Parallel Bug-finding in
Concurrent Programs via
Reduced Interleaving Instances’

Truc L. Nguyen', Peter Schrammel?,
Salvatore La Torre#, Gennaro Parlato! Bernd Fischer?

1 University of Southampton, United Kingdom
2 University of Sussex, United Kingdom
3 Stellenbosch University, South Africa
4 Universita degli Studi di Salerno, ltaly

* published at ASE’17

UNIVERSITY OF lB g iﬂ“ q
Southampton &
UNIVERSITY UNIVERSITA DEGLI STUDI

OF SUSSEX DI SALERNO

https://dl.acm.org/doi/abs/10.5555/3155562.3155656

Concurrency makes bug finding harder. llS

OF SUSSEX

State space explosion (i.e., large number of interleavings):

(... and many more)

Problem: modern hardware means concurrency is everywhere
— software is increasingly concurrent

Concurrency makes bug finding easier. us

UNIVERSITY
OF SUSSEX

Concurrent hardware allows us to run many (smaller)
analysis tasks in parallel:

[SMALLER] [SMALLER]
(\ TASK L TASK
SMALLER 1
ANTAALgfls > [vl] [TASK
SMALLER S%\LSLE R
g J

Concurrency makes bug finding easier. 119

OF SUSSEX

Concurrent hardware allows us to run many (smaller)
analysis tasks in parallel:

How can we partition a task into independent smaller tasks?

Strategy competition vs. task competition us

UNIVERSITY
OF SUSSEX

Strategy competition: run different settings on same task
(first counterexample “wins” and aborts other tasks)

Swarm Verification Techniques

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce

“anticipate the appearance of systems with large numbers of CPU

Abs

ne{ cores, but without matching increases in clock speeds... describe a
»"|_model checking strategy that leverages this trend”

systems. For the near-term futlre, Wetemm=rerpate the appearance of systems with large numbers of CPU cores, but without

matching increases in clockspeeds. We will describe a model checking strategy that can allow us to leverage this trend, and
that allows us to tackle significantly larger problem sizes than before.

Index Terms—software engineering tools and techniques, logic model checking, distributed algorithms, software verification.

*

This talk:

Task competition: run same prover (setting) on different tasks
— How can we partition a task into independent smaller tasks?

Problem decomposition

Problem

decomposition

Problem

Problem

US

UNIVERSITY
OF SUSSEX

Compositional Safety Refutation Techniques

Kumar Madhukar!:?, Peter Schrammel?, and Mandayam Srivas®

1 TCS Research, Pune, India
% University of Sussex, School of Engineering and Informatics, Brighton, UK

3 Chennai Mathematical Institute, Chennai, India

Abstract. One of the most successful techniques for refuting safety
properties is to find counterexamples by bounded model checking. How-
ever, for large programs, bounded model checking instances often exceed
the limits of resources available. Generating such counterexamples in a
modular way could speed up refutation, but it is challenging because of
the inherently non-compositional nature of these counterexamples. We

Abawd funvn dhn i macn AL L A A fade.

Result

Result

composition

cenwiflnindtline cmaunlhlacd favd cvwnnnwd A Adb A

Result

Problem decomposition UG

OF SUSSEX

Compositional Safety Refutation Techniques

[:“:: Kumar Madhukar!:?, Peter Schrammel?, and Mandayam Srivas®
1 TCS Research, Pune, India

2 University of Sussex, School of Engineering and Informatics, Brighton, UK

‘ \ 3 Chennai Mathematical Institute, Chennai, India

Problem M Result

Problem [> Result

Horizontal/hierarchical decomposition, i.e. component-wise:
* E.g. Rely-guarantee, etc
« Easy for verification, difficult for refutation

Problem decomposition UG

OF SUSSEX

,) \ Compositional Safety Refutation Techniques

Kumar Madhukar!:?, Peter Schrammel?, and Mandayam Srivas®
1 TCS Research, Pune, India
/ 2 University of Sussex, School of Engineering and Informatics, Brighton, UK
[\\ 3 Chennai Mathematical Institute, Chennai, India

——
——

w

<

Problem [> Result

Horizontal/hierarchical decomposition, i.e. component-wise:
* E.g. Rely-guarantee, etc
« Easy for verification, difficult for refutation

