inductive?

✓ / ✘+counterexample

…
{𝛼𝑖} {𝛼𝑖}𝛼𝑚 inductive?

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

✓ / ✘+counterexample

Inductiveness-Query Model

Cex to Induction (CTI):
Transition (𝜎, 𝜎′) of 𝛿 s.t.

𝜎 ⊨ 𝛼𝑖 , 𝜎′⊨ ¬𝛼𝑖

ICE framework - Learn from examples:

Positive : 𝜎 ⊨ 𝐼 (e.g., initial)
Negative: 𝜎 ⊭ 𝐼 (e.g., bad)

Implication: 𝜎 ⊨ 𝐼 implies 𝜎′ ⊨ 𝐼 (CTI)

𝜶𝒊 ∧ 𝜹 ∧ ¬𝜶𝒊
′ unsat?

* 𝜶𝒊
′=𝜶𝒊[𝑉 ↦ 𝑉′]

𝜎 𝜎′

𝛿

inference algorithm inductiveness-query oracle
𝛼1 inductive?

✓ / ✘+counterexample

…
{𝛼𝑖} {𝛼𝑖}𝛼𝑚 inductive?

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

✓ / ✘+counterexample

Inductiveness-Query Model

Cex to Induction (CTI):
Transition (𝜎, 𝜎′) of 𝛿 s.t.

𝜎 ⊨ 𝛼𝑖 , 𝜎′⊨ ¬𝛼𝑖

Is it sufficient to capture existing SAT-based algorithms?

ICE framework - Learn from examples:

Positive : 𝜎 ⊨ 𝐼 (e.g., initial)
Negative: 𝜎 ⊭ 𝐼 (e.g., bad)

Implication: 𝜎 ⊨ 𝐼 implies 𝜎′ ⊨ 𝐼 (CTI)

𝜶𝒊 ∧ 𝜹 ∧ ¬𝜶𝒊
′ unsat?

* 𝜶𝒊
′=𝜶𝒊[𝑉 ↦ 𝑉′]

𝑘 + 1 times

𝛿
…

𝛿 𝛿𝛿

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑
𝐼 =
𝐼𝑛𝑖𝑡

𝐼 = 𝐼𝑛𝑖𝑡

BMCk+1 (𝐼, 𝛿, Bad) unsat

Inductive ?

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑
𝛿

…𝛿(𝐼)
𝐼 =
𝐼𝑛𝑖𝑡

𝛿 𝛿

𝑘 times

𝐼 = 𝐼𝑛𝑖𝑡

BMCk (𝛿(𝐼), 𝛿, Bad) unsat

𝛿(𝐼𝑛𝑖𝑡)

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑
𝛿

…𝛿(𝐼)
𝐼 =
𝐼𝑛𝑖𝑡

𝛿 𝛿

𝑘 times

Interpolant

𝐼 = 𝐼𝑛𝑖𝑡

𝛿(𝐼) ⊆ Interpolant

BMCk (Interpolant, 𝛿, Bad) unsat

𝛿(𝐼𝑛𝑖𝑡)

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑
𝛿

…𝛿(𝐼)
𝐼 =
𝐼𝑛𝑖𝑡

𝛿 𝛿

𝑘 times

𝐼 = 𝐼𝑛𝑖𝑡 ∨ 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡

Interpolant

𝛿(𝐼) ⊆ Interpolant

BMCk (Interpolant, 𝛿, Bad) unsat

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐼 = 𝐼𝑛𝑖𝑡 ∨ 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡

𝐼

Inductive ?

𝑘 + 1 times

𝛿
…

𝛿 𝛿𝛿

Interpolation-Based Inference

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑

𝐼 = 𝐼𝑛𝑖𝑡 ∨ 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡

𝐼

BMCk+1 (𝐼, 𝛿, Bad) unsat

Until 𝐼 is inductive

∨ 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡2 ∨ …

otherwise increase 𝑘
and start over

𝛿(𝐼𝑛𝑖𝑡)

