
Verifying Programs In Weak
Memory Models With Persistency

Prakash Saivasan
The Institute of Mathematical Sciences

Joint work with
Parosh Aziz Abdulla
Mohamed Faouzi Atig
Ahmed Bouajjani
K. Narayan Kumar

Verifying Programs In Weak Memory Models With Persistency

Verifying Programs In Weak Memory Models With Persistency

Outline

Verifying Programs In Weak Memory Models With Persistency

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models

- Persistency

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models

- Persistency

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models

- Persistency

- Verification

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models
Intel x86 model

- Persistency

- Verification

Outline

Verifying Programs In Weak Memory Models With Persistency

- Concurrent Programs

- Weak Memory models
Intel x86 model

- Persistency

- Verification POPL 2022

Outline

Concurrent Programs
In the concurrent world, imperative is a wrong default - Tim Sweeny

Concurrent Programs

Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

Multiple Threads

Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y
Shared variables

Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y

Writes

Thread-1

x=5

y=5

Thread-2

a=x

b=y

Concurrent Programs

x y

Reads

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

01

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

01

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

1 1

Weak Memory Models
don’t communicate by sharing memory; share memory by communicating

Memory Models

Sequential Consistency Weak Consistency

Memory Models

Sequential Consistency Weak Consistency
Operations are atomic

Memory Models

Sequential Consistency Weak Consistency
Operations are atomic Operations can be re-ordered

Memory Models

Sequential Consistency Weak Consistency
Operations are atomic Operations can be re-ordered

TSO, PSO, EX86

Sequential Consistency

Sequential Consistency

X Y Z

00 0

Sequential Consistency

X Y Z

Instructions are sequential and immediate

00 0

Sequential Consistency

X Y Z

Instructions are sequential and immediate

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

00 0

Sequential Consistency

X Y Z

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

00 0

Sequential Consistency

X Y Z

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Wr(x,1)
Write modifies the value of a variable

00 0

Sequential Consistency

X Y Z

1

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Wr(x,1)
Write modifies the value of a variable

00

Sequential Consistency

X Y Z

1

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Rd(y)
Read fetches value of a variable

00

Sequential Consistency

X Y Z

1

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Rmw tests and sets a variable

00

Sequential Consistency

X Y Z

1

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Rmw(z,0,2)
Rmw tests and sets a variable

00

Sequential Consistency

X Y Z

1

Rd(y)Wr(x,1) RMW(z,0,2)

Instructions

Rmw(z,0,2)
2

Rmw tests and sets a variable

0

X Y
0 0

Z
0

Total Store Order

X Y
0 0

Z
0

Total Store Order

Writes are buffered, reads are
immediate

Store buffer

X Y
0 0

Z
0

Total Store Order

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

X Y
0 0

Z
0

Total Store Order

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

X Y
0 0

Z
0

Total Store Order

Writes are buffered

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

X Y
0 0

Z
0

(x,1)

Total Store Order

Writes are buffered

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

Wr(x,1)

X Y
0 0

Z
0

(x,1)

Total Store Order

Writes are buffered

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(y,2)

Wr(y,2)

X Y
0 0

Z
0

(x,1)

Total Store Order

Writes are buffered

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(y,2)(x,3)

Wr(x,3)

X Y
0

Z
01

Total Store Order

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(y,2)(x,3)

Propagated to memory non-deterministically

X Y Z
01 2

Total Store Order

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Propagated to memory non-deterministically

X Y Z
01 2

Total Store Order

Reads are either from buffer or memory

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

In that order!!

X Y Z
01 2

Total Store Order

Reads are either from buffer or memory

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Rd(x)

X Y Z
01 2

Total Store Order

Reads are either from buffer or memory

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Rd(x)

X Y Z
01 2

Total Store Order

Reads are either from buffer or memory

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Rd(z)

X Y Z
01 2

Total Store Order

Reads are either from buffer or memory

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Rd(z)

X Y Z
01 2

Total Store Order

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

X Y Z
01 2

Total Store Order

Memory fence ensures buffer is empty

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

(x,3)

Mf

X Y Z
02

Total Store Order

Memory fence ensures buffer is empty

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

Mf

3

X Y Z
02

Total Store Order

Memory fence ensures buffer is empty

Rd(x)Wr(x,d) RMW(x,b,d)
Instructions

Mf

3

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

(x,1)

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

(x,1)

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

(x,1) (y,1)

Thread-1 Thread-2

Critical Section Critical Section

Dekker’s Mutual Exclusion

x=1 y=1

Assert y = 0 Assert x = 0

x y

0 0

(x,1) (y,1)

X Y
0 0

Z
0

0 0

Partial Store Order
Rd(x)Wr(x,d) Rmw(x,b,d)

