SAT-Based Invariant Inference and Its Relation to Concept Learning

Sharon Shoham

ërc Supervised Verification of Infinite-State Systems

Yotam Feldman
©0 0
TEL AVIV אוניברסיטת תל אבביב UNIVERSITY

Neil Immerman

Mooly Sagiv James R. Wilcox -00
אוניברסיטת TEL AVIV תֶּ אבּב

CERTORA

SAT-Based Invariant Inference

- predicate abstraction [CAV'97, POPL'02]
- symbolic abstraction [VMCAI'04,'16]
- interpolation
[CAV'03, TACAS'06]
- IC3/PDR
[VMCAl'11, FMCAD'11]
- abduction [OOPSLA'13]
- SyGuS [FMCAD'13,...]
- ICE learning [CAV'14, POPL'15]
- ...

Goal

Understand SAT-based invariant inference from the perspective of exact learning with queries

[POPL'20] Complexity and information in invariant inference. Feldman, Immerman, Sagiv, Shoham
[POPL'21] Learning the boundary of inductive invariants. Feldman, Sagiv, Shoham, Wilcox
[POPL'22] Property-directed reachability as abstract interpretation in the monotone theory. Feldman, Sagiv, Shoham, Wilcox [SAS'22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham

Safety of Transition Systems

Safety: no bad state is reachable from the initial states

$$
\begin{array}{ll}
\underline{\text { Init: }} & \underline{\delta}: \\
\left(x_{1}, \ldots, x_{n}\right):=0 \ldots 0 & y_{1}, \ldots, y_{n}:=* \\
x_{1}, \ldots, x_{n}:=\left(x_{1}, \ldots, x_{n}\right)+ \\
\left(x_{1}, \ldots, x_{n}\right)=1 \ldots 1 & \\
& \\
& \\
\text { Bad: } & \\
\left.x_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{array}
$$

Inductive Invariants

Safety: no bad state is reachable from the initial states
Init:
$\underline{\delta}$:
$\left(x_{1}, \ldots, x_{n}\right):=0 \ldots 0$

$$
\begin{aligned}
y_{1}, \ldots, y_{n} & :=* \\
x_{1}, \ldots, x_{n} & :=\left(x_{1}, \ldots, x_{n}\right)+ \\
& 2 \cdot\left(y_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{aligned}
$$

Initiation: \quad Init $\subseteq I$
Safety: $\quad I \cap$ Bad $=\varnothing$
Consecution: $\{I\} \delta\{I\}$

Inductive Invariants

Safety: no bad state is reachable from the initial states
Init:
$\underline{\delta}$:
$\left(x_{1}, \ldots, x_{n}\right):=0 \ldots 0$

$$
\left(x_{1}, \ldots, x_{n}\right)=1 \ldots 1
$$

$$
\begin{aligned}
y_{1}, \ldots, y_{n} & :=* \\
x_{1}, \ldots, x_{n} & :=\left(x_{1}, \ldots, x_{n}\right)+ \\
& 2 \cdot\left(y_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{aligned}
$$

$I: x_{n} \neq 1$
Inductive:

$I:\left(x_{1}, \ldots, x_{n}\right) \neq 1 \ldots 1$
Not inductive:

Invariant Inference

Goal: Find inductive invariants automatically

Bad:

$$
\left(x_{1}, \ldots, x_{n}\right)=1 \ldots 1
$$

$I: x_{n} \neq 1$
Inductive:

$I:\left(x_{1}, \ldots, x_{n}\right) \neq 1 \ldots 1$
Not inductive:

SAT-based Invariant Inference

Goal: Find inductive invariants automatically
Means: Employ a SAT solver

$$
I: x_{n} \neq 1
$$

Inductive:

I: $\left(x_{1}, \ldots, x_{n}\right) \neq 1 \ldots 1$
Not inductive:

SAT-based Invariant Inference

Goal: Find inductive invariants automatically

Means: Employ a SAT solver

Init, Bad: formulas over V
δ : formula over V, V^{\prime}
SAT query Examples:
Initiation: Init $\wedge \neg I$ unsat?
Safety: $\quad I \wedge$ Bad unsat?
Cons.: $\quad I \wedge \delta \wedge \neg I^{\prime}$ unsat?

