Verifying Programs In Weak
(Demory (Dodels With Persistency

Prakash Saivasan

The Institute of Mathematical Sciences

Joint work with
Parosh Aziz Abdulla
Mohamed Faouzi Atig
Ahmed E’)ouajjani

K. Naragan Kumar

\/eri@ing Programs In Weak Memorg Models With Persistencg

\/eri@ing Programs In Weak Memorg Models With Persistencg

Outline

\/erigging Programs In Weak Memory Models With Persistency

Outline

\/erigging Programs In Weak Memory Models With Persistency

Outline

- Concurrent Programs

Veritying Programs In Weak Memory With Persistency

Outline

- Concurrent Programs

Veritying Programs In Weak Memory With Persistency

Outline

- Concurrent Programs

- Weak Memory models

Veritying Programs In Weak Memory With Fersistency

Outline

- Concurrent Programs

- Weak Memory models

Veritying Programs In Weak Memory With Fersistency

Outline

- Concurrent Programs
- Weak Memory models

- Persistency

orams In Weak Memory With Persistency

Outline

- Concurrent Programs
- Weak Memory models

- Persistency

orams In Weak Memory With Persistency

Outline

- Concurrent Programs
- Weak Memory models

- Persistency

- Verification

rams In Weak Memory With Persistency

Outline

- Concurrent Programs
' - Weak Memory models

' Intel x86 model
. - Persistency

- Verification

rams In Weak Memory With Persistency

Outline

- Concurrent Programs

' - Weak Memory models
| ' Intel x86 model
- PerSIStenCy ,f Extending Intel-x86 Consistency and Persistency

Formalising the Semantics of Intel-x86 Memory Types and Non-temporal Stores

AZALEA RAAD, Imperial College London, United Kingdom popL 2 0 2 2

- Venf'Cathn LUC MARANGET, Inria, France

VIKTOR VAFEIADIS, MPI-SWS, Germany

CONCURRENT PROGRAMS

In the. concurrent wo'ld, imperalive is a wrong defautt - Tim Sweeny

Concurrent Programs

Concurrent Programs

Thread-1 Thread-2

X=5H a=Xx

y=95 0=y

Multiple Threads

Concurrent Programs

Thread-1 Thread-2

X=5H a=Xx

y=95 0=y

Shared variables

Concurrent Programs

Thread-1 Thread-2

X=9 a=X

Concurrent Programs

Thread-1 Thread-2

X=35 a=Xx Reads

y=95 0=y

Dekker’s Mutual Exclusion

Thread-1 Thread-2

% y= 1
Asserty =0 Assert x=0

Critical Section

iy =1

Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-<
X= 1 —— y: 1
—@ Asserty =0 Assertx=0

Critical Section

Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-&
X= 1 —— y: 1
Asserty =0 Assert x=0

Critical Section Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-2
x=1 y=1
Asserty =0 gy ASSETt X =0

Critical Section

Critical Section

WEAK MEMORY NMODELS

a’orz&‘comnwucateé%ngmﬂm% Ma}zemmyé%wmmml‘mg

Mewory Models

Sequential COMsis’recv eak Consistency

Mewory Models

Sequential COMsis’recv eak Consistency

Operations are atomic

Mewory Models

Sequential consis’recv eak Consistency

Operations are atomic Operations can be re-ordered

Mewory Models

Sequential Consistency Weak Consistency
Operations are atomic Operations can be re-ordered

TS0, PSO, EX86

Sequential Comsistency

Sequential Consistency

X Y Z

Sequential Consistencg

Instructions are sequential and immediate

X Y Z

Sequential Consistencg

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Z)I

T R —

Instructions are sequential and immediate

Sequential Consistencg

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Z)I

T R —

Sequential Consistency

Instructions

Rd(y)] RMW(z,0,2)]

T R —

Write modifies the value of a variable

Sequential Consistencg

Instructions

Rd(y)] RMW(z,0,2)]