Instructions

MfSf

X Y
0 0

Z
0

0 0

Partial Store Order
Rd(x)Wr(x,d) Rmw(x,b,d)

Instructions

MfSf

X Y
0 0

Z
0

0 0

Partial Store Order
Rd(x)Wr(x,d) Rmw(x,b,d)

Instructions

MfSf

Wr(x,1)
Writes are buffered

X Y
0 0

Z
0

0 0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(x,1)
Writes are buffered

X Y
0 0

Z
0

(z,1)

0 0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(z,1)
Writes are buffered

X Y
0 0

Z
0

(z,1)

0 0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(z,1)
Propagated to memory non-deterministically

X Y
0 0

Z
0

(z,1)

0 0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(z,1)
Propagated to memory non-deterministically

Reorders writes to different variables

X Y
0 0

Z

0

1

0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(z,1)
Propagated to memory non-deterministically

Reorders writes to different variables

X Y
0 0

Z

0

1

0

Partial Store Order

(x,1)

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(z,1)
Store fence restricts re-ordering between writes

X Y
0 0

Z

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Sf
Store fence restricts re-ordering between writes

X Y
0 0

Z

(y,1)

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Wr(y,1)
Store fence restricts re-ordering between writes

X Y
0 0

Z

(y,1)

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Store fence restricts re-ordering between writes

X Y
0 0

Z

(y,1)

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Store fence restricts re-ordering between writes

X Y
0 0

Z

(y,1)

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Store fence restricts re-ordering between writes

X Y
0 0

Z

(y,1)

0

1

0

Partial Store Order

(x,1)Sf

Rd(x)Wr(x,d) Rmw(x,b,d)
Instructions

MfSf

Store fence restricts re-ordering between writes

Memory Models

Sequential Consistency Weak Consistency

Memory Models

Sequential Consistency Weak Consistency
Atomic operations

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive
- Expensive

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive
- Expensive

+ Optimised for efficiency

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive
- Expensive

+ Optimised for efficiency
- Complicated

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive
- Expensive

+ Optimised for efficiency
- Complicated

Memory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered
+ Simple and intuitive
- Expensive

+ Optimised for efficiency
- Complicated

Extended x86 Explained

}

X Y Z

Extended x86 Explained

0 0 0

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

X Y Z

Extended x86 Explained

0 0 0

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d) Writes are of type Ntw or Wb

X Y Z

Extended x86 Explained

0 0 0

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d) Writes are of type Ntw or Wb

Original model has a complicated semantics with more kinds of writes.

X Y Z

Extended x86 Explained

0 0 0

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d) Writes are of type Ntw or Wb

For reachability, the two kinds of writes are sufficient

X Y Z

Extended x86 Explained

0 0 0

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d) Both types of writes are stored in buffer

X Y Z

Extended x86 Explained

0 0 0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

wb(x,1)ntw(x,2)

Both types of writes are stored in buffer

ntw(y,2)

X Y Z

Extended x86 Explained

0 0 0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

wb(x,1)ntw(x,2)

Ntw writes re-order with writes of other variables

ntw(y,2)

X Y Z

Extended x86 Explained

0 0 0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

wb(x,1)ntw(x,2)

Wb writes do not re-order with each other

ntw(y,2)

X Y Z

Extended x86 Explained

0 0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

ntw(x,2)

Wb writes do not re-order with each other

ntw(y,2) 1

X Y Z

Extended x86 Explained

0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

ntw(x,2)

Wb writes do not re-order with each other

1 2

X Y Z

Extended x86 Explained

0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

ntw(x,2) 1

Fl, Sf disallows any re-orderings

2

X Y Z

Extended x86 Explained

0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

ntw(x,2) 1 2

Fo(x) cannot re-order with Sf and earlier writes to x

X Y Z

Extended x86 Explained

0Fl(x) ntw(z,1)

}

Instructions

Rd(x)

Wb(x,d)

Rmw(x,b,d)Mf

Sf Fl(x) Fo(x)ntw(x,d)

ntw(x,2) 1 2

Persistent
Fences

Persistency
Energy and persistence conquer all things - Benjamin Franklin

Concurrent Memory Systems + Persistency

Concurrent Memory Systems + Persistency

Persistent system

Memory model

Concurrent Memory Systems + Persistency

Persistency

Concurrent Memory Systems + Persistency

Persistency

Archives writes, not necessarily in order
Writes + Fences

Concurrent Memory Systems + Persistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Concurrent Memory Systems + Persistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Fences can impose ordering

Concurrent Memory Systems + Persistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Fences can impose ordering