Computing an Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

𝐵𝑎𝑑
𝛿

…𝛿(𝐼)𝐼
𝛿 𝛿

𝑘 times

Interpolant

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10 𝑘 times

𝛿

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝐼 = 𝐼𝑛𝑖𝑡
(−, 𝜎1) CTI to 𝐼

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝑘 times

𝛿

𝐼 = 𝐼𝑛𝑖𝑡

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10 𝑘 times

𝛿

𝐼 = 𝐼𝑛𝑖𝑡

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10

…
𝛿 𝛿

𝑘 times

𝛿

𝐼 = 𝐼𝑛𝑖𝑡

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10 𝑘 times

𝛿

𝐼 = 𝐼𝑛𝑖𝑡

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝜎1 = 01…10 𝑘 times

𝛿

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡1 = 𝑥1 = 0 ∧ 𝑥2 = 1 ∧ ⋯∧ 𝑥𝑛−1 = 1 ∧ 𝑥𝑛 = 0

𝐼 = 𝐼𝑛𝑖𝑡

𝛿

Model-Based Interpolation

[HVC’12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR’13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

𝐵𝑎𝑑…𝜎1𝐼
𝛿

𝛿(𝐼)

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init:

Bad:

𝛿 :

𝐼 = 𝐼𝑛𝑖𝑡 ∨ (𝑥𝑛= 0) 𝑘 times

𝛿

𝐼 = 𝐼𝑛𝑖𝑡

Model-Based Interpolation

ℓ1
1 ∧ ⋯∧ ℓ𝑘1

1 ∨ … ∨ ℓ1
𝑚 ∧ ⋯∧ ℓ𝑘𝑚

𝑚

gen(𝜎1) gen(𝜎𝑚)

Inferring invariant in DNF:

𝐼 := false

while (_, 𝜎′) counterexample
to Inductive(𝛿, 𝐼):

𝐼 := 𝐼 ∨ 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞 𝜎′

𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞(𝜎′):
drop literals from 𝜎′
while BMCk(𝜎′, 𝛿, Bad) unsat

ITP-k:

Inductiveness-Query Model

𝐼 := false

while (_, 𝜎′) counterexample
to Inductive(𝛿, 𝐼):

𝐼 := 𝐼 ∨ 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞 𝜎′

𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞(𝜎′):
drop literals from 𝜎′
while BMCk(𝜎′, 𝛿, Bad) unsat

?

𝛿

inference algorithm inductiveness-query oracle
𝛼1 inductive?

✓ / ✘+counterexample

…
{𝛼𝑖} {𝛼𝑖}𝛼𝑚 inductive?

✓ / ✘+counterexample

✓ / ✘

𝐼 inductive?

𝛿𝑘

inference algorithm Hoare-query oracle

{𝛼𝑖} {𝛽𝑖}
…

{𝛼1}𝛿
𝑘 𝛽1 ?

{𝛼𝑚}𝛿
𝑘 𝛽𝑚 ?

✓ / ✘ +counterexample

✓ / ✘ +counterexample

Hoare-Query Model

Capable of modeling several interesting algorithms

Trace (𝜎0, … , 𝜎𝑘) of 𝛿 s.t.
𝜎0 ⊨ 𝛼𝑖 , 𝜎𝑘⊨ ¬𝛽𝑖

BMCk (𝛼𝑖 , 𝛿, ¬𝛽𝑖) unsat?

Hoare-Query Model

𝐼 𝛿{𝐼}?

✓ / ✘

𝛿𝑘{𝛼𝑖} {𝛽𝑖}

Hoare-query
oracle

…

σ′ 𝛿𝑘 ¬Bad ?

✓ / ✘

𝐼 := false

while (_, 𝜎′) counterexample
to Inductive(𝛿, 𝐼):

𝐼 := 𝐼 ∨ 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞 𝜎′

𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞(𝜎′):
drop literals from 𝜎′
while BMCk(𝜎′, 𝛿, Bad) unsat

ITP-k:

Also captures IC3/PDR

Outline

Initial

Invariant Inference

vs.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Exact Concept Learning

- Complexity lower and upper bounds for each model

Hoare-Query Complexity

𝑛 is the vocabulary size, 𝑘 = poly(𝑛)

• even with unlimited computational power

• unconditional lower bound

[POPL’20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Thm: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring 𝐼 ∈ DNF s.t. 𝐼 ≤ poly(𝑛)

Throughout the talk

𝛿1

Hoare-query oracle

…
{𝛼𝑖} {𝛽𝑖}

𝛿2{𝛼𝑖} {𝛽𝑖}

construct 𝜹𝟏, 𝜹𝟐 for

1. 𝛿1 has an inductive invariants with at most 𝑛 cubes

2. 𝛿2 does not (in fact, unsafe)

3. all queries return the same answer for 𝛿1, 𝛿2

Proof sketch:

{𝛼1} 𝛽1 ?