T R —

Write modifies the value of a variable

Sequential Consistency

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Q)I

e R —

g

m oo

X Y Z

Read fetches value of a variable

e Rt

Sequential Consistencg

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Q)I

T R —

Rmw tests and sets a variable

e WeteeA—_—

Sequential Consistency

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Q)I

T R —

Rmw tests and sets a variable

et WG

Sequential Consistency

Instructions

\Wr(x,1)J Rd(y) | \RMW(Z,O,Q)I

T R —

Rmw tests and sets a variable

et WG

Total Store Order

Total Store Order

Store buffer

Writes are buffered, reads are
| Immediate

Wr(x,d) J

Instructions

Rd(x) |

T R —

Mt_]

T —

Total Store Order

RMW(x,b,d)]

Instructions

Total Store Order

RMW(x,b,d)]

Total Store Order

Instructions
- Rd] Mf_] RMwW(x,b,d)]

B s ———

Writes are buffered

Total Store Order

Instructions

RA®)] Mf_] RMW(x,b,d)]

T R —— S

Writes are buffered

Total Store Order

Instructions

RA®)] Mf_] RMW(x,b,d)]

T R —— S

Writes are buffered

Total Store Order

Instructions

RA®)] Mf_] RMW(x,b,d)]

T R —— S

Writes are buffered

Total Store Order

Instructions
RA®)] Mf_] RMW(x,b,d)]

Propagated to memory non-deterministically

SR

Total Store Order

Instructions
RA®)] Mf_] RMW(x,b,d)]

Propagated to memory non-deterministically

SR

Instructions

Total Store Order

RMW(x,b,d)]

R S

Reads are either from buffer or memory

In that order!!

Instructions

Total Store Order

RMW(x,b,d)]

Reads are either from buffer or memory

R S

Instructions

Total Store Order

RMW(x,b,d)]

Reads are either from buffer or memory

R S

Instructions

Total Store Order

RMW(x,b,d)]

Reads are either from buffer or memory

R S

Wr(x,d) |

Instructions

Total Store Order

RMW(x,b,d)]

Reads are either from buffer or memory

R S

Instructions -

Total Store Order

RMW(x,b,d)]

Instructions -

Total Store Order

RMW(x,b,d)]

Memory fence ensures buffer is empty

R R S e

Instructions -

Total Store Order

RMW(x,b,d)]

Memory fence ensures buffer is empty

R R S e

Wr(x,d) J

Instructions

Rd(x) |

Total Store Order

wi] |

Memory fence ensures buffer is empty

e n———— e e

Dekker’s Mutual Exclusion

Thread-1 Thread-2
—& X=1 & y=1
Asserty=0 Assert x=0

Critical Section Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-&
x=1 ~—& y=1
@ Asserty =0 Assertx=0

Critical Section Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-2
x=1 ~—& y=1
Asserty =0 Assertx=0

Critical Section Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-2

x=1 y=1

Asserty =0 —a Assertx=0

Critical Section Critical Section

Dekker’s Mutual Exclusion

Thread-1 Thread-2
x=1 y=1
Asserty =0 Assertx=0

B Critical Section B Critical Section

Wr(x,d) J

Instructions

St]

T

Rd(x) |

T R —

Mf |

T —

Partial Store Order

Rmw(x,b,d)|

Partial Store Order

Instructions

Rd(x)| Mf | |Rmw(x,b,d)]

T

Partial Store Order

Instructions

Rd(x)| Mf | |Rmw(x,b,d)]

T —

]

1 wr(x, 1)

Writes are buffered

B e “ecscemstERGnT

Partial Store Order

Instructions

Rd(x)| Mf | |Rmw(x,b,d)]

T —

]

1 wr(x, 1)

Writes are buffered

B e “ecscemstERGnT

Partial Store Order

Instructions

Rd(x)| Mf | |Rmw(x,b,d)]

T —

]

| Wr(z,1)

Writes are buffered

B e “ecscemstERGnT

Partial Store Order

Instructions

Rd(x)| Mf | |Rmw(x,b,d)]

T —

| Wr(z,1)
Propagated to memory non-deterministically

B

Instructions

Partial Store Order

St | IRd®)] [Mf | [Rmw(x,b,d)]

T TS

Propagated to memory non-deterministically

Reorders writes to different variables

D R e e e

Instructions

Partial Store Order

st | Rdx)] Mf | IRmw(x,b,d)

T TS

]

| Wr(z,1)

Propagated to memory non-deterministically

Reorders writes to different variables

e ————tettemmmpmSR

o] —

Instructions

| Wr(z,1)