* $I^{\prime}=I\left[V \mapsto V^{\prime}\right]$

Exact Concept Learning with Equivalence \& Membership Queries

Goal: learn an unknown concept φ

[ML'87] Queries and Concept Learning. Angluin

SAT-Based Invariant Inference as Inference with Queries

Goal: infer an unknown inductive invariant I

Which SAT queries?

Algorithms cannot access the transition relation directly, only through SAT queries

This Talk

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Inductiveness-Query Model

inference algorithm

inductiveness-query oracle

$\alpha_{i} \wedge \delta \wedge \neg \alpha_{i}^{\prime}$ unsat?
Cex to Induction (CTI): Transition (σ, σ^{\prime}) of δ s.t. $\sigma \vDash \alpha_{i}, \quad \sigma^{\prime} \vDash \neg \alpha_{i}$

* $\alpha_{i}^{\prime}=\alpha_{i}\left[V \mapsto V^{\prime}\right]$
[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Inductiveness-Query Model

inference algorithm

inductiveness-query oracle

ICE framework - Learn from examples:
Positive: $\quad \sigma \vDash I$ (e.g., initial)
Negative: $\quad \sigma \nRightarrow I$ (e.g., bad)
$\alpha_{i} \wedge \delta \wedge \neg \alpha_{i}^{\prime}$ unsat?
Cex to Induction (CTI):
ransition $\left(\sigma, \sigma^{\prime}\right)$ of δ s.t.
Cex to Induction (CTI):
Transition $\left(\sigma, \sigma^{\prime}\right)$ of δ s.t.

$$
\sigma \vDash \alpha_{i}, \quad \sigma^{\prime} \vDash \neg \alpha_{i}
$$

Implication: $\sigma \vDash I$ implies $\sigma^{\prime} \vDash I$ (CTI)
Is it sufficient to capture existing SAT-based algorithms?

$$
{ }^{*} \alpha_{i}^{\prime}=\alpha_{i}\left[V \mapsto V^{\prime}\right]
$$

[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Interpolation-Based Inference

$I=$ Init \quad Inductive ?

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

$I=$ Init

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

$I=$ Init

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

$I=$ Init \vee Interpolant

[CAV’03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

$I=$ Init \vee Interpolant

Inductive?

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan

Interpolation-Based Inference

$I=$ Init \vee Interpolant \vee Interpolant $_{2} \vee \ldots$

$k+1$ times

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan

Computing an Interpolant

[CAV'03] Interpolation and SAT-Based Model Checking, McMillan

Model-Based Interpolation

Init:

$$
\left(x_{1}, \ldots, x_{n}\right):=0 \ldots 0
$$

Bad:
$\left(x_{1}, \ldots, x_{n}\right)=1 \ldots 1$

$$
\begin{aligned}
y_{1}, \ldots, y_{n} & :=* \\
x_{1}, \ldots, x_{n} & :=\left(x_{1}, \ldots, x_{n}\right)+ \\
& 2 \cdot\left(y_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{aligned}
$$

$$
\text { Interpolant }_{1}=\left(x_{1}=0 \wedge x_{2}=1 \wedge \cdots \wedge x_{n-1}=1 \wedge x_{n}=0\right)
$$

Interpolant $_{1}=\left(x_{1}=0 \wedge x_{2}=1 \wedge \cdots \wedge x_{n-1}=1 \wedge x_{n}=0\right)$

$$
\sigma_{1}=01 \ldots 10
$$

(-, 腯) CTI to I
(-, 腯) CTI to I
[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah
[LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah [LPAR'13] Instantiations, Zippers and EPR Interpolation. Bjørner, Gurfinkel, Korovin, Lahav

Model-Based Interpolation

Inferring invariant in DNF:

