
Truc L. Nguyen1, Peter Schrammel2,
Salvatore La Torre4, Gennaro Parlato1 Bernd Fischer3

1 University of Southampton, United Kingdom
2 University of Sussex, United Kingdom
3 Stellenbosch University, South Africa
4 Universita degli Studi di Salerno, Italy

* published at ASE’17

Parallel Bug-finding in
Concurrent Programs via 

Reduced Interleaving Instances*

https://dl.acm.org/doi/abs/10.5555/3155562.3155656


Concurrency makes bug finding harder.
State space explosion (i.e., large number of interleavings):

(… and many more)

Problem: modern hardware means concurrency is everywhere
Þ software is increasingly concurrent

x = *;

y = 0;

if(x != y)

x = x-y;

x = x + 1;

z = x * y; 

y = *;

x = 0;

if(x != y)

y = y-x;

y = y + 1;

z = x * y; 



Concurrency makes bug finding easier.
Concurrent hardware allows us to run many (smaller) 
analysis tasks in parallel:

ANALYSIS 
TASK

SMALLER
TASK

SMALLER
TASK

SMALLER
TASK

SMALLER
TASK

SMALLER
TASK

SMALLER
TASK



Concurrency makes bug finding easier.
Concurrent hardware allows us to run many (smaller) 
analysis tasks in parallel:

How can we partition a task into independent smaller tasks?

???

??? ???

???

??? ???



Strategy competition vs. task competition
Strategy competition: run different settings on same task

(first counterexample “wins” and aborts other tasks)

This talk:
Task competition: run same prover (setting) on different tasks
Þ How can we partition a task into independent smaller tasks?

“anticipate the appearance of systems with large numbers of CPU 
cores, but without matching increases in clock speeds… describe a 
model checking strategy that leverages this trend”



Problem decomposition

Problem decomposition

Problem

Problem

algorithm

algorithm

Result

Result

composition Result… … …



Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation



Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation



Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation
Vertical decomposition, i.e. partition of execution traces:
• E.g. testing, path-wise symbolic execution, etc
• Easy for refutation, difficult for verification



Problem decomposition

Horizontal/hierarchical decomposition, i.e. component-wise:
• E.g. Rely-guarantee, etc
• Easy for verification, difficult for refutation
Vertical decomposition, i.e. partition of execution traces:
• E.g. testing, path-wise symbolic execution, etc
• Easy for refutation, difficult for verification This talk



Reduced interleaving instances
Our goal:

Our solution:

Split set of interleavings Ik(P) into subsets that can be 
analyzed symbolically and independently.

…

Derive program variants Pϑ that allow context switches 
only in subsets of statements (tiles) s.t. Ik(P) = Uϑ Ik(Pϑ).



Tiling Threads



Tiling threads
Assumption: bounded concurrent programs

• finite #threads, fixed (but arbitrary) schedule
– captures all bounded round-robin computations for given bound

• bugs manifest within very few rounds [Musuvathi, Qadeer, PLDI’07]

main()
T0 

TNTN-1T1

…

round 1

round 2

round k

round 3



Tiling threads
Assumption: bounded concurrent programs

• finite #stmts
• control can only go forward

– simplifies analysis and tiling

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmts-1;

stmts;

stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;



Tiling threads
Tiles:

• tile: (contiguous) subset of visible statements
– other tile types possible: random subsets, data-flow driven, …

• tiling: partition of program into tiles
• uniform window tiling: all tiles have same size

– number of visible statements

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;

stmt1;

stmt2;

...

stmts-1;

stmts;



Tiling threads
Tile selection:

• z-selection: subset of z tiles for each thread
– context switches are only allowed from selected tiles
Þcontext switches can only go into other selected tiles 

(or first thread statement)
• each z-selection specifies a reduced interleaving instance

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;

stmt1;

stmt2;

...

stmts-1;

stmts;

…



Tiling threads
Completeness of selections:

• each interleaving with k context switches can be covered
by a ⌈k/2⌉-selection ϑ ϵ ΘP
– each thread can only switch out at most ⌈k/2⌉ times

Þ set of all ⌈k/2⌉-selections together covers all interleavings
with k context switches: Ik(P) = Uϑ Ik(Pϑ)

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;

stmt1;

stmt2;

...

stmts-1;

stmts;

…



Tiling threads
Completeness of selections:

• number of selections grows exponentially
Þ sampling

T0 TNTN-1T1

…stmt1;

stmt2;

...

stmtt-1;

stmtt;

stmt1;

stmt2;

...

stmtu-1;

stmtu;

stmt1;

stmt2;

...

stmtv-1;

stmtv;

stmt1;

stmt2;

...

stmts-1;

stmts;

…



VERISMART
(Verification Smart)

http://users.ecs.soton.ac.uk/gp4/cseq/



VERISMART implements swarm verification
by task competition for multi-threaded C
Target:
• C programs with “rare” concurrency bugs, i.e.,

– “large” number of interleavings
– “few” interleavings lead to a bug

• automatic bug-finding (bounded analysis, not complete)
• reachability

– assertion failure
– out-of-bound array, division-by-zero, …

Approach:
• source-to-source translation to generate instances (for tiling)

– instances are bounded concurrent programs
• use cluster to run Lazy-CSeq over instances [Inverso et al., CAV’14]



VERISMART architecture 

• Inline/unwind module:
– concurrent program ⟶ bounded concurrent program

• Numerical labels module:
– inject numerical labels at each visible statement

• Instrument module:
– instrument the code with guarded commands (yield) that can 

enable/disable context switch points at numerical labels
• Split module:

– generate variants with configuration from tiling and #tiles
– randomize number of generated variants when #variants is large 



Why does this work?
Remember: 

Each Pϑ allows only a (small) subset of P’s interleavings

We assume bugs are rare,
• so for most ϑ, Pϑ does not exhibit the bug…
• … and the analysis will run out of time
• but if Pϑ does exhibit the bug…
• … the analysis will find it quick(er)

Hence,
• overall CPU time consumption goes (way) up…
• … but with enough cores CPU time is free and…
• mean wall clock time to find failure goes down 



Experimental 
Evaluation

on lock-free data structures



eliminationstack

• C implementation of Hendler et al.’s EliminationStack
(lock-free data structure)
[Hendler, Shavit, Yerushalmi, SPAA’04]

• analyzed under SC
• annotated with several assertions to check linearizability

[Bouajjani, Emmi, Enea, Hamza, POPL’15]

• ABA problem: requires 7 threads for exposure

• Lazy-CSeq can find bug in ~13h and 4GB
– #unwind=1, #rounds=2, #threads=8, size=52 visible stmts

• all other tools fail (afaik)



safestack

• small implementation of lock-free stack (<100 loc)
• bug requires context bound of 5



safestack

• small implementation of lock-free stack (<100 loc)
• bug requires context bound of 5
• analyzed for SC, PSO, TSO

• Lazy-CSeq can find bug in ~7h and 6.5GB
– #unwind=3, #rounds=4, #threads=4, size=152 visible stmts

• all other tools fail (afaik)



eliminationstack: Results
• Lazy-CSeq: 46764 sec, 4.2 GB
• CBMC (sequential): 80.8 sec, 0.7 GB

– average over 3000 interleavings, bug not found
fastest instances
very fast – 1000x

average still very 
fast – 40x

some slowdown for 
larger tile sizes – 10x

reduced memory 
consumption – 4x

high fraction of bug-
exposing instances



eliminationstack:
Expected bug finding time

bug found with 
99% probability,
5 cores, < 500sec

100x speed-up!



safestack (SC): Results
• Lazy-CSeq: 24139 sec, 6.6 GB
• CBMC (sequential): 55.4 sec, 0.7 GB

– average over 3000 interleavings, bug not found

Þ similar picture, but less advantage for VERISMART 

lower fraction of bug-
exposing instances 
than eliminationstack

…but boosted with 
larger tile sizes



safestack (SC): 
Expected bug finding time

bug found with 95% 
probability,
~32 cores, ~1300sec

smaller tiles
take longer

25x speed-up!



safestack (PSO): 
Expected bug finding time

get some speed-up (2x), even 
though average time per instance 
is higher than full analysis time

PSO easier than SC



Conclusions
• first task-competitive swarm verification approach
• exploits availability of many cores to reduce mean wall clock 

time to find failure
– allows us to handle very hard problems
– high speed-ups already for 5-50 cores

• reduced interleaving instances boost bug-finding capabilities

Future Work
• other backends (testing)
• other tiling styles
• fast over-approximations to filter out safe instances