Mf |

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e ———— NN

o] —

Instructions

| sf

Mf |

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e ———— NN

o] —

Instructions

Mf |

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e ———— NN

o) —

Instructions

Mf |

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e i ——— e A

o) —

Instructions

Mf |

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e i ——— e A

Wr(x,d) J

Partial Store Order

Instructions

T

]
iy s

mom
0 O

Store fence restricts re-ordering between writes

W W

Wr(x,d) J

Instructions

Sl G

T T

]

Mf |

T —

iy s

Y Z

Partial Store Order

Rmw(x,b,d)|

Store fence restricts re-ordering between writes

e ———— NN

Mewory Models

Sequential COMsis’recv eak Consistency

Mewory Models

Sequential COMsis’recv Weak Consistency

Atomic operations

Mewory Models

Sequential consis’recv eak Consistency

Atomic operations Operations can be re-ordered

Mewory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered

+ Simple and intuitive

Mewory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered

+ Simple and intuitive

- EXpensive

Mewory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered

+ Simple and intuitive + Optimised for efficiency

- EXpensive

Mewory Models

Sequential Consistency Weak Consistency
Atomic operations Operations can be re-ordered

+ Simple and intuitive + Optimised for efficiency

- Expensive - Complicated

Mewory Models

.

Sequential COMsis’recv eak Consistency

Atomic operations Operations can be re-ordered

+ Simple and intuitive + Optimised for efficiency

- Expensive - Complicated

Mewory Models

.

Sequential consis’recv eak Consistency

Atomic operations Operations can be re-ordered

+ Simple and intuitive + Optimised for efficiency

- Expensive - Complicated

Extended x86 Explained

Extended x86 Explainecl

Instructions

Wb(x,dﬂ ntw(x,d)] SLI

Rd(x) | Mf | IRmw(x,b,d)]

T —

Extended x86 Explainecl

Instructions

Writes are of type Ntw or Wb

Woixd)] [ntwiod)] SF] PR] IFop]

Rd(x) | Mf | IRmw(x,b,d)]

X Y @ Z

Extended x86 Explainecl

Instructions

Wb(X, t (X,d) | st] Writes are of type Ntw or Wb

Rd(x) | Mf | IRmw(x,b,d)]

Original model has a complicated semantics with more kinds of writes.

R

Extended x86 Explainecl

Instructions

FI(x) |

—

Fo(x) |

Writes are of type Ntw or Wb

Verification under Intel-x86 with Persistency

PAROSH ABDULLA, Uppsala University, Sweden

MOHAMED FAOUZI ATIG, Uppsala University, Sweden

AHMED BOUAJJANI, Université Paris Cité, France

K. NARAYAN KUMAR, Chennai Mathematical Institute and IRL ReLaX, India
PRAKASH SAIVASAN, Institute of Mathematical Sciences, HBNI and IRL ReLaX, India

For reachabillity, the two kinds of writes are sufficient

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Both types of writes are stored in buffer

e

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Both types of writes are stored in buffer

e

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Ntw writes re-order with writes of other variables

e e e ———

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Wb writes do not re-order with each other

SR

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Wb writes do not re-order with each other

SR

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

Wb writes do not re-order with each other

SR

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Woixd)] [ntwiod)] SF] PR] IFop]

FI, Sf disallows any re-orderings

e —————

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Instructions

Wb(x,d)] ntwix,d) | ISf | [FIX) J Fo(x) | Fo(x) cannot re-order with Sf and earlier writes to x

T e ————— A

Rd(x) | Mf | IRmw(x,b,d)]

T —

]

X Y @ Z

Extended x86 Explainecl

Persistent

Fences

Instructions

\, v
: -‘;~_.‘_‘, -

Wb(x,dﬂ ntw(x,d)] SL] I(x) J Fo('

Rd(x) | Mf | IRmw(x,b,d)]

T ——

]

X Y @ Z

PERSISTENCY

Enengy and persidlence conquer all things - Berjamin Franklin

Concurrent Memorg 595tem5 + Persistency

Concurrent Memorg Sgstems + Persistencg

- Memory model

A Ty

[}
|
|
|l
|
|
(1
fi

i,”
| |
| @J | Persistent system
\ ;"
| (X J [J H

Concurrent Memorg 595tem5 + Persistency

Persistency

Concurrent Memorg Sgstems + F’ersistency

Persistency

Writes + Fences

Archives writes, not necessarily in order

Concurrent Memorg Sgstems + Persistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Concurrent Memorg Sgstems + F’ersistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Fences can impose ordering