ITP-k:
$I:=$ false
while (,σ^{\prime}) counterexample to Inductive (δ, I) :
$I:=I$ V generalize $\left(\sigma^{\prime}\right)$
generalize $\left(\sigma^{\prime}\right)$:
drop literals from σ^{\prime} while $\mathrm{BMC}^{\mathrm{k}}\left(\sigma^{\prime}, \delta, \mathrm{Bad}\right)$ unsat

Inductiveness-Query Model

inference algorithm

$$
\begin{aligned}
& I:=\text { false } \\
& \text { while } \frac{\left(_, \sigma^{\prime}\right) \text { counterexample }}{} \quad \begin{array}{l}
\text { to Inductive }(\delta, I): \\
\\
I:=I \text { V generalize }\left(\sigma^{\prime}\right)
\end{array}
\end{aligned}
$$

generalize $\left(\sigma^{\prime}\right)$:
drop literals from σ^{\prime} while $\mathrm{BMC}^{\mathrm{k}}\left(\sigma^{\prime}, \delta, \mathrm{Bad}\right)$ unsat

Hoare-Query Model

inference algorithm
Hoare-query oracle

$\operatorname{BMC}^{\mathrm{k}}\left(\alpha_{i}, \delta, \neg \beta_{i}\right)$ unsat?

Trace $\left(\sigma_{0}, \ldots, \sigma_{k}\right)$ of δ s.t.

$$
\sigma_{0} \vDash \alpha_{i}, \quad \sigma_{k} \vDash \neg \beta_{i}
$$

Capable of modeling several interesting algorithms

Hoare-Query Model

Also captures IC3/PDR

Outline

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in$ DNF s.t. $|I| \leq \operatorname{poly}(n)$
n is the vocabulary size, $k=\operatorname{poly}(n)$

Throughout the talk

- even with unlimited computational power
- unconditional lower bound

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in$ DNF s.t. $|I| \leq \operatorname{poly}(n)$

Proof sketch:
given
inference algorithm

1. δ_{1} has an inductive invariants with at most n cubes
2. δ_{2} does not (in fact, unsafe)
3. all queries return the same answer for δ_{1}, δ_{2}

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in$ DNF s.t. $|I| \leq \operatorname{poly}(n)$

Proof sketch:

given
 construct δ_{1}, δ_{2} for

inf \ddagger take δ s checking validity of Boolean quantified formulas

$$
\exists x_{1}, \ldots, x_{n} . \forall y_{1}, \ldots, y_{n} . \phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

a sub-exponential number of valuations do not determine validity!

1. δ_{1} has an inductive invariants with at most n cubes
2. δ_{2} does not (in fact, unsafe)
3. all queries return the same answer for δ_{1}, δ_{2}

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in$ DNF s.t. $|I| \leq \operatorname{poly}(n)$

Proof sketch: given
inference algorithm with $<2^{c \cdot n}$ queries

1. δ_{1} has an inductive invariants with at most n cubes
2. δ_{2} does not (in fact, unsafe)
3. all queries return the same answer for δ_{1}, δ_{2}

Hoare-Query Complexity

Thm: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring $I \in$ DNF s.t. $|I| \leq \operatorname{poly}(n)$

Proof sketch: given
inference algorithm with $<2^{c \cdot n}$ queries

I is monotone:

propositions appear only positively

construct δ_{1}, δ_{2} for Hoare-query oracle
$\left\{\alpha_{i}\right\} \quad \delta_{1}\left\{\beta_{i}\right\}$

Cor: Every Hoare-query algorithm requires $2^{\Omega(n)}$ queries in the worst case for inferring short monotone DNF invariants

Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P}, so that for solving inference:

1. \exists Hoare-query algorithm (with $k=1$) with poly (n) queries
2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P}, so that for solving inference:

1. \exists Hoare-query algorithm (with $k=1$) with poly (n) queries
2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Proof:
$\mathcal{P}=$ maximal transition systems for monotone DNF with n cubes
propositions appear only positively

$$
\varphi=x_{1} \vee\left(x_{2} \wedge x_{3}\right)
$$

Maximal system for φ :

