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Concurrency makes bug finding harder.
State space explosion (i.e., large number of interleavings):

(… and many more)

Problem: modern hardware means concurrency is everywhere
Þ software is increasingly concurrent
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Concurrency makes bug finding easier.
Concurrent hardware allows us to run many (smaller) 
analysis tasks in parallel:
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Concurrency makes bug finding easier.
Concurrent hardware allows us to run many (smaller) 
analysis tasks in parallel:

How can we partition a task into independent smaller tasks?
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Strategy competition vs. task competition
Strategy competition: run different settings on same task

(first counterexample “wins” and aborts other tasks)

This talk:
Task competition: run same prover (setting) on different tasks
Þ How can we partition a task into independent smaller tasks?

“anticipate the appearance of systems with large numbers of CPU 
cores, but without matching increases in clock speeds… describe a 
model checking strategy that leverages this trend”



Problem decomposition
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Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation
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Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation
Vertical decomposition, i.e. partition of execution traces:
• E.g. testing, path-wise symbolic execution, etc
• Easy for refutation, difficult for verification This talk



Reduced interleaving instances
Our goal:

Our solution:

Split set of interleavings Ik(P) into subsets that can be 
analyzed symbolically and independently.

…

Derive program variants Pϑ that allow context switches 
only in subsets of statements (tiles) s.t. Ik(P) = Uϑ Ik(Pϑ).



Tiling Threads



Tiling threads
Assumption: bounded concurrent programs

• finite #threads, fixed (but arbitrary) schedule
– captures all bounded round-robin computations for given bound

• bugs manifest within very few rounds [Musuvathi, Qadeer, PLDI’07]
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Tiling threads
Assumption: bounded concurrent programs

• finite #stmts
• control can only go forward

– simplifies analysis and tiling
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Tiling threads
Tiles:

• tile: (contiguous) subset of visible statements
– other tile types possible: random subsets, data-flow driven, …

• tiling: partition of program into tiles
• uniform window tiling: all tiles have same size

– number of visible statements
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Tiling threads
Tile selection:

• z-selection: subset of z tiles for each thread
– context switches are only allowed from selected tiles
Þcontext switches can only go into other selected tiles 

(or first thread statement)
• each z-selection specifies a reduced interleaving instance
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Tiling threads
Completeness of selections:

• each interleaving with k context switches can be covered
by a ⌈k/2⌉-selection ϑ ϵ ΘP
– each thread can only switch out at most ⌈k/2⌉ times

Þ set of all ⌈k/2⌉-selections together covers all interleavings
with k context switches: Ik(P) = Uϑ Ik(Pϑ)
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Tiling threads
Completeness of selections:

• number of selections grows exponentially
Þ sampling

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;

stmt1;

stmt2;

...

stmts-1;

stmts;

…



VERISMART
(Verification Smart)

http://users.ecs.soton.ac.uk/gp4/cseq/



VERISMART implements swarm verification
by task competition for multi-threaded C
Target:
• C programs with “rare” concurrency bugs, i.e.,

– “large” number of interleavings
– “few” interleavings lead to a bug

• automatic bug-finding (bounded analysis, not complete)
• reachability

– assertion failure
– out-of-bound array, division-by-zero, …

Approach:
• source-to-source translation to generate instances (for tiling)

– instances are bounded concurrent programs
• use cluster to run Lazy-CSeq over instances [Inverso et al., CAV’14]



VERISMART architecture 

• Inline/unwind module:
– concurrent program ⟶ bounded concurrent program

• Numerical labels module:
– inject numerical labels at each visible statement

• Instrument module:
– instrument the code with guarded commands (yield) that can 

enable/disable context switch points at numerical labels
• Split module:

– generate variants with configuration from tiling and #tiles
– randomize number of generated variants when #variants is large 



Why does this work?
Remember: 

Each Pϑ allows only a (small) subset of P’s interleavings

We assume bugs are rare,
• so for most ϑ, Pϑ does not exhibit the bug…
• … and the analysis will run out of time
• but if Pϑ does exhibit the bug…
• … the analysis will find it quick(er)

Hence,
• overall CPU time consumption goes (way) up…
• … but with enough cores CPU time is free and…
• mean wall clock time to find failure goes down 



Experimental 
Evaluation

on lock-free data structures



eliminationstack

• C implementation of Hendler et al.’s EliminationStack
(lock-free data structure)
[Hendler, Shavit, Yerushalmi, SPAA’04]

• analyzed under SC
• annotated with several assertions to check linearizability

[Bouajjani, Emmi, Enea, Hamza, POPL’15]

• ABA problem: requires 7 threads for exposure

• Lazy-CSeq can find bug in ~13h and 4GB
– #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

• all other tools fail (afaik)



safestack

• small implementation of lock-free stack (<100 loc)
• bug requires context bound of 5



safestack

• small implementation of lock-free stack (<100 loc)
• bug requires context bound of 5
• analyzed for SC, PSO, TSO

• Lazy-CSeq can find bug in ~7h and 6.5GB
– #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

• all other tools fail (afaik)



eliminationstack: Results
• Lazy-CSeq: 46764 sec, 4.2 GB
• CBMC (sequential): 80.8 sec, 0.7 GB

– average over 3000 interleavings, bug not found
fastest instances
very fast – 1000x

average still very 
fast – 40x

some slowdown for 
larger tile sizes – 10x

reduced memory 
consumption – 4x

high fraction of bug-
exposing instances



eliminationstack:
Expected bug finding time

bug found with 
99% probability,
5 cores, < 500sec

100x speed-up!



safestack (SC): Results
• Lazy-CSeq: 24139 sec, 6.6 GB
• CBMC (sequential): 55.4 sec, 0.7 GB

– average over 3000 interleavings, bug not found

Þ similar picture, but less advantage for VERISMART 

lower fraction of bug-
exposing instances 
than eliminationstack

…but boosted with 
larger tile sizes



safestack (SC): 
Expected bug finding time

bug found with 95% 
probability,
~32 cores, ~1300sec

smaller tiles
take longer

25x speed-up!



safestack (PSO): 
Expected bug finding time

get some speed-up (2x), even 
though average time per instance 
is higher than full analysis time

PSO easier than SC



Conclusions
• first task-competitive swarm verification approach
• exploits availability of many cores to reduce mean wall clock 

time to find failure
– allows us to handle very hard problems
– high speed-ups already for 5-50 cores

• reduced interleaving instances boost bug-finding capabilities

Future Work
• other backends (testing)
• other tiling styles
• fast over-approximations to filter out safe instances