Concurrent Memorg Sgstems + Persistency

Persistency

Archives writes, not necessarily in order

Re-orders incoming writes

Fences can impose ordering

Useful in case of a crash

Extended x88 Persistent System

EX86 MEMORY MODEL

]

EX86 PERSISTENT SYSTEM

Extended x86 Persistent System

EX86 MEMORY MODEL

Writes + Fences

k
f
4 ¥
) 3
[- 3
b i
Al rmdaste i des it yo o as, e s T Sy PO K 7)0 Bt e ORI A e i R S e S T AN e e yoree e ac Lo s T O M T O L D T P R T e L WO s e e e B 4

Extended x86 Persistent System

EX86 MEMORY MODEL

%
E A
)
)
AP I OIS O e e e i) S e e ¢ 7

EX86 PERSISTENT SYSTEM

Persistent Store

Extended x88 Persistent System

Instructions

Wbx,d)] |ntw(x,d)] IFIX)]

T T—_aiaiieeeeeeeee— A S

EX86 MEMORY MODEL

]

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wbx,d)]| |ntw(x,d)] IFIX)]

EX86 MEMORY MODEL

]

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wbx,d)]| |ntw(x,d)] IFIX)]

EX86 MEMORY MODEL

]

Wb writes are buffered

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wbx,d)]| |ntw(x,d)] IFIX)]

EX86 MEMORY MODEL

]

Wb writes are buffered

EX86 PERSISTENT SYSTEM

(z3) 3 (x2)

Extended x88 Persistent System

Instructions
Wb(x,d)]| Intwix,d)] |FIx) | ISf] [Fo)]

EX86 MEMORY MODEL

]

Propagated non-deterministically
Only per variable ordering

EX86 PERSISTENT SYSTEM

(z3) 3 (x2)

Extended x88 Persistent System

Instructions
Wb(x,d)]| Intwix,d)] |FIx) | ISf] [Fo)]

EX86 MEMORY MODEL

]

Propagated non-deterministically
Only per variable ordering

EX86 PERSISTENT SYSTEM

(z,3) 9 3

Extended x88 Persistent System

Instructions
Wb(x,d)] Intwix,d)] |FIx) | ISf] [For)]

EX86 MEMORY MODEL

]

Propagated non-deterministically
Only per variable ordering

EX86 PERSISTENT SYSTEM

(z,3) 9 3

Extended x88 Persistent System

Instructions
Wb(x,d)] Intwix,d)] |FIx) | ISf] [For)]

EX86 MEMORY MODEL

]

Ntw writes are propagated directly

Ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

(z,3) 2 3

Extended x88 Persistent System

Instructions
Wb(x,d)] Intwix,d)] |FIx) | ISf] [For)]

EX86 MEMORY MODEL

]

Ntw writes are propagated directly

Ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

ntw(z,1)

(z,3) 2 3

Extended x88 Persistent System

Instructions
Wb(x,d)] Intwix,d)] |FIx) | ISf] [For)]

EX86 MEMORY MODEL

]

Ntw writes are propagated directly

Ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

ntw(z,1)

Extended x88 Persistent System

Instructions
Wb(x,d)] Intwix,d)] |FIx) | ISf] [For)]

EX86 MEMORY MODEL

]

Ntw writes are propagated directly

Ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wb(x,d)] Intw(x,d)] [IFIx)]| ISf] [Fo)]

T — T T ——

EX86 MEMORY MODEL

]

Ntw writes are propagated directly

Ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wbx,d)] |ntw(x,d)] IFIX)]

EX86 MEMORY MODEL

]

FI ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wbx,d)] |ntw(x,d)] IFIX)]

EX86 MEMORY MODEL

]

FI ensures no pending writes on the variable

EX86 PERSISTENT SYSTEM

Extended x88 Persistent System

Instructions

Wb(x,d)] Intw(x,d)] IFIx)] Isf] [Fo)]

T T G

EX86 MEMORY MODEL

]