Hoare > Inductiveness

Upper bound:

\exists Hoare-query algorithm (with $k=1$) with $\operatorname{poly}(n)$ queries
Proof: ITP-1 takes $\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}}\right)$ queries

$$
I:=\text { false }
$$

$$
\varphi \text { is monotone }
$$

while (_, σ^{\prime}) counterexample to Inductive(δ, I):
$I:=I \vee$ generalize $\left(\sigma^{\prime}\right)$
minimal
generalize (σ^{\prime}):
drop literals from $\sigma^{\prime} \quad \sigma^{\prime} \Rightarrow \varphi$ while $\mathrm{BMC}^{1}\left(\sigma^{\prime}, \delta, \mathrm{Bad}\right)$ unsat

1 iteration 1 iteration

$$
\varphi=x_{1} \vee\left(x_{2} \wedge x_{3}\right)
$$

Hoare > Inductiveness

Lower bound:

\forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries Proof:
inference algorithm

Hoare > Inductiveness

Lower bound:

\forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries Proof:

Hoare > Inductiveness

Thm: There exists a class of transition systems \mathcal{P}, so that for solving inference:

1. \exists Hoare-query algorithm (with $k=1$) with poly (n) queries
2. \forall inductiveness-query algorithm requires $2^{\Omega(n)}$ queries

Similar proof works with a simple case of IC3/PDR
\Rightarrow ICE cannot model PDR, and the extension of [VMCAI'17] is necessary

Outline

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

Inferring Monotone DNF

Invariant Inference

Exact Concept Learning

	Mavimal	Genoral		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Invariant Inference

Exact Concept Learning

learning algorithm

Counterexamples to induction: \quad Positive/negative examples:

$$
\sigma \vDash \neg \varphi \text { or } \sigma^{\prime} \vDash \varphi \quad \sigma^{+} \vDash \varphi, \sigma^{-} \vDash \neg \varphi
$$

	Mavimal	Genoral		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Thm: Learning from counterexamples to induction is harder than learning from positive/negative examples.

Counterexamples to induction: Positive/negative examples: $\sigma \vDash \neg \varphi$ or $\sigma^{\prime} \vDash \varphi$

	Mavimal	fonoral		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Inductiveness vs. Equivalence Queries

Thm: Learning from counterexamples to induction is harder than learning from positive/negative examples.

Counterexamples to induction:

Positive/negative examples:

	Mavimal	Gonoral		
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$	Equiv	sub-exponential
Hoare	poly	$2^{\Omega(n)}$	Equiv + mem	poly

[ML'87] Queries and Concept Learning, Angluin
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[CAV'14] ICE: A Robust Framework for Learning Invariants. Garg, Löding, Madhusudan, Neider

Invariant Inference with Equivalence \& Membership Queries

oracle

Invariant Inference

	Maximal	General
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$
Hoare	poly	$2^{\Omega(n)}$

[ML'87] Queries and Concept Learning, Angluin [COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.

Invariant Inference with Equivalence \& Membership Queries

Thm. In general, in the Hoare-query model, no efficient way to implement a teacher for equivalence and membership queries

Invariant Inference

	Maximal	General
Inductive	$2^{\Omega(n)}$	$2^{\Omega(n)}$
Hoare	poly	$2^{\Omega(n)}$

[ML'87] Queries and Concept Learning, Angluin
[COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al.
[POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Invariant Inference with Equivalence \& Membership Queries

Thm. In general, in the Hoare-query model, no efficient way to implement a teacher for equivalence and membership queries

Sufficient conditions for

exact learning algorithms
invariant inference algorithms

Inductive

Hoare

Equiv
Equiv + mem

[ML'87] Queries and Concept Learning, Angluin [COLT'12] Tight Bounds on Proper Equivalence Query Learning of DNF, Hellerstein et al. [POPL'20] Complexity and Information in Invariant Inference. Feldman, Immerman, Shoham, Sagiv