Problem decomposition UG

OF SUSSEX
‘ Compositional Safety Refutation Techniques

Kumar Madhukar!:?, Peter Schrammel?, and Mandayam Srivas®

1 TCS Research, Pune, India
2 University of Sussex, School of Engineering and Informatics, Brighton, UK
3 Chennai Mathematical Institute, Chennai, India

v Problem > Result

Problem M Result

Horizontal/hierarchical decomposition, i.e. component-wise:
* E.g. Rely-guarantee, etc

« Easy for verification, difficult for refutation

Vertical decomposition, i.e. partition of execution traces:

« E.g. testing, path-wise symbolic execution, etc

« Easy for refutation, difficult for verification

Problem decomposition UG

OF SUSSEX
‘ Compositional Safety Refutation Techniques

Kumar Madhukar!:?, Peter Schrammel?, and Mandayam Srivas®

1 TCS Research, Pune, India
2 University of Sussex, School of Engineering and Informatics, Brighton, UK
3 Chennai Mathematical Institute, Chennai, India

v Problem > Result

Problem M Result

Horizontal/hierarchical decomposition, i.e. component-wise:

* E.g. Rely-guarantee, etc

« Easy for verification, difficult for refutation

Vertical decomposition, i.e. partition of execution traces:

« E.g. testing, path-wise symbolic execution, etc

- Easy for refutation, difficult for verification 4= This talk

Reduced interleaving instances 119

OF SUSSEX

Our goal:
(-

Split set of interleavings J,(P) into subsets that can be
analyzed symbolically and independently.

Our solution:

Derive program variants P, that allow context switches
only in subsets of statements (tiles) s.t. I,(P) = Uy I, (Py).

IIIIIIIIII
SSSSSSSS

Tiling Threads

Tiling threads uw

OF SUSSEX

Assumption: bounded concurrent programs

._>C___\ ;C___ELW’C___\.qC___\.D
C_ o N round2 ol _ N -
C_. _____ > _____ round 3 > _____ _> ______)

main()
To T1 TN-1 T
C____ ol- - — - round k - — — — - - - -
_ Y, _ Y, _ Y, _ Y,

« finite #threads, fixed (but arbitrary) schedule
— captures all bounded round-robin computations for given bound

* bugs manifest within very few rounds [Musuvathi, Qadeer, PLDI'07]

Tiling threads uw

OF SUSSEX

Assumption: bounded concurrent programs

() () () ()
TO T1 TN-1 TN
stmt;; stmt;; stmt;; stmt;;
stmt,; stmt,; - stmt,; stmt,;
stmtg_q17 stmty_q1; stmt -1~ stmt,_17
stmty; stmty; stmty; stmty;
. J . J . J . J

e finite #stmts

 control can only go forward
— simplifies analysis and tiling

Tiling threads uw

OF SUSSEX

Tiles:

() () () ()
TO T1 TN-1 TN
stmt;; stmt;; stmt;; stmt;;
stmt,; stmt,; - Stmty; stmt,;
stmtg_q17 stmty_q1; stmt -1~ stmt,_17
stmty; stmty; stmty; stmty;
. J . J . J . J

« tile: (contiguous) subset of visible statements

— other tile types possible: random subsets, data-flow driven, ...
« tiling: partition of program into tiles
« uniform window tiling: all tiles have same size

— number of visible statements

Tiling threads uw

OF SUSSEX

Tile selection:
f-l-o\ (T1\ fTN-1\ fTN\

stmt;; stmt;; stmt;; ‘/

stmt,; V/ stmty,; - stmty,; ‘ stmt,;
v —

- 4 - - x| ... |

* q ’ \ d

stmtg_q17 } stmte_q; StEtu—l; stmt,_1; | A

stmtg; stmty; stmty; stmty;

\ J . J \. y, . J

stmty;

» z-selection: subset of z tiles for each thread
— context switches are only allowed from selected tiles

— context switches can only go into other selected tiles
(or first thread statement)

« each z-selection specifies a reduced interleaving instance

Tiling threads uw

OF SUSSEX

Completeness of selections:

[)) [) [)
TO (T1 TN-1 TN
stmt;; stmt;; stmt;; ‘/ stmt;;
stmty; \‘ stmty; / STmMTy; ‘ stmty;

v ————

stmtg_ 17 } ‘ StEtu_l; \ stmt,_;; }

stmtg; stmty; stmty; stmty;
\ J . J \ J . J

« each interleaving with k context switches can be covered
by a [k/2]-selection ¥ € Op