Fo is buffered with thread information

SF ensures no pending Fo of that thread

EX86 PERSISTENT SYSTEM

Foxtl) 2 3 1

Extended x88 Persistent System

Instructions

Wbx,d)] Intwix,d)] I] ISf] IFo)]

EX86 MEMORY MODEL

]

Fo is buffered with thread information

SF ensures no pending Fo of that thread

EX86 PERSISTENT SYSTEM
Ensures prior writes by the

thread are persisted

Foxtl) 2 3 1

VERIFICATION

cmmmmmmm%ommemmmwwxmymmmm

Vc-:ri%i ng, Concurrent Sgstems

\/c-:rhcgi ng, Concurrent Sgstems

Veri{gi ng, Concurrent Sgstems

Correctness

Specification

Verhcgi ng, Concurrent Sgstems

Correctness
Specification

Vc-:rhcgi ng, Concurrent Sgstems

Correctness
Specification

Verhcgi ng, Concurrent Sgstems

Safety Specification

Correctness
Specification

\/c-:rhcgi ng, Concurrent Sgstems

Correctness
Specification

Sequential Consistency PSPACE-Complete
SO Non-primitive recursive

PSO Non-primitive recursive

Veri{gi ng, Concurrent Sgstems

Correctness
Specification

Sequential Consistency ~ PSPACE-Complete

~TS0 Non-primitive recursive- Theory of Well Structured

Transition Systems

~~F Non-primitive recursive~"

Persistent Reachabilitg Problem

Persistent Reachabilitg Problem

; Persistent reachability: Whether programs can
f reach a program location in presence of crashes

——————GEEmERSEEEEEETTT

= . rinal config

Persistent Reachabilitg Problem

Initial CONfig pummmem———
Persistent reachability: Whether programs can

| reach a program location in presence of crashes

‘w

- Crash el

o - Crashﬁ

Persistent memory

Whether a persistent
memory can be reached

O —

= . rinal config

Persistent Reachabilitg Problem

Initial CoNfig puu———————
Persistent reachability: Whether programs can

| reach a program location in presence of crashes

M

Crash free

=~ Persistent memory
reachability

| State reachability without
icrashes

,‘ R M .

S ' Final config

Persistent Reachabilitg Problem

Initial CONfig e

, Persistent reachability: Whether programs can
f reach a program location in presence of crashes

W

'
Crash fr_e.e S Persistent memory
reachability

——% FInal contig

VERIFYING €X86 WITH PERSISTENCY

Al atable procedded we slall predict, all undlable procesded we skall contol - JSotn Von Newmnann,

VERIFYING €X86 WITH PERSISTENCY

Al stable processed we shall predict, all undtable procedded we shatl contol - Jolin Von Newnann,

- Persistent Memory Reachabillity

VERIFYING €X86 WITH PERSISTENCY

Al stable processed we shall predict, all undtable procedded we shatl contol - Jolin Von Newnann,

- Persistent Memory Reachabillity

- Crash Free Reachability

VERIFYING €X86 WITH PERSISTENCY

Al stable processed we shall predict, all undtable procedded we shatl contol - Jolin Von Newnann,

—& - Persistent Memory Reachability

- Crash Free Reachability

VERIFYING €X86 WITH PERSISTENCY

Al stable processed we shall predict, all undtable procedded we shatl contol - Jolin Von Newnann,

—& - Persistent Memory Reachabillity

- Crash Free Reachabmty Verification under Intel-x86 with Persistency

PAROSH ABDULLA, Uppsala University, Sweden

MOHAMED FAOUZI ATIG, Uppsala University, Sweden

AHMED BOUAJJANI, Université Paris Cité, France

K. NARAYAN KUMAR, Chennai Mathematical Institute and IRL ReLaX, India
PRAKASH SAIVASAN, Institute of Mathematical Sciences, HBNI and IRL ReLaX, India

Persistent Memorg Reachabilitg

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

. \Y
A A A ¥V

Crash Free Reach

Persist Reach

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

. \Y
A A A ¥V

Crash Free Reach

Persist Reach

Manager

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

. M
A 888 B Reachability ¥ W s

Crash Free Reach

Persist Reach

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

. \Y
A A A ¥V

Crash Free Reach

Persist Reach

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

y M
A A A ¥V

Crash Free Reach

Persist Reach

Translation employs a guess and verify technique |

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

y M
A A A ¥ W@

Persist Reach Crash Free Reach

Translation employs a guess and verify technique |

Guess the writes that will persist last

S EEEE—_——

Persistent Memorg Reachabilitg

Persistent reachability problem reduces to crash free reachability in a new program