Outline

Invariant Inference

Exact Concept Learning

- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms

From Learning to Inference

learning algorithm

Membership Equivalence
oracle

Need to implement this

From Learning to Inference

Exact learning

DNF formulas
$\psi:=$ false
while σ^{\prime} counterexample to Equivalence (ψ) :
$\psi:=\psi \vee$ generalize $\left(\sigma^{\prime}\right)$
generalize $\left(\sigma^{\prime}\right)$: drop literals from σ^{\prime} while Membership $\left(\sigma^{\prime}\right)=\checkmark$

From Learning to Inference

Exact learning
DNF formulas

$\psi:=$ false
while σ^{\prime} counterexample to Equivalence($\boldsymbol{\psi})$
$\psi:=\psi \vee$ generalize $\left(\sigma^{\prime}\right)$
generalize $\left(\sigma^{\prime}\right)$: drop literals from σ^{\prime} while Membership $\left(\sigma^{\prime}\right)=\sqrt{ }$

Inductive(I)

BMC $^{\mathrm{k}}\left(\boldsymbol{\sigma}^{\prime}, \boldsymbol{\delta}, \mathrm{Bad}\right)$ unsat
[CACM'84] A Theory of the Learnable. Valiant
[ML'87] Queries and Concept Learning. Angluin
[ML'95] On the Learnability of Disjunctive Normal Form
Formulas. Aizenstein and Pitt