— each thread can only switch out at most [k/2] times

— set of all [k/2]-selections together covers all interleavings
with k context switches: J,(P) = Uy I,(Ps)

Tiling threads uw

OF SUSSEX

Completeness of selections:
rTON (.n\ (T SR

stmt;; stmt;; stmt;; ‘/

stmt,; V/ stmty,; - stmty,; ‘ stmt,;
v —

- 4 - - x| ... |

* q ’ \ d

stmtg_q17 } stmte_q; StEtu-li stmt,_1; | A

stmtg; stmty; stmty; stmty;

\ J . J \. y, . J

stmty;

* number of selections grows exponentially
= sampling

IIIIIIIIII
SSSSSSSS

VERISMART
(Verification Smart)

http://users.ecs.soton.ac.uk/gp4/cseq/

VERISMART implements swarm verification US

UNIVERSITY

by task competition for multi-threaded C "™

Target:

« C programs with “rare” concurrency bugs, i.e.,

— “large” number of interleavings

— “few” interleavings lead to a bug
« automatic bug-finding (bounded analysis, not complete)
* reachability

— assertion failure

— out-of-bound array, division-by-zero, ...

Approach:

« source-to-source translation to generate instances (for tiling)
— instances are bounded concurrent programs

 use cluster to run Lazy-CSeq over instances [Inverso et al., CAV'14]

VERISMART architecture US

UNIVERSITY
OF SUSSEX

Instance generator Verification cluster
c e o T e e B ' |No bug
[: Inst 1 >: Analyzer 1
I . .
—L>Program Inhn.e/ —> Numerical —» Instrument s Split : : l : :
[unwind labels 1 »: :
I I >
| / V\:InSt L Analyzer n | Bug
) I lo-—————-—--—---

Inline/unwind module:
— concurrent program — bounded concurrent program

Numerical labels module:
— inject numerical labels at each visible statement

Instrument module:

— instrument the code with guarded commands (yield) that can
enable/disable context switch points at numerical labels

Split module:

— generate variants with configuration from tiling and #tiles

— randomize number of generated variants when #variants is large

Why does this work? US

UNIVERSITY
OF SUSSEX

Remember:
Each P, allows only a (small) subset of P’s interleavings

We assume bugs are rare,

« so for most 9, Py does not exhibit the bug...
e ... and the analysis will run out of time

« but if Py does exhibit the bug...

« ... the analysis will find it quick(er)

Hence,

« overall CPU time consumption goes (way) up...
* ... but with enough cores CPU time is free and...
« mean wall clock time to find failure goes down

IIIIIIIIII
SSSSSSSS

Experimental

Evaluation
on lock-free data structures

eliminationstack 119

OF SUSSEX

« C implementation of Hendler et al.’s EliminationStack

(lock-free data structure)
[Hendler, Shavit, Yerushalmi, SPAA’04]

« analyzed under SC

« annotated with several assertions to check linearizability
[Bouajjani, Emmi, Enea, Hamza, POPL’15]

« ABA problem: requires 7 threads for exposure

« Lazy-CSeq can find bug in ~13h and 4GB
— #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

« all other tools fail (afaik)

safestack US

UNIVERSITY
OF SUSSEX

« small implementation of lock-free stack (<100 loc)
* bug requires context bound of 5

< C' @& https://social.msdn.microsoft.com/Forums/en-US/91¢1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-swit... ¢ | () 8

& Microsoft Developer Network Signin MSDN subscriptions Get tools

Downloads + Programs v Community v Documentation ol

Ask a question Search related threads

Quick access

Asked by: Bug with a context switch bound 5 &

Archived Forums C-D > CHESS - Find and Reproduce Concurrency Heisenbugs

Points General discussion
Hi guys,
Dmitry Vyukov Joined Sep 2007 A This may be of interest to you. Here and in research papers you postulate that most bugs can be
oined Sep

found with just a few context switches. Here is a nice counter-example with the most large
7 Dmitry Vyukov'. 0 context bound I ever saw. The code is very simple, it's no more than a try to avoid ABA in a trivial
Sk Show activity |Sn|gtr(1) lock-free stack (the code was actually posted in a discussion forum by a guy who seems was ready
vote to put it into production). The bug can be detected with at least 3 threads and a context switch
bound of 5 (!) Did you ever see such a bug? Can you spot it? ;)
Context and Context bound | think it's of interest at least as a reference example. AFAIR, the most context bound you reported

objects in papers is 3.