Original program New program

y M
A A A ¥ W@

Persist Reach Crash Free Reach

Translation employs a guess and verify technique |

Ensure that the guessed writes are not overwritten

Persistent Memorg Reachabilitg

Persistent Memorg Reachabilitg

ldea involves the manager speculating
a write that will persist

Persistent Memorg Reachabilitg

Manager cannot observe all writes
e

Persistent Memorg Reachabilitg

Introduce per process memory

Persistent Memorg Reachabilitg

Threads write to their copy

Persistent Memorg Reachabilitg

Manager transfers to the main memory

W

Persistent Memorg Reachabilitg

Needs to ensure update order is maintained

e —————— S

Persistent Memorg Reachabilitg

Needs to ensure update order is maintained

‘w

No more updates during a copy

e

Persistent Memorg Reachabilitg

Reads now are from the copy or the main memory

e ——— B e ——

Persistent Memorg Reachabilitg

Manager non-deterministically
picks a write that will persist

Persistent Memorg Reachabilitg

Manager non-deterministically
picks a write that will persist

Needs'to ensure the value is not
over-written

e R B

Persistent Memorg Reachabilitg

Manager non-deterministically

Needs'to ensuré the value is not
over-written

St ssetsnmestEEE

Frozen write

Spoilers

Spoilers

Frozen write is spolilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

Spoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

X

SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

Frozen write

Spoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

MEW(X,B) | ceeererereeeeeee | wb(x,3) ‘;:

SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

NTW spoiler

SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

SPoilerS

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

MEW(X,B) | ceeererereeeeeee | wb(x,3)

MEW(X,B) | ceeererereeeeeee | wb(x,3) ‘;:

FL(x)

Spoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

FL spoiler

Forced to persist

SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

SPoilers

Frozen write is spoilt by certain bad patterns

Manager tries to avoid these spoilers / bad patterns

There are other spoilers involving Fo, we wont consider them

e —— S

Detectin g Spoi lers

Detectin g Spoi lers

Detectin g SPoi lers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Detectin g SPoi lers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Detectin g SPoi lers

Speculates the position of freeze for each variable

Tracks potential spoilers to report to the manager

Verifies the speculation of the threads

Ensures that the potential spoilers are never seen

Detectin g SPoi lers

Verifies the speculation of the threads

e ———————————ERT

Ensures that the potential spoilers are never seen

S

Detectin g SPoi lers

Verifies the speculation of the threads

e

Ensures that the potential spoilers are never seen

| Persistent memory reachability reduces to crash free reachability

VERIFYING €X86 WITH PERSISTENCY

Al stable phocesses we skall predict, all unslable phocesses we stall contnol - Berjamin Franklin

- Persistent Memory Reachabillity

—& - Crash Free Reachability

What About Crash-free Reachabilitg?

What About Crash-free Reachabilitg?

Crash-free reachability is undecidable

What About Crash-free Reachabilitg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

What About Crash-free Reachabilitg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

assert(y = 0);

1
2
3
4 until n times; :
s | RMW(y,1,0);
6
7
8

Thread 1: Thread 2:

—@ 1 repeat repeat
2 Whb(x, 1); assert(x = 0);
3 Wb(y, 1): RMW(x, 1, 0);

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

until n times;

Thread 1: Thread 2:
1 repeat &1 repeat
2 Whb(x, 1); 2 assert(x = 0);
3 Wh(y, 1); 3 RMW(x, 1, 0);
___a 4 until n times; : assert(y = 0);
5 RMW(y, 1, 0);
6 assert(x = 0);
7
g

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

1
2
3

aSSer t(y = O);
5 RMW(y, 1, 0);
6
7
8

& 4 until n times;

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

Reduction from well known Post Correspondence Problem

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Whb(x, 1); assert(x = 0);
3 Wb(y, 1), RMW(X, 1, 0);

assert(y = 0);

1

2

3

& 4 until n times; | !

