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ML and NNs are used extensively



NNs are sensitive to 
adversarial attacks



NNs are sensitive to 
adversarial attacks



Neural Network Verification



The classic property: Adversarial Robustness

“Panda”

Property: Verify that there isn’t an 
adversarial perturbation around: 



How hard is NN-verification?

NN-verification is NP-complete! (Katz et al., 2017)
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● AI2 (Gehr et al.)
● Prima (Muller et al.)
● Verinet (Henriksen et al.)
● MN-BAB (Ferrari et al.)
● Nnenum (Bak et al.)

2017: 
<100 neurons 

2023-2025: 
~10,000,000 

neurons

*Still not 
applicable on 

SOTA*



From Formal Verification to
Formal Explainability



Neural Networks are Black-Boxes

Input Output



Explainable AI (XAI)

Tools and frameworks for explaining the 
decisions made by ML models.



AI Explainability example

“Labrador”

(Ribeiro et al., 2016 )
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Explainer:
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(and not Husky)

(Ribeiro et al., 2016 )



Can we trust XAI tools?

XAI tools are often heuristic, and do not 
provide formal guarantees.



Can we trust XAI tools?

If we can’t trust the explainer,
we can’t trust the model.



Formal Explainability

We hence want to produce formal 
and provable explanations. 



How can we formally define an explanation?

“Beagle”

(Ribeiro et al., 2018 )



Sufficient Reason/Abductive Explanation

“Beagle”

Sufficient 
Reason:

(Ribeiro et al., 2018 )



“Beagle”

“Beagle”

(Ribeiro et al., 2018 )

Sufficient Reason/Abductive Explanation



DNN-verification can be used to verify 

is a sufficient reason.  if

Abductive Explanations/Sufficiency



Minimal Sufficient Reasons

1. Smaller sufficient reasons are more meaningful.
2. We are interested in finding subset minimal or 

preferably cardinally minimal explanations.
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Towards Formal XAI: Formally Approximate Minimal 
Explanations of Neural Networks

Tacas, 2023
Shahaf Bassan, Guy Katz

A framework for approximating explanations

Provable subset minimal 
sufficient reasons

Provable approximation of cardinally 
minimal sufficient reasons



Subset minimal sufficient reasons
Attempt to ``free’’ features until converging to a subset 

minimal explanation.

“Class 1”



Free

“Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



Free Free

“Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



Free Free

“Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



“Class 2”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



Free Free

“Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



Free Free

Free “Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



Free Free

Free Free “Class 1”

Attempt to ``free’’ features until converging to a subset 
minimal explanation.

Subset minimal sufficient reasons



A key concern: high computational complexity



Each verification query is NP-Hard, and we require a 
linear number of queries only for a subset minimal 

explanation!

A key concern: high computational complexity



How can we speed up this process?



Explaining, Fast and Slow: Abstraction and Refinement of 
Provable Explanations

ICML 2025 (To appear)
Shahaf Bassan*, Yizhak Elboher*, Tobias Ladner*, Matthias Althof, 
Guy Katz
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We suggest an algorithm composed of two main aspects:

1. Abstraction 2.   Refinement
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A sufficient explanation for the the abstract network is also one for the original!

Abstraction - build a smaller neural network 

We can find an explanation over instead of

(much more efficiently!)

Original model Abstract model

(!)
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However, the opposite is not true!

are also sufficient over 

Minimal sufficient explanations for are not necessarily minimal for 

This requires an additional procedure: refinement!  

,
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Gradually refine the abstract network (increase its size) and find an explanation

Refinement - Gradually increase the network size 

We “free” features in the abstract model, then refine and “free” more features, and so on…

Eventually, converges to a minimal explanation.



An example



More examples



If we relax sufficiency, can we scale even more?



If we relax sufficiency, can we scale even more?

Explain Yourself, Briefly! Self-Explaining Neural Networks 
with Concise Sufficient Reasons

ICLR 2025
Shahaf Bassan, Ron Eliav, Shlomit Gur



Up until now, we discussed post-hoc 
explanations, that are obtained after training.



Can training time-intervention help with our 
scalability challenges?



A model that explains itself



A model that explains itself



How do we train a model to give us an explanation that is 
both sufficient and small?



How do we train a model to give us an explanation that is 
both sufficient and small?

With Sufficient Subset Training (SST)



The dual propagation in Sufficient Subset Training



The optimization objective in Sufficient Subset 
Training:



The optimization objective in Sufficient Subset 
Training:

(Standard) Prediction loss:
Optimize for accuracy
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The dual propagation in Sufficient Subset Training
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The optimization objective in Sufficient Subset 
Training:

Cardinality loss:
Optimize for minimal cardinality
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We discuss 3 maskings for the 3 forms of sufficiency:

1. Baseline masking - fix some baseline to the complementary.

2. Probabilistic masking - sample values to the complementary 
from some distribution.

3. Robust masking - perform a gradient attack over the 
complementary features. 



We ran experiments on both image domains (IMAGENET, 
CIFAR10, MNIST) and language domains (IMDB, SNLI)



We ran comparisons to post-hoc methods
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We ran comparisons to post-hoc methods, and 
ablations



Summary of results - vs. post-hoc heuristic methods
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1. Improved faithfulness (more subsets verified as 
sufficient)

2. Improved conciseness (smaller subsets)
3. More efficient (inherent sufficient reasons)

4. Comparable predictive performance

Summary of results - vs. post-hoc heuristic methods



Up until now - 
classification

Input Output



Reactive Systems are more complex

State 
1

State 
2

State 
3



Formally Explaining Neural Networks within Reactive 
Systems

FMCAD, 2023
Shahaf Bassan*, Guy Amir*, Davide Corsi, Idan Refaeli, Guy Katz
Best paper runnerup

Formal Explanations in Reactive Systems



State 
1

State 
2

State 
3

State 
4

A naive solution: Encode everything together



Growth of neural network: exponential 
blow up in computation time.

The Problem with the naive solution



We suggest algorithms that avoid the 
exponential blow-up, but are still optimal.

Our solution



Formal Explanations in Reactive Systems



Let’s move to some more theoretical stuff



The computational complexity of finding explanations



The computational complexity of finding explanations
1. Local vs. Global Interpretability: A Computational Complexity Perspective 

ICML 2024 (Spotlight)
Shahaf Bassan, Guy Amir, Guy Katz

2. What makes an Ensemble (Un) Interpretable? 
ICML 2025 (To appear)
Shahaf Bassan, Guy Amir, Meirav Zehavi, Guy Katz

3. On the Computational Tractability of the (Many) Shapley Values
AI’STATS 2025 
Reda Marzouk*, Shahaf Bassan*, Guy Katz, Colin De La Higuera

4. Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation
ECAI 2024 
Guy Amir*, Shahaf Bassan*, Guy Katz
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Our goal is to identify which explanation types with various 
guarantees can be found efficiently (and which cannot).

Factors that influence the complexity:

Type of explanation Type of ML model local/global distribution
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Conclusion
1. Formal XAI lets us compute explanations that are 

provably correct.
2. We can do this using NN verification
3. Abstraction-refinement can improve efficiency
4. Self-explaining neural networks can scale even more
5. Understanding the complexity of finding explanations is 

an important theoretical aspect of this area.
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Future Work - Formal XAI
1. Verifying alternative forms of explanations
2. Methods for improving scalability
3. Additional work on computational complexity
4. Formal certification during training