From Learning to Inference

Exact learning
DNF formulas

Inferring DNF invariants

```\psi := false while \sigma' counterexample to Equivalence(\psi)```	$\begin{array}{\|l} \hline I:=\text { false } \\ \text { while }\left(\ldots, \sigma^{\prime}\right) \text { counterexa } \\ \longrightarrow \quad \text { to Inductive(I): } \end{array}$
	$I:=I$
while Membership $\left(\sigma^{\prime}\right)=\checkmark$	generalize $\left(\sigma^{\prime}\right)$ : drop literals from $\sigma^{\prime}$   $\longrightarrow$ while BMC $^{\mathrm{k}}\left(\boldsymbol{\sigma}^{\prime}, \boldsymbol{\delta}, \mathbf{B a d}\right)$ unsat

[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt
[CAV'03] Interpolation and SAT-Based Model Checking, McMillan
[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

## From Learning to Inference

 Efficiently Exact learning DNF formulas


Efficiently
Inferring DNF invariants

## $\psi:=$ false

while $\sigma^{\prime}$ counte When is the to Equiv:
$\psi:=\psi \vee$ gelmonmúo $\quad \ldots, ~$ generalize $\left(\sigma^{\prime}\right)$
generalize $\left(\sigma^{\prime}\right)$ : drop literals from $\sigma^{\prime}$ while Membership $\left(\sigma^{\prime}\right)=\checkmark$
[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt
[CAV'03] Interpolation and SAT-Based Model Checking, McMillan
[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

## From Learning to Inference



Efficiently
Exact learning DNF formulas


Efficiently
Inferring
DNF invariants

## Thm: can implement queries when the invariant is $k$-fenced and the algorithm's queries are one-sided

generalize $\left(\sigma^{\prime}\right)$ : drop literals from $\sigma^{\prime}$ while Membership $\left(\sigma^{\prime}\right)=\sqrt{ }$

generalize $\left(\sigma^{\prime}\right)$ :
drop literals from $\sigma^{\prime}$ while BMC $^{\mathrm{k}}\left(\boldsymbol{\sigma}^{\prime}, \boldsymbol{\delta}, \mathrm{Bad}\right)$ unsat
[CACM'84] A Theory of the Learnable. Valiant [ML'87] Queries and Concept Learning. Angluin [ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt
[CAV'03] Interpolation and SAT-Based Model Checking, McMillan
[HVC'12] Computing Interpolants without Proofs. Chockler, Ivrii, Matsliah

## $k$-Fenced Invariants



## $k$-Fenced Invariants



## $k$-Fenced Invariants



$$
\partial^{-}\left(I^{*}\right)
$$

Outer boundary

## $k$-Fenced Invariants


$I^{*}$ is $k$-fenced if
all the states in $\partial^{-}\left(I^{*}\right)$
can reach a bad state in at most $k$ steps

## Example: $k$-Fenced Invariant

$$
\begin{aligned}
& \stackrel{\text { Init: }}{\left(x_{1}, \ldots, x_{n}\right)}:=0 \ldots 0 \\
& \left(\underline{\left.x_{1}, \ldots, x_{n}\right)}=1 \ldots 1\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\delta}: \\
& y_{1}, \ldots, y_{n}:=* \\
& x_{1}, \ldots, x_{n}:=\left(x_{1}, \ldots, x_{n}\right)+ \\
& 2 \cdot\left(y_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{aligned}
$$

$$
I^{*}: x_{n} \neq 1
$$

all the states in $\partial^{-}\left(I^{*}\right)=\left\{x_{n}=1\right\}$ can reach a bad state in at most $k$ steps $=1$

## Example: $k$-Fenced Invariant

$$
\begin{aligned}
& \stackrel{\text { Init: }}{\left(x_{1}, \ldots, x_{n}\right)}:=0 \ldots 0 \\
& \left(x_{1}, \ldots, x_{n}\right)=1 \ldots 1
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\delta}: \\
& y_{1}, \ldots, y_{n}:=* \\
& x_{1}, \ldots, x_{n}:=\left(x_{1}, \ldots, x_{n}\right)+ \\
& 2 \cdot\left(y_{1}, \ldots, y_{n}\right)\left(\bmod 2^{n}\right)
\end{aligned}
$$

In general not all $I^{*}: x_{n} \neq 1$
In this example
states in $\neg I^{*}$ need
to reach bad
all the states in $\partial^{-}\left(I^{*}\right)=\left\{x_{n}=1\right\}$
can reach a bad state in at most $k$ steps $=1$

## $k$-Fenced Invariants


all the states in $\partial^{-}\left(I^{*}\right)$
can reach a bad state in at most $k$ steps

## From Learning to Inference



Efficiently
Exact learning
DNF formulas


Efficiently
Inferring
DNF invariants

Thm: can implement queries when the invariant is $k$-fenced and the algorithm's queries are one-sided

One-Sided Equivalence $(\psi): \psi \Longrightarrow \varphi$
One-Sided Membership $(\sigma): \sigma \in \varphi \cup \partial^{-}(\varphi)$

## One-Sided Equivalence Queries to Invariants

inference
algorithm


$$
\psi \Longrightarrow \varphi
$$

is it $\psi$ ?

teacher

is $\psi$ an inductive invariant?
$\checkmark$ yes hooray!
X +counterexample transition:
