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Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Fences can impose ordering

Useful in case of a crash
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Persistent reachability problem reduces to crash free reachability in a new program

Original program New program
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Translation employs a guess and verify technique |

Ensure that the guessed writes are not overwritten
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Reads now are from the copy or the main memory

e ——— B e ——




Persistent Memorg Reachabilitg

Manager non-deterministically
picks a write that will persist




Persistent Memorg Reachabilitg

Manager non-deterministically
picks a write that will persist

Needs'to ensure the value is not
over-written
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Persistent Memorg Reachabilitg

Manager non-deterministically

Needs'to ensuré the value is not
over-written
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Frozen write




Spoilers



Spoilers

Frozen write is spolilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns
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Manager tries to avoid these spoilers / bad patterns
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SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

Frozen write




Spoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

MEW(X,B) | ceeererereeeeeee | wb(x,3)  ‘;:



SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

NTW spoiler




SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns




SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

MEW(X,B) | ceeererereeeeeee | wb(x,3)




MEW(X,B) | ceeererereeeeeee | wb(x,3)  ‘;:

FL(x)

Spoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns




SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

FL spoiler

Forced to persist




SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns




SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

There are other spoilers involving Fo, we wont consider them
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Detectin g SPoi lers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager
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Detectin g SPoi lers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen



Detectin g SPoi lers

Verifies the speculation of the threads

e ———————————ERT

Ensures that the potential spoilers are never seen

S




Detectin g SPoi lers

Verifies the speculation of the threads

e

Ensures that the potential spoilers are never seen

| Persistent memory reachability reduces to crash free reachability




VERIFYING €X86 WITH PERSISTENCY

Al stable phocesses we skall predict, all unslable phocesses we stall contnol - Berjamin Franklin

- Persistent Memory Reachabillity

—& - Crash Free Reachability
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What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

assert(y = 0);

1
2
3
4 until n times; :
s | RMW(y,1,0);
6
7
8

Thread 1: Thread 2:

—@ 1 repeat repeat
2 Whb(x, 1); assert(x = 0);
3 Wb(y, 1): RMW(x, 1, 0);

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

until n times;

Thread 1: Thread 2:
1 repeat &1 repeat
2 Whb(x, 1); 2 assert(x = 0);
3 Wh(y, 1); 3 RMW(x, 1, 0);
___a 4 until n times; : assert(y = 0);
5 RMW(y, 1, 0);
6 assert(x = 0);
7
g




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable
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Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

1
2
3

aSSer t(y = O);
5 RMW(y, 1, 0);
6
7
8

& 4 until n times;

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1

2

3

& 4 until n times; | !

—&5 | RMW(y, 1,0);

6

7

3

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Wb(x, 1); assert(x = 0);

3 Wb(y, 1); RMW(x, 1, 0); (v, 1)
(x,1)

assert(y = 0);

1

2

3

& 4 until n times; | !

—&5 | RMW(y, 1,0);

6

7

3

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable
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Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Wb(x, 1); assert(x = 0);

3 Wb(y, 1); RMW(x, 1, 0); (v, 1)
(x,1)

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;




What About Crash-free Reachabi litg?

Crash-free reachability is undecidable
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Reduction from well known Post Correspondence Problem

B ——— e

Crux of the reduction involves ability to implement alternating bit protocol

S

Thread 1: Thread 2:

1 repeat repeat —,—e
2 Whb(x, 1); assert(x = 0); Thread-2 reaches

3 | Wh(y, 1); RMW(x, 1, 0); the end only if it did

assert(y = 0);

1
2
3
& 4 until n times; !
5 RMW(y, 1, 0);
6
7
3

not miss any write

assert(x = 0);

until n times;
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Crash-free reachability |
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Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti e [1,¢] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)
11 j=j-1 11 a:=x

12 X = # 12 Halt
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Crash-free reachability |
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Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti e [1,¢] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:.=x

12 X = # 12 Halt
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Pick an index

Crash-free reachability |
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Algorithm 1: PCPGen Algorithm 2: PCPVerif

1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b

3 while xdo 3 while (a # #) do

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)

11 j=j—1 11 a:=x

12 X = # 12 Halt




PCP: U = {I/tl,...uf} V = {VI’ vf}
di...1, : Wi = Ui ..Uy =V; = V..V
Crash-free reachability |