—&5 | RMW(y, 1,0);

6

7

3

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Wb(x, 1); assert(x = 0);

3 Wb(y, 1); RMW(x, 1, 0); (v, 1)
(x,1)

assert(y = 0);

1

2

3

& 4 until n times; | !

—&5 | RMW(y, 1,0);

6

7

3

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

S ——

Reduction from well known Post Correspondence Problem

e

Crux of the reduction involves ability to implement alternating bit protocol

Thread 1: Thread 2:

1 repeat repeat

9 Wb(x, 1); assert(x = 0);

3 Wb(y, 1); RMW(x, 1, 0); (v, 1)
(x,1)

assert(y = 0);

1
2
3
& 4 until n times; !
s | RMW(y,1,0);
6
7
8

assert(x = 0);

until n times;

What About Crash-free Reachabi litg?

Crash-free reachability is undecidable

e e G — ——ScwdstmEmmeESEERE—

Reduction from well known Post Correspondence Problem

B ——— e

Crux of the reduction involves ability to implement alternating bit protocol

S

Thread 1: Thread 2:

1 repeat repeat —,—e
2 Whb(x, 1); assert(x = 0); Thread-2 reaches

3 | Wh(y, 1); RMW(x, 1, 0); the end only if it did

assert(y = 0);

1
2
3
& 4 until n times; !
5 RMW(y, 1, 0);
6
7
3

not miss any write

assert(x = 0);

until n times;

..., iU U U, =V VLY

byl DUy Uy U =V VLY

Crash-free reachability |

| e——— e e T

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti e [1,¢] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)
11 j=j-1 11 a:=x

12 X = # 12 Halt

byl DUy Uy U =V VLY

Crash-free reachability |

B e e = ;3: >

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti e [1,¢] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:.=x

12 X = # 12 Halt

byl DUy Uy U =V VLY

Pick an index

Crash-free reachability |

e T gl

Algorithm 1: PCPGen Algorithm 2: PCPVerif

1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b

3 while xdo 3 while (a # #) do

5 S =ntw Ui 5 rmw(y, 0,0)

6 t :=ntw Vi 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x:=1 9 rmw(y, 1,0)

10 y:=1 10 rmw(x, 0, 0)

11 j=j—1 11 a:=x

12 X = # 12 Halt

PCP: U = {I/tl,...uf} V = {VI’ vf}
di...1, : Wi = Ui ..Uy =V; = V..V
Crash-free reachability |

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 4 rmw(x, 1, 0)

5 5 rmw(y, 0,0)

6 6 Letb € X

7 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x =1 9 rmw(y, 1, 0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes

PCP: U = {I/tl,...uf} V = {Vla vf}
di...1, : Wi = Ui ..Uy =V; = V..V
Crash-free reachabil iﬁt , |

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 Leti€ [1,] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb € X

7 7 rmw(s, b, 0)

8 8 rmw(t, b, 0)

9 | x =1 9 rmw(y, 1, 0)
10 Y y:=1 10 rmw(x, 0, 0)
11 ~ J- ~ 11 a=Xx
12 x:=% 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

PCP: U= 1{uy,...u,} V={v,...v,}
di...1, : Wi = Ui ..Uy =V; = V..V
Crash-free reachability |

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t

2 Local Vars i, j, flg :== true 2 Local Vars a, b

3 while x do 3 while (a # #) do

4 Leti€ [1,] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb € X

7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x =1 9 rmw(y, 1, 0)
10 y:=1 10 rmw(x, 0, 0)
11 j=Jj—-1 11 a:=x
12 X = # 2 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

PCP: U = {uy,...u,}

di...0, U U ...

1 12_

B aang et

Crash-free reachability

V — {Vl, ...Vf}

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
4 Leti€ [1,] 4 rmw(x, 1, 0)

5 S =ntw Ui 5 rmw(y, 0,0)

6 I ==niw O 6 Letb e X
7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)
9 x:=1 9 rmw(y, 1,0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

PCP: U = {uy,...u,}

di...0, U U ...