{𝛼𝑚} 𝛽𝑚 ?

✓ / ✘

✓ / ✘

Thm: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring 𝐼 ∈ DNF s.t. 𝐼 ≤ poly(𝑛)

Hoare-Query Complexity

inference algorithm

given

with <𝟐𝒄⋅𝒏queries

𝛿1

Hoare-query oracle

…
{𝛼𝑖} {𝛽𝑖}

𝛿2{𝛼𝑖} {𝛽𝑖}

construct 𝜹𝟏, 𝜹𝟐 for

1. 𝛿1 has an inductive invariants with at most 𝑛 cubes

2. 𝛿2 does not (in fact, unsafe)

3. all queries return the same answer for 𝛿1, 𝛿2

Proof sketch:

{𝛼1} 𝛽1 ?

{𝛼𝑚} 𝛽𝑚 ?

✓ / ✘

✓ / ✘

Thm: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring 𝐼 ∈ DNF s.t. 𝐼 ≤ poly(𝑛)

Hoare-Query Complexity

inference algorithm

given

with <𝟐𝒄⋅𝒏queries
take 𝛿s checking validity of Boolean quantified formulas

∃𝑥1, … , 𝑥𝑛. ∀𝑦1, … , 𝑦𝑛. 𝜙(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛)

a sub-exponential number of valuations do not determine validity!

…

{𝛼1} 𝛽1 ?

{𝛼𝑚} 𝛽𝑚 ?

✓ / ✘

✓ / ✘

{𝛼1} 𝛽1 ?

𝛿1

Hoare-query oracle

{𝛼𝑖} {𝛽𝑖}

𝛿2{𝛼𝑖} {𝛽𝑖}

construct 𝜹𝟏, 𝜹𝟐 for

1. 𝛿1 has an inductive invariants with at most 𝑛 cubes

2. 𝛿2 does not (in fact, unsafe)

3. all queries return the same answer for 𝛿1, 𝛿2

Proof sketch:

Thm: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring 𝐼 ∈ DNF s.t. 𝐼 ≤ poly(𝑛)

Hoare-Query Complexity

inference algorithm

given

with <𝟐𝒄⋅𝒏queries

𝐼 is monotone:
propositions appear only

positively

…

{𝛼1} 𝛽1 ?

{𝛼𝑚} 𝛽𝑚 ?

✓ / ✘

✓ / ✘

𝛿1

Hoare-query oracle

{𝛼𝑖} {𝛽𝑖}

𝛿2{𝛼𝑖} {𝛽𝑖}

construct 𝜹𝟏, 𝜹𝟐 for

1. 𝛿1 has an inductive invariants with at most 𝑛 cubes

2. 𝛿2 does not (in fact, unsafe)

3. all queries return the same answer for 𝛿1, 𝛿2

Proof sketch:

Thm: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring 𝐼 ∈ DNF s.t. 𝐼 ≤ poly(𝑛)

Hoare-Query Complexity

inference algorithm

given

with <𝟐𝒄⋅𝒏queries

𝐼 is monotone:
propositions appear only

positively

Cor: Every Hoare-query algorithm requires 𝟐𝛀(𝒏) queries in
the worst case for inferring short monotone DNF invariants

Thm: There exists a class of transition systems 𝒫, so that for
solving inference:

1. ∃ Hoare-query algorithm (with 𝑘=1) with poly(𝑛) queries

2. ∀ inductiveness-query algorithm requires 2Ω(𝑛) queries

Hoare > Inductiveness

[POPL’20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Proof:

Thm: There exists a class of transition systems 𝒫, so that for
solving inference:

1. ∃ Hoare-query algorithm (with 𝑘=1) with poly(𝑛) queries

2. ∀ inductiveness-query algorithm requires 2Ω(𝑛) queries

Hoare > Inductiveness

Maximal system for 𝜑:

𝒫 = maximal transition systems for monotone DNF with 𝑛 cubes

propositions appear only positively

𝜑 = 𝑥1 ∨ (𝑥2 ∧ 𝑥3)

𝜑 = 𝑥1 ∨ (𝑥2 ∧ 𝑥3)

Proof:

Hoare > Inductiveness

ITP-1 takes 𝑶(𝒏𝟐) queries

Upper bound:

∃ Hoare-query algorithm (with 𝑘=1) with poly(𝑛) queries

1 iteration1 iteration

𝜑 is monotone𝐼 := false

while (_, 𝜎′) counterexample
to Inductive(𝛿, 𝐼):

𝐼 := 𝐼 ∨ 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞 𝜎′

𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞(𝜎′):
drop literals from 𝜎′
while BMC1(𝜎′, 𝛿, Bad) unsat

𝜎′ ⇒ 𝜑

minimal

Proof:

Lower bound:

∀ inductiveness-query algorithm requires 2Ω(𝑛) queries

Hoare > Inductiveness

𝛿

inference algorithm inductiveness-query oracle

{𝛼𝑖} {𝛼𝑖}

𝛼1 inductive?

✘+counterexample

…
𝛼𝑚 inductive?

✘+counterexample

𝐵𝑎𝑑
𝜑 ¬𝜑

𝛼𝑖𝛼𝑖
≤

Proof:

Lower bound:

∀ inductiveness-query algorithm requires 2Ω(𝑛) queries

Hoare > Inductiveness

𝐵𝑎𝑑
𝜑 ¬𝜑

≤≤2Ω(𝑛)

general systems
monotone DNF invariants

previous Corollary

maximal systems
monotone DNF invariants

Thm: There exists a class of transition systems 𝒫, so that for
solving inference:

1. ∃ Hoare-query algorithm (with 𝑘=1) with poly(𝑛) queries

2. ∀ inductiveness-query algorithm requires 2Ω(𝑛) queries

[VMCAI’17] IC3 - Flipping the E in ICE. Vizel, Gurfinkel, Shoham, Malik.

Similar proof works with a simple case of IC3/PDR

ICE cannot model PDR,
and the extension of [VMCAI’17] is necessary

⇒

Hoare > Inductiveness

[POPL’20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Outline

Initial

Invariant Inference

vs.

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

Exact Concept Learning

- Complexity lower and upper bounds for each model

Inferring Monotone DNF

Initial

Invariant Inference

vs.

Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Counterexamples to induction:

𝜎 ⊨ ¬𝜑 or 𝜎′ ⊨ 𝜑

Positive/negative examples:

𝜎+ ⊨ 𝜑 , 𝜎− ⊨ ¬𝜑

Inductiveness vs. Equivalence Queries

oracle

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Counterexamples to induction:

𝜎 ⊨ ¬𝜑 or 𝜎′ ⊨ 𝜑

Positive/negative examples:

𝜎+ ⊨ 𝜑 , 𝜎− ⊨ ¬𝜑

Thm: Learning from counterexamples to induction is harder
than learning from positive/negative examples.

Inductiveness vs. Equivalence Queries

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Counterexamples to induction:

𝜎 ⊨ ¬𝜑 or 𝜎′ ⊨ 𝜑

Positive/negative examples:

𝜎+ ⊨ 𝜑 , 𝜎− ⊨ ¬𝜑

Thm: Learning from counterexamples to induction is harder
than learning from positive/negative examples.

Inductiveness vs. Equivalence Queries

[CAV’14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

ICE

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Invariant Inference with
Equivalence & Membership Queries

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL’20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with
Equivalence & Membership Queries

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

Invariant Inference Exact Concept Learning

Maximal General

Inductive 2Ω(𝑛) 2Ω(𝑛)

Hoare poly 2Ω(𝑛)

Equiv sub-exponential

Equiv + mem poly

[ML’87] Queries and Concept Learning, Angluin
[COLT’12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL’20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Thm. In general, in the Hoare-query model, no efficient way to
implement a teacher for equivalence and membership queries

Invariant Inference with
Equivalence & Membership Queries

exact learning
algorithms

invariant inference
algorithms

⟹

Sufficient conditions for

Outline

Initial

Invariant Inference

vs.

Exact Concept Learning

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

- Complexity lower and upper bounds for each model

𝐼

learning algorithm oracleis it 𝜓1?

✓ / ✘+counterexample

✓ / ✘+counterexample

is it 𝜓2?

From Learning to Inference

✓ / ✘

does 𝜎3 ⊨?