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 4 rmw(x, 1, 0)

5 5 rmw(y, 0,0)

6 6 Letb € X

7 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x =1 9 rmw(y, 1, 0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes



PCP: U = {I/tl,...uf} V = {Vla vf}
di...1, : Wi = Ui ..Uy =V; = V..V
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Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 Leti€ [1, ] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb € X

7 7 rmw(s, b, 0)

8 8 rmw(t, b, 0)

9 | x =1 9 rmw(y, 1, 0)
10 Y y:=1 10 rmw(x, 0, 0)
11 ~ J- ~ 11 a=Xx
12 x:=% 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol



PCP: U= 1{uy,...u,} V={v,...v,}
di...1, : Wi = Ui ..Uy =V; = V..V
Crash-free reachability |

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 Leti€ [1, ] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x =1 9 rmw(y, 1, 0)
10 y:=1 10 rmw(x, 0, 0)
11 j=Jj—-1 11 a:=x
12 X = # 2 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol



PCP: U = {uy,...u,}
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Crash-free reachability

V — {Vl, ...Vf}

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti€ [1, ] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb e X
7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol




PCP: U = {uy,...u,}

di...0, U U ...
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Crash-free reachability |
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V — {Vl, ...Vf}

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (g #£#) do
+ | Letie[1¢] s | /n
5 S =ntw U 5 LY, U
6 I ==niw O 6 Letb e X
7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x:=1 o | i
10 y =1 10 | \om '
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost
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Pick an index

Crash-free reachability | Writes the corresponding words as ntw writes
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Algorithm 1: PCPGen Algorithm 2: PCPVerif Encodes the size into the alt-bit protocol
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
¢ | Letie[1¢] ¢+ | rmw(x,1,0) Alt bit ensures no symbol is lost
5 | S =ntw Ui 5 | rmw(y,0,0)
6 | t:=ntw i 6 th € 37> Verfies that the generated words are same
7| J = w4+ o 7
8 while j > 0 do 8
9 x:=1 9 rmw',w, )
10 y =1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x

12 X = # 12 Halt
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Pick an index

Crash-free reachability | Writes the corresponding words as ntw writes
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Algorithm 1: PCPGen Algorithm 2: PCPVerif Encodes the size into the alt-bit protocol
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
¢ | Letie|1{] ¢ | rm(x,1,0) Alt bit ensures no symbol is lost
5 S =ntw Ui 5 rmw(y, 0,0)
6 | t:=ntw; 6 | LetbeX Verfies that the generated words are same
7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x =1 9 rmw(y, 1,0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x

12 X = # 12 Halt




VERIFYING €X86 WITH PERSISTENCY

Al stable phocesses we skall predict, all unslable phocesses we stall contnol - Berjamin Franklin

- Persistent Memory Reachabillity
- Crash Free Reachability

—& - Decidable Fragment
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Alternation Bounded Reachabilitg

| One source of undecidability is unbounded alternations between ntw and wb writes. |




Alternation Bounded Reachabilitg

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.




Alternation Bounded Reachabilitg

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.

ST




Alternation Bounded Reachabilitg

K Alternation Bounded reachabillity asks if a final config
can be reached by an execution in which every thread
IS k-alternation bounded




Alternation Bounded Reachabilitg

K Alternation Bounded reachabillity asks if a final config
can be reached by an execution in which every thread
IS k-alternation bounded

Initial config N Final config

B e




Decidability



Decidability

.




Decidability

Execution within each block is like TSO or PSO

B e




Decidability

| Decidability by reduction to reachability on PSO system




Decidability

Each alternation block is executed in parallel as a
PSO thread

© i)




Decidability

Each alternation block is executed in parallel as a
PSO thread

|
b
»
|
r
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Decidability

Memory is duplicated as per thread and per phase



Decidability

Memory is duplicated as per thread and per phase

Manager



Decidability

! Manager moves the writes to main memory



Decidability

Manager ensures that the semantics is maintained

e s

Manager



Decidability

Manager ensures that the semantics is maintained

e A

Manager

Wb Wb Ntw(x)  Ntw/Wb(x)

Ntw/W Sf
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