Top related threads

context switch
Here is original source:

(Cnntavt cwitrh

SafeStaCk UNIVERSITY

OF SUSSEX

« small implementation of lock-free stack (<100 loc)

* bug requires context bound of 5
e analyzed for SC, PSO, TSO

« Lazy-CSeq can find bug in ~7h and 6.5GB
— #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

« all other tools fail (afaik)

eliminationstack: Results

« Lazy-CSeq: 46764 sec, 4.2 GB

« CBMC (sequential): 80.8 sec, 0.7 GB
— average over 3000 interleavings, bug not found

fastest instances L
Z1: tile shvSlY fa,St — 1000x

RISMART: 2 til¢

()
reduced memory
consumption — 4x

US

UNIVERSITY
OF SUSSEX

2: tile size 14, (N2 ,, size 18, t_max 3hrs
Verification Tim Memory Verification Time Meiory Verification Time Memory
Min 34.9 945.2 Min 39.7 979.84 Min 37.1 999.8
Max 4753.6 1199.1 Max 7195.2 1281.3 Max 10762.0 1785.5
Average 1116.3 1017.8 Average 2169.5 1096.3 Average 3162.41 1156.91

instances with-Qug: 38.33%

instances with bug: 61.38%

instangeaith bug: 69.01%

[average still very
fast — 40x

igh fraction of bug-

[h_/\

exposing instances

some slowdown for]

] larger tile sizes — 10x

eliminationstack: us
Expected bug finding time

OF SUSSEX

eliminationstack-SC (unwind=1, rounds=2, thread=8, visible point=52)

3,000 — Tile size 12
— Tile size 18
—e— Minimum time

2,500 | -
All schedules:
Time: 46764s
Memory: 4203.9MB
2.000 |- -
100 d-up!
- x speed-up! |

bug found with
99% probability, .
5 cores, < 500sec

1,000 ¢

Expected bug-finding time (second)

1 400 800 1,200 1,600 2,000

Number of cores

safestack (SC): Results

« Lazy-CSeq: 24139 sec, 6.6 GB

« CBMC (sequential): 55.4 sec, 0.7 GB
— average over 3000 interleavings, bug not found

US

UNIVERSITY
OF SUSSEX

VERISMART: 4 tiles per thread

#1: tile size 11, t_max lhr

#2: tile size 14, t_max lhr

#3: tile size 20, t_max 4hrs

Verification Time Memory Verification Time Memory Verification Time Memory
Min 195.6 774.5 Min 574.8 846.6 Min 313.0 850.3
Max 2662.6 1265.7 Max 3521.8 1450.4 Max 10315.8 3830.8
Average 2.2 928.8 Average 1851.1 1147.3 Average 2167.5 1230.1

instances with bug: 1.26%

instances with bug: 2.14%

instances with bug: 10.20%

= similar picture, but less advantage for VERISMART

N

lower fraction of bug-
exposing instances
than eliminationstack

N

...but boosted with
larger tile sizes

safestack (SC): 119

Expected bug finding time

safestack-SC (unwind=3, rounds=4, thread=4, visible point=152)

I T T
— Tile size 11
—— Tile size 20 =

bug fOund W|th 95% —e— Minimum time

robabilit
p y’ All schedules:

~32 cores, ~1300sec Time: 24139s
Memory: 6632.4MB

2,000 |

25X speed-up! %

1,000

Expected bug-finding time (second)

(1135, 409)

L 2

smaller tiles
take longer |

| | | |
1 400 300 1,200 1,600 2,000

Number of cores

safestack (PSO): 119
Expected bug finding time

OF SUSSEX

safestack-PSO (unwind=3, rounds=3, thread=4, visible point=152)

— Tile size 12

size 20
5,000 [PSO easier than sc_]w

S dules:
Time: 4777s
Memory: 3708.4MB

4,000

get some speed-up (2x), even
though average time per instance

is higher than full analysis time
2,000 - -

3,000

Expected bug-finding time (second)

1,000

| |
| 400 800 1,200 1,600 2,000

Number of cores

Conclusions UG

OF SUSSEX

* first task-competitive swarm verification approach

« exploits availability of many cores to reduce mean wall clock
time to find failure

— allows us to handle very hard problems
— high speed-ups already for 5-50 cores

* reduced interleaving instances boost bug-finding capabilities

Future Work

« other backends (testing)
 other tiling styles
 fast over-approximations to filter out safe instances