Useful in case of a crash

Crash

Extended x86 Persistent System

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System

Ex86 memory model

Ex86 persistent system

Writes + Fences

Extended x86 Persistent System

Persistent Store

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

Wb writes are buffered

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(x,2)(y,3)(z,3)

Wb writes are buffered

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(x,2)(y,3)(z,3)

Propagated non-deterministically
Only per variable ordering

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(z,3) 2 3

Propagated non-deterministically
Only per variable ordering

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(z,3) 2 3

Propagated non-deterministically
Only per variable ordering

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(z,3) 2 3

Ntw writes are propagated directly
Ensures no pending writes on the variable

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

(z,3) 2 3

Ntw writes are propagated directly
Ensures no pending writes on the variable

ntw(z,1)

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

Ntw writes are propagated directly
Ensures no pending writes on the variable

3
ntw(z,1)

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

Ntw writes are propagated directly
Ensures no pending writes on the variable

1

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

Ntw writes are propagated directly
Ensures no pending writes on the variable

1

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

Fl ensures no pending writes on the variable

1

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

Fl ensures no pending writes on the variable

1

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

SF ensures no pending Fo of that thread

Fo is buffered with thread information

Fo(x,t1) 1

Ex86 memory model

Ex86 persistent system

Extended x86 Persistent System
Instructions

Wb(x,d) SfFl(x) Fo(x)ntw(x,d)

2 3

SF ensures no pending Fo of that thread

Fo is buffered with thread information

Fo(x,t1) 1

Ensures prior writes by the
thread are persisted

Ex86 memory model

Ex86 persistent system

Verification
Crisis and deadlocks when they occur have at least this advantage: they force us to think

Verifying Concurrent Systems

Verifying Concurrent Systems

Verifying Concurrent Systems

Correctness
Specification

Verifying Concurrent Systems

Correctness
Specification⊧

Verifying Concurrent Systems

Correctness
Specification⊧

Mutual exclusion

Verifying Concurrent Systems

Correctness
Specification⊧

Mutual exclusion

Safety Specification

Verifying Concurrent Systems

Correctness
Specification⊧

Mutual exclusion

Sequential Consistency PSPACE-Complete

TSO Non-primitive recursive

PSO Non-primitive recursive

Verifying Concurrent Systems

Correctness
Specification⊧

Mutual exclusion

Sequential Consistency PSPACE-Complete

TSO Non-primitive recursive

PSO Non-primitive recursive

Theory of Well Structured
Transition Systems

Persistent Reachability Problem

Persistent Reachability Problem

Persistent reachability: Whether programs can
reach a program location in presence of crashes

Final configInitial + Mn

Initial config Config M1

Initial + M1 Config M2

Crash

Crash

Persistent Reachability Problem

Persistent reachability: Whether programs can
reach a program location in presence of crashes

Persistent memory

Final configInitial + Mn

Initial config Config M1

Initial + M1 Config M2

Crash

Crash

Whether a persistent
memory can be reached

Persistent Reachability Problem

Persistent reachability: Whether programs can
reach a program location in presence of crashes

Persistent memory

Final configInitial + Mn

Initial config Config M1

Initial + M1 Config M2

Crash

Crash
Crash free
reachability

State reachability without
crashes

Persistent Reachability Problem

Persistent reachability: Whether programs can
reach a program location in presence of crashes

Persistent memory

Final configInitial + Mn

Initial config Config M1

Initial + M1 Config M2

Crash

Crash
Crash free
reachability +

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - John Von Neumann

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - John Von Neumann

- Persistent Memory Reachability

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - John Von Neumann

- Persistent Memory Reachability

- Crash Free Reachability

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - John Von Neumann

- Persistent Memory Reachability

- Crash Free Reachability

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - John Von Neumann

- Persistent Memory Reachability

- Crash Free Reachability

Persistent Memory Reachability

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Manager

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Translations

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Translation employs a guess and verify technique

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Translation employs a guess and verify technique

Guess the writes that will persist last

Persistent Memory Reachability
Persistent reachability problem reduces to crash free reachability in a new program

P2 P3 P4P1

Persist Reach

P2 P3 P4P1

Crash Free Reach

Man

New program

Reachability

Original program

Translation employs a guess and verify technique

Ensure that the guessed writes are not overwritten

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

Persistent Memory Reachability

Man

P2P1

Idea involves the manager speculating
a write that will persist

X
0

Y
0

Persistent Memory Reachability

Man

P2P1

Manager cannot observe all writes

X
0

Y
0

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

Introduce per process memory

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Threads write to their copy

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Manager transfers to the main memory

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Needs to ensure update order is maintained

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Needs to ensure update order is maintained

No more updates during a copy

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Reads now are from the copy or the main memory

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Manager non-deterministically
picks a write that will persist

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Manager non-deterministically
picks a write that will persist