$\left(\sigma, \sigma^{\prime}\right)$ s.t. $\sigma \vDash \psi, \sigma^{\prime} \vDash \neg \psi$

## One-Sided Membership Queries to $k$-Fenced Invariants

inference
algorithm
teacher

can't $\sigma_{3}$ reach bad states in $\boldsymbol{k}$ steps?
$\mathrm{BMC}^{\mathrm{k}}\left(\sigma_{3}, \delta, \mathrm{Bad}\right)$ unsat?
Doesn't always imply that

$$
\sigma_{3} \vDash I^{*}
$$

$\checkmark$ then yes
$X$ then no

## From Learning to Inference

Thm: Let $\mathcal{C}$ be a class of formulas.
$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one-sided queries

$\exists \mathcal{A}$ inferring $I^{*} \in \mathcal{C}$ with polynomially-many SAT queries
whenever $I^{*}$ is $k$-fenced


## Efficient Inference

## Thm 1: $\mathcal{C}=$ monotone DNF

$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one-sided queries
> $\exists \mathcal{A}$ inferring $I^{*} \in \mathcal{C}$ with polynomially-many SAT queries
> whenever $I^{*}$ is $k$-fenced

## Efficient Inference

## Thm 1: $\mathcal{C}=$ monotone DNF

$\exists \mathcal{A}$ inferring $I^{*} \in \mathcal{C}$ with
$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one-sided queries
polynomially-many SAT queries
whenever $I^{*}$ is $k$-fenced

$\psi$	I
while $\sigma^{\prime}$ counterexample   to Equivalence $(\boldsymbol{\psi})$	while (,$\sigma^{\prime}$ ) counterexample $\longrightarrow \quad$ to Inductive( $I$ ):
$\psi:=\psi \vee$ generalize $\left(\sigma^{\prime}\right)$	$I:=I \vee$ general
$\in \varphi \cup \partial^{-}(\varphi)$	
als fro	s fr

## Efficient Inference

## Thm 1: $\mathcal{C}=$ monotone DNF

$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one-sided queries
$\exists \mathcal{A}$ inferring $I^{*} \in \mathcal{C}$ with polynomially-many SAT queries
whenever $I^{*}$ is $k$-fenced

Thm 1: The interpolation-based algorithm converges in a polynomial number of SAT queries if $I^{*}$ is

- $k$-fenced, and
- has a short monotone DNF representation
[CACM'84] A Theory of the Learnable. Valiant
[ML'87] Queries and Concept Learning. Angluin
[ML'95] On the Learnability of Disjunctive Normal Form Formulas. Aizenstein and Pitt


## Efficient Inference

## Thm 2: $\mathcal{C}=$ almost-monotone DNF

$\exists \mathcal{A}$ inferring $I^{*} \in \mathcal{C}$ with
$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one-sided queries
 polynomially-many SAT queries whenever $I^{*}$ is $k$-fenced

Thm 2: A different algorithm converges in a polynomial number of SAT queries if If $I^{*}$ is

- $k$-fenced, and
- has a short almost-monotone DNF representation
at most $O(1)$ terms include negated variables
[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty


## Inference from Unrestricted Queries

Thm': Let $\mathcal{C}$ be a class of formulas. two-sided
$\exists \mathcal{A}$ inferring ${ }^{*} \in \mathcal{C}$ with
$\exists \mathcal{A}$ identifying $\varphi \in \mathcal{C}$ with polynomially-many one sided queries polynomia $y$-many SAT que-ies whenever $I^{*}$ is $k$-fenced

Thm 3: A different algorithm converges in a polynomial number of SAT queries if $I^{*}$ is

- two-sided $k$-fenced, and
- has a short DNF and a short CNF representation e.g., $I^{*}$ is expressible as a short decision tree
[Inf. Comput. ‘95] Exact Learning Boolean Function via the Monotone Theory. Bshouty


## Inference from Unrestricted Queries

Thm': Let $\mathcal{C}$ be a class of formulas. two-sided ヨ. $a$ inforring ${ }^{*} \in \mathcal{C}$ with
Thm: also when $I^{*}$ is one-sided $k$-fenced ia $y$-many but not by transformation from learning
jue ies '* is $k$-fenced

Thm 3: A different algorithm converges in a polynomial number of SAT queries if $I^{*}$ is

- two-sided $k$-fenced, and
- has a short DNF and a short CNF representation e.g., $I^{*}$ is expressible as a short decision tree
[Inf. Comput. '95] Exact Learning Boolean Function via the Monotone Theory. Bshouty
[SAS '22] Invariant Inference With Provable Complexity From the Monotone Theory. Feldman, Shoham


## Conclusion (1)

## Invariant Inference



## Exact Concept Learning



- Query-based learning models for invariant inference
- Complexity lower and upper bounds for each model
- Invariant inference is harder than concept learning
- Complexity results for invariant inference algorithms from concept learning algorithms


## Conclusion (2)

## Invariant Inference




- What about IC3/PDR?
- Impact of $k$ in the Hoare query model?
- Is the fence condition necessary?
- Other conditions?
- Beyond Boolean programs