…

EquivalenceMembership

𝛿

Need to
implement

this

From Learning to Inference

𝜓 := false

while 𝜎′ counterexample
to Equivalence(𝜓):

𝜓 := 𝜓 ∨ 𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞 𝜎′

𝐠𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞(𝜎′):
drop literals from 𝜎′
while Membership(𝜎′)=✓

Exact learning
DNF formulas

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

From Learning to Inference

⟹Exact learning
DNF formulas

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

Equivalence(𝝍)

Membership(𝝈′)=✓

Inductive(𝑰):

BMCk(𝝈′, 𝜹, 𝐁𝐚𝐝) unsat

From Learning to Inference

⟹Exact learning
DNF formulas

Inferring
DNF invariants

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

[CAV’03] Interpolation and SAT-Based Model Checking,
McMillan
[HVC’12] Computing Interpolants without Proofs.
Chockler, Ivrii, Matsliah

Equivalence(𝝍)

Membership(𝝈′)=✓

Inductive(𝑰)

BMCk(𝝈′, 𝜹, 𝐁𝐚𝐝) unsat

From Learning to Inference

⟹Exact learning
DNF formulas

Inferring
DNF invariants

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

[CAV’03] Interpolation and SAT-Based Model Checking,
McMillan
[HVC’12] Computing Interpolants without Proofs.
Chockler, Ivrii, Matsliah

Equivalence(𝝍)

Membership(𝝈′)=✓

Inductive(𝑰)

BMCk(𝝈′, 𝜹, 𝐁𝐚𝐝) unsat

Efficiently Efficiently

When is the
transformation correct?

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

[CAV’03] Interpolation and SAT-Based Model Checking,
McMillan
[HVC’12] Computing Interpolants without Proofs.
Chockler, Ivrii, Matsliah

From Learning to Inference

⟹Exact learning
DNF formulas

Inferring
DNF invariants

Equivalence(𝝍)

Membership(𝝈′)=✓

Inductive(𝑰)

BMCk(𝝈′, 𝜹, 𝐁𝐚𝐝) unsat

Efficiently Efficiently

Thm: can implement queries when
the invariant is 𝑘-fenced

and the algorithm’s queries are one-sided

𝑘-Fenced Invariants

(1,1,1)

(0,0,0)

𝐼∗ ¬𝐼∗

𝑘-Fenced Invariants

(1,1,1)

(0,0,0)

𝐼∗ ¬𝐼∗

𝑘-Fenced Invariants

(1,1,1)

(0,0,0)

𝜕−(𝐼∗)

𝐼∗ ¬𝐼∗
(1,0,0)

(0,1,0)

(0,0,1)

Outer boundary

all states 𝜎 ∉ 𝐼∗ that
differ from some 𝜎′ ∈ 𝐼∗

in one bit

𝑘-Fenced Invariants

(1,1,1)

(0,0,0)

𝐼∗ ¬𝐼∗

𝜕−(𝐼∗)all the states in

can reach a bad state in at most 𝑘 steps

𝐼∗ is 𝑘-fenced if

all states 𝜎 ∉ 𝐼∗ that
differ from some 𝜎′ ∈ 𝐼∗

in one bit

Example: 𝑘-Fenced Invariant

𝜕−(𝐼∗)all the states in

can reach a bad state in at most 𝑘 steps

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init: 𝛿:

𝐼∗: 𝑥𝑛 ≠ 1

= {𝑥𝑛= 1}

= 1

Bad:

Example: 𝑘-Fenced Invariant

𝜕−(𝐼∗)all the states in

can reach a bad state in at most 𝑘 steps

𝑦1, … , 𝑦𝑛 ≔ ∗
𝑥1, … , 𝑥𝑛 ≔ 𝑥1, … , 𝑥𝑛 +

2 ⋅ (𝑦1, … , 𝑦𝑛) (mod 2𝑛)

(𝑥1, … , 𝑥𝑛) ≔ 0…0

(𝑥1, … , 𝑥𝑛) = 1…1

Init: 𝛿:

𝐼∗: 𝑥𝑛 ≠ 1

= {𝑥𝑛= 1}

= 1

Bad:

In this example

¬𝐼∗
In general not all

states in ¬𝐼∗ need
to reach bad

𝑘-Fenced Invariants

𝜕−(𝐼∗)all the states in

can reach a bad state in at most 𝑘 steps

𝐼∗ ¬𝐼∗

In general not all
states in ¬𝐼∗ need

to reach bad

Thm: can implement queries when
the invariant is 𝑘-fenced

and the algorithm’s queries are one-sided

From Learning to Inference

⟹Exact learning
DNF formulas

Inferring
DNF invariants

Efficiently Efficiently

One-Sided Equivalence(𝜓): 𝜓 ⟹ 𝜑
One-Sided Membership(𝜎): 𝜎 ∈ 𝜑 ∪ 𝜕−(𝜑)

✓

𝜑

inference
algorithm

teacher

is it 𝜓?

