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Concurrent Programs
In the concurrent world, imperative is a wrong default - Tim Sweeny



Concurrent Programs



Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

Multiple Threads



Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y
Shared variables



Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y

Writes



Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y

Reads



Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0



Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

01



Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

01



Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

1 1



Weak Memory Models
don’t communicate by sharing memory; share memory by communicating
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Memory Models

Sequential Consistency Weak Consistency
Operations are atomic Operations can be re-ordered

TSO, PSO, EX86
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Crisis and deadlocks when they occur have at least this advantage: they force us to think
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Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program 

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Translation employs a guess and verify technique

Ensure that the guessed writes are not overwritten
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Man

P2P1
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0
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0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Manager non-deterministically 
picks a write that will persist

Needs to ensure the value is not 
over-written

Frozen write
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Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3FL(x)

Manager cannot observe 
Fl operations

There are other spoilers involving Fo, we wont consider them
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Detecting Spoilers

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen

Threads

Manager

Speculates the position of freeze for each variable
Difficult in presence of re-orderings

Persistent memory reachability reduces to crash free reachability



Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control -  Benjamin Franklin

- Persistent Memory Reachability

- Crash Free Reachability
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What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

(x,1)

(y,1)

0 0

Thread-2 reaches 
the end only if it did 
not miss any write
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PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

PCPVerif

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost
Verfies that the generated words are same

Crash-free reachability

Crash free reachability is undecidable



Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control -  Benjamin Franklin

- Persistent Memory Reachability

- Crash Free Reachability

- Decidable Fragment
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Alternation Bounded Reachability
One source of undecidability is unbounded alternations between ntw and wb writes.
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K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between 
wb and ntw writes at-most k times.

P1 Wb Ntw Wb Ntw
σ w1 w2 wn
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Alternation Bounded Reachability

Initial config Final config

P1

Pn

Wb Ntw Wb Ntw

Wb Ntw Wb Ntw

K Alternation Bounded reachability asks if a final config 
can be reached by an execution in which every thread 
is k-alternation bounded
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Each alternation block is executed in parallel as a 
PSO thread
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Decidability

P1 Ntw Wb Ntw Wb

Manager

Manager ensures that the semantics is maintained

Wb Wb Ntw(x) Ntw/Wb(x)

Ntw/Wb sf



Thank you