Needs to ensure the value is not
over-written

Persistent Memory Reachability

Man

P2P1

X
0

Y
0

p1,X
0

p1,Y
0

p2,X
0

p2,Y
0

Manager non-deterministically
picks a write that will persist

Needs to ensure the value is not
over-written

Frozen write

Spoilers

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

wb(x,3)
X
3

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

Frozen write

wb(x,3)
X
3

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3 NTW spoiler

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

Manager can miss an ntw
writes esp if it is followed
by a wb write

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3FL(x)

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3FL(x)

FL spoiler

Forced to persist

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3FL(x)

Manager cannot observe
Fl operations

Spoilers
Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

ntw(x,5) wb(x,3)
X
3

wb(x,5) wb(x,3)
X
3FL(x)

Manager cannot observe
Fl operations

There are other spoilers involving Fo, we wont consider them

Detecting Spoilers

Detecting Spoilers
Threads

Detecting Spoilers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Threads

Detecting Spoilers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Threads

Manager

Detecting Spoilers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen

Threads

Manager

Detecting Spoilers

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen

Threads

Manager

Speculates the position of freeze for each variable
Difficult in presence of re-orderings

Detecting Spoilers

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen

Threads

Manager

Speculates the position of freeze for each variable
Difficult in presence of re-orderings

Persistent memory reachability reduces to crash free reachability

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - Benjamin Franklin

- Persistent Memory Reachability

- Crash Free Reachability

What About Crash-free Reachability?

What About Crash-free Reachability?
Crash-free reachability is undecidable

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0 0

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0 0

(x,1)

(y,1)

(x,1)

(y,1)

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0 0

(x,1)

(y,1)

(x,1)

(y,1)

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0

(y,1)

(x,1)

(y,1)

1

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0

(y,1)

(x,1)

(y,1)

0

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

0

(y,1)

(x,1)

(y,1)

0

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

(x,1)

(y,1)

0 1

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

(x,1)

(y,1)

0 0

What About Crash-free Reachability?
Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

(x,1)

(y,1)

0 0

Thread-2 reaches
the end only if it did
not miss any write

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

Pick an index

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

Pick an index

Writes the corresponding words as ntw writesCrash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

PCPVerif

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

PCPVerif

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

PCPVerif

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost
Verfies that the generated words are same

Crash-free reachability

PCP: U = {u1, …uℓ} V = {v1, …vℓ}
∃i1…in : ui1 ⋅ ui2…uin = vi1 ⋅ vi2…vin

PCPGen

PCPVerif

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost
Verfies that the generated words are same

Crash-free reachability

Crash free reachability is undecidable

Verifying Ex86 With Persistency
All stable processes we shall predict, all unstable processes we shall control - Benjamin Franklin

- Persistent Memory Reachability

- Crash Free Reachability

- Decidable Fragment

Alternation Bounded Reachability

Alternation Bounded Reachability
One source of undecidability is unbounded alternations between ntw and wb writes.

Alternation Bounded Reachability

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.

Alternation Bounded Reachability

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.

P1 Wb Ntw Wb Ntw
σ w1 w2 wn

Alternation Bounded Reachability

K Alternation Bounded reachability asks if a final config
can be reached by an execution in which every thread
is k-alternation bounded

Alternation Bounded Reachability

Initial config Final config

P1

Pn

Wb Ntw Wb Ntw

Wb Ntw Wb Ntw

K Alternation Bounded reachability asks if a final config
can be reached by an execution in which every thread
is k-alternation bounded

Decidability

Decidability

The writes between alternation blocks can re-order

Ntw Wb Ntw Wb

Decidability

P1 Ntw Wb Ntw Wb

Execution within each block is like TSO or PSO

Decidability

P1 Ntw Wb Ntw Wb
Decidability by reduction to reachability on PSO system

Decidability

P1 Ntw Wb Ntw Wb
Each alternation block is executed in parallel as a
PSO thread

Decidability

P1 Ntw Wb Ntw Wb
Each alternation block is executed in parallel as a
PSO thread

Later blocks depend on earlier blocks

Decidability

P1 Ntw Wb Ntw Wb

Memory is duplicated as per thread and per phase

Decidability

P1 Ntw Wb Ntw Wb

Manager

Memory is duplicated as per thread and per phase

Decidability

P1 Ntw Wb Ntw Wb

Manager

Manager moves the writes to main memory

Decidability

P1 Ntw Wb Ntw Wb

Manager

Manager ensures that the semantics is maintained

Decidability

P1 Ntw Wb Ntw Wb

Manager

Manager ensures that the semantics is maintained

Wb Wb Ntw(x) Ntw/Wb(x)

Ntw/Wb sf

Thank you