1 12_

Crash-free reachability |

e ————E gt

V — {Vl, ...Vf}

Algorithm 1: PCPGen Algorithm 2: PCPVerif
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (g #£#) do
+ | Letie[1¢] s | /n
5 S =ntw U 5 LY, U
6 I ==niw O 6 Letb e X
7 j = |ui| + |o;l 7 rmw(s, b, 0)

8 while j > 0 do 8 rmw(t, b, 0)

9 x:=1 o | i
10 y =1 10 | \om '
11 j=j—1 11 a:=x
12 X = # 12 Halt

Pick an index

Writes the corresponding words as ntw writes

Encodes the size into the alt-bit protocol

Alt bit ensures no symbol is lost

byl DUy Uy U =V VLY

Pick an index

Crash-free reachability | Writes the corresponding words as ntw writes

B e SettbmmetlT = si 3

Algorithm 1: PCPGen Algorithm 2: PCPVerif Encodes the size into the alt-bit protocol
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
¢ | Letie[1¢] ¢+ | rmw(x,1,0) Alt bit ensures no symbol is lost
5 | S =ntw Ui 5 | rmw(y,0,0)
6 | t:=ntw i 6 th € 37> Verfies that the generated words are same
7| J = w4+ o 7
8 while j > 0 do 8
9 x:=1 9 rmw',w,)
10 y =1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x

12 X = # 12 Halt

byl DUy Uy U =V VLY

Pick an index

Crash-free reachability | Writes the corresponding words as ntw writes

B e e - ;1 5

Algorithm 1: PCPGen Algorithm 2: PCPVerif Encodes the size into the alt-bit protocol
1 Global Vars x, y, s, t 1 Global Vars x, y, s, t
2 Local Vars i, j, flg := true 2 Local Vars a, b
3 while x do 3 while (a # #) do
¢ | Letie|1{] ¢ | rm(x,1,0) Alt bit ensures no symbol is lost
5 S =ntw Ui 5 rmw(y, 0,0)
6 | t:=ntw; 6 | LetbeX Verfies that the generated words are same
7 j = |ui| + |o;l 7 rmw(s, b, 0)
8 while j > 0 do 8 rmw(t, b, 0)
9 x =1 9 rmw(y, 1,0)
10 y:=1 10 rmw(x, 0, 0)
11 j=j—1 11 a:=x

12 X = # 12 Halt

VERIFYING €X86 WITH PERSISTENCY

Al stable phocesses we skall predict, all unslable phocesses we stall contnol - Berjamin Franklin

- Persistent Memory Reachabillity
- Crash Free Reachability

—& - Decidable Fragment

Alternation Bounded Reachabilitg

Alternation Bounded Reachabilitg

| One source of undecidability is unbounded alternations between ntw and wb writes. |

Alternation Bounded Reachabilitg

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.

Alternation Bounded Reachabilitg

K Alternation Bounded: An thread execution is k-
alternation bounded if the thread alternates between
wb and ntw writes at-most k times.

ST

Alternation Bounded Reachabilitg

K Alternation Bounded reachabillity asks if a final config
can be reached by an execution in which every thread
IS k-alternation bounded

Alternation Bounded Reachabilitg

K Alternation Bounded reachabillity asks if a final config
can be reached by an execution in which every thread
IS k-alternation bounded

Initial config N Final config

B e

Decidability

Decidability

.

Decidability

Execution within each block is like TSO or PSO

B e

Decidability

| Decidability by reduction to reachability on PSO system

Decidability

Each alternation block is executed in parallel as a
PSO thread

© i)

Decidability

Each alternation block is executed in parallel as a
PSO thread

|
b
»
|
r

© i)

Decidability

Memory is duplicated as per thread and per phase

Decidability

Memory is duplicated as per thread and per phase

Manager

Decidability

! Manager moves the writes to main memory

Decidability

Manager ensures that the semantics is maintained

e s

Manager

Decidability

Manager ensures that the semantics is maintained

e A

Manager

Wb Wb Ntw(x) Ntw/Wb(x)

Ntw/W Sf

Gbank you

WWW.PHDCOMICS.COM

The Cafeteria Potential Well

Why you end up eating there almost every day.

Gross Effort

Optimal

\ Mediocrity

JORGE CHAM © 2010

Cost

SHOULD WE “’g;% GO CRIED STEAK.
SO i o
k - e

Vending Instant Cafeteria Pack your Off-campus.'
Machine Noodles "Food" lunch Eatery

< Lunch Options >