✓ / ✘+counterexample

One-Sided Equivalence Queries
to Invariants

is 𝜓 an inductive invariant?

✓ yes hooray!

✘+counterexample transition:
𝜎, 𝜎′ s.t. 𝜎 ⊨ 𝜓, 𝜎′ ⊨ ¬𝜓

Always return 𝜎′ as
positive example

𝝍⟹ 𝝋

is 𝜎3 ⊨?

✓ / ✘

One-Sided Membership Queries
to 𝑘-Fenced Invariants

can’t 𝜎3 reach bad states
in 𝒌 steps?

BMCk(𝜎3, 𝛿, Bad) unsat?

✓ then yes

✘ then no

Doesn’t always imply that
𝜎3 ⊨ 𝐼∗

inference
algorithm

teacher𝝈 ∈ 𝝋 ∪ 𝝏−(𝝋)

𝜑

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

Thm: Let 𝒞 be a class of formulas.

From Learning to Inference

[POPL’21] Learning the Boundary of Inductive Invariants. Feldman, Sagiv, Shoham, Wilcox

Efficient Inference

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

Thm 1: 𝒞 = monotone DNF

Efficient Inference

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

Thm 1: 𝒞 = monotone DNF

𝜎′ counterexample
Equivalence(𝝍)

Membership(𝝈′)=✓

(_, 𝜎′) counterexample
Inductive(𝑰)

BMCk(𝝈′, 𝜹, 𝐁𝐚𝐝) unsat

𝜎′ ∈ 𝜑 ∪ 𝜕−(𝜑)

𝜓 ⟹ 𝜑

Efficient Inference

Thm 1: The interpolation-based algorithm converges in a
polynomial number of SAT queries if 𝐼∗ is

• 𝑘-fenced, and

• has a short monotone DNF representation

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

[CACM’84] A Theory of the Learnable. Valiant
[ML’87] Queries and Concept Learning. Angluin
[ML’95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt

Thm 1: 𝒞 = monotone DNF

Efficient Inference

Thm 2: A different algorithm converges in a polynomial
number of SAT queries if If 𝐼∗ is

• 𝑘-fenced, and

• has a short almost-monotone DNF representation

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

Thm 2: 𝒞 = almost-monotone DNF

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

at most 𝑂(1) terms include negated variables

Inference from Unrestricted Queries

Thm 3: A different algorithm converges in a polynomial
number of SAT queries if 𝐼∗ is

• two-sided 𝑘-fenced, and

• has a short DNF and a short CNF representation

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

Thm’: Let 𝒞 be a class of formulas. two-sided

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

e.g., 𝐼∗ is expressible as a short decision tree

Inference from Unrestricted Queries

Thm 3: A different algorithm converges in a polynomial
number of SAT queries if 𝐼∗ is

• two-sided 𝑘-fenced, and

• has a short DNF and a short CNF representation

∃𝒜 identifying 𝜑 ∈ 𝒞 with
polynomially-many
one-sided queries

⟹
∃𝒜 inferring 𝐼∗ ∈ 𝒞 with

polynomially-many
SAT queries

whenever 𝐼∗ is 𝑘-fenced

Thm’: Let 𝒞 be a class of formulas. two-sided

[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty

e.g., 𝐼∗ is expressible as a short decision tree

Thm: also when 𝐼∗is one-sided 𝑘-fenced
but not by transformation from learning

[SAS ‘22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Conclusion (1)

Initial

Invariant Inference

vs.

Exact Concept Learning

- Query-based learning models for invariant inference

- Invariant inference is harder than concept learning

- Complexity results for invariant inference algorithms
from concept learning algorithms

- Complexity lower and upper bounds for each model

Conclusion (2)

Initial

Invariant Inference

vs.

Exact Concept Learning

- What about IC3/PDR?

- Impact of 𝑘 in the Hoare query model?

- Is the fence condition necessary?

- Other conditions?

- Beyond Boolean programs

