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Temporal Logic of Actions+

TLA+ is a specification language to
model and verify reactive systems.

Figure: Leslie Lamport
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Key observations ; TLA (note the absent +)

▶ Linear Temporal Logic [Pnueli, 1977]
▶ Convenient to reason about & express fairness and liveness of reactive systems
▶ Less practical to axiomatically specify the actual system

▶ Instead use programming language to spec system?
▶ In TLA, we model in the logic (with temporal part pushed aside)

▶ => Extend and restrict LTL
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TLA: Temporal Logic Actions

▶ Recall LTL only has state formulas
▶ TLA [Lamport, 1994] expressions state, action, or temporal formulae

▶ Interpreted over a state, pair of states, or sequence of states (behaviors)
▶ TLA only two1 temporal operators (let P be a state- and A an action-predicate):

▶ □P: P holds in every step/state of a behavior B
▶ ♢P: P holds in at least one step of B
▶ ♢□P: P holds in the (infinite) suffix of B
▶ □♢P: P holds repeatedly in B

▶ □ [A]v : The system only ever takes A steps
▶ ♢ [A]v : A is true of one or more steps of a B
▶ ♢□ [A]v : B’s suffix only A steps
▶ □♢ [A]v : Repeatedly A steps

1∼ □ ∼ P ⇐⇒ ♢P
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TLA: Specs
MODULE HourClock

VARIABLE hr
Init

∆
= hr = . . . Defines initial states

Next
∆
= hr ′ = Constrains the next state

Spec
∆
= Init ∧2[Next]hr ∧ F Defines behaviors
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TLA: Specs
MODULE HourClock

VARIABLE hr
. . .
Spec

∆
= Init ∧2[Next]hr ∧ F

Safety
∆
= 2(hr ∈ . . . )

Liveness
∆
= 23(hr = 12)

THEOREM Spec =⇒ Safety
⟨1⟩1. Init =⇒ IInv
⟨1⟩2. IInv ∧ [Next]hr =⇒ IInv ′

⟨1⟩3. IInv =⇒ Safety
⟨1⟩4. QED

THEOREM Spec =⇒ Liveness
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TLA: Refinement

MODULE MinuteClock
VARIABLE hr , min
Init

∆
= hr = . . . ∧min = . . .

Next
∆
= hr ′ = . . . ∧min′ = . . .

Spec
∆
= Init ∧2[Next]⟨hr ,min⟩ ∧ G
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TLA: Refinement

MODULE MinuteClock
VARIABLE hr , min
Init

∆
= hr = . . . ∧min = . . .

Next
∆
= hr ′ = . . . ∧min′ = . . .

Spec
∆
= Init ∧2[Next]⟨hr ,min⟩ ∧ G

THEOREM Spec =⇒ HR !Spec
⟨1⟩1. Init =⇒ HR ! Init
⟨1⟩2. Inv ∧ [Next]⟨...⟩ =⇒ [HR !Next](HR !hr)
⟨1⟩3.2Inv ∧2[Next]⟨...⟩ ∧ G =⇒ F
⟨1⟩4. QED

▶ Implementation is (logical) implication
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TLA: Invariance under stuttering

▶ Invariance of TF under stuttering
▶ σHC = ⟨s0, s1, s1, s1, s1, s1, s2, s3, s4, . . .⟩
▶ τMC = ⟨s0, s11 , s12 , s13 , s14 , s2, s3, s4, . . .⟩

▶ Restrictions to be invariant
▶ No (LTL) next operator
▶ □A with A an action is not well-formed: □ [A]v

▶ [A]v ⇐⇒ A ∨ v = v ′

▶ ⟨A⟩v ⇐⇒ A ∧ v ̸= v ′ 2

2Is □ ⟨A⟩v a valid formula?
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TLA+

▶ Untyped3: Zermelo–Fraenkel set theory with choice
▶ LET/IN, CASE, ITE, Recursion, Modules

MODULE MinuteClock
EXTENDS FiniteSets, Sequences
CONSTANT N

VARIABLE hr , min
Init

∆
= hr ∈ (1 . . N) ∧min ∈ (0 . . 59)

Tick
∆
= min = 59 ∧min′ = 0 ∧ IF hr ̸= N THEN hr + 1 ELSE 1

Tock
∆
= min < 59 ∧min′ = min + 1 ∧ UNCHANGED hr

Spec
∆
= Init ∧2[Tick ∨ Tock]⟨hr ,min⟩ ∧ G

3Types are useful with programming languages.
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PlusCal Algorithm Language
▶ PlusCal embeds and transpiles to, but less expressive than TLA+ [Lamport, 2009]

--algorithm BlockingQueue{
variable buffer = ⟨⟩ ; waitset = {} ;
notify

∆
= ∃w ∈ waitSet : waitSet ′ = waitSet \ {w}

wait(t)
∆
= waitSet ′ = waitSet ∪ {t}

process (p ∈ P){
put : while (TRUE){

if (isFull){
wait(self ) ;
}else {
notify() ;
buffer := Append(buffer , self ) ;

lbl : skip ;
} ;

} ;
}
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TLA Proof System

TLA+

Toolbox

(IDE)

TLA+Proof System

Proof Manager

interpret proofs
compute proof obligations

coalesce modal /
first-order expressions

call backend provers
to attempt proof

certify proof
(optional)

SMT solvers Zenon Isabelle/TLA+ PTL (ls4)

Figure: Architecture of TLAPS [from Merz, 2019]

▶ [Chaudhuri et al., 2008, 2010, Cousineau et al., 2012]
▶ https://github.com/tlaplus/tlapm

https://github.com/tlaplus/tlapm
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Apalache

▶ Symbolic model checker (z34) for TLA+ [Konnov et al., 2015]
▶ Handles a subclass of TLA+ that is useful in practice

▶ No Hiding (\EE & \AA), Composition, ...
▶ No Recursion (but folds)
▶ Requires types
▶ No Liveness checking

▶ https://youtu.be/K777MY4Xugs based on Biere et al. [2002]

▶ Safety checking is bounded model checking
▶ https://github.com/informalsystems/apalache/

4[de Moura and Bjørner, 2008]

https://youtu.be/K777MY4Xugs
https://github.com/informalsystems/apalache/
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TLC

▶ Explicit-state model checker for TLA+ [Yu et al., 1999]
▶ Handles (defined) a subclass of TLA+ that is useful in practice

▶ No Hiding (\EE & \AA), Composition, ...

▶ Safety checking corresponds to Breadth-First search over on-the-fly generated
state graph

▶ Liveness checking corresponds to search for SCCs over behavior graph5

▶ https://github.com/tlaplus/tlaplus

5[Manna and Pnueli, 1995]

https://github.com/tlaplus/tlaplus
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Applications of TLA+
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Cleaner Architecture

Verhulst [2011], Head OpenComRTOS development
group:

“The [TLA+] abstraction helped a lot in
coming to a much cleaner architecture (we wit-
nessed first hand the brain washing done by years
of C programming). One of the results was that
the code size is about 5-10x less than [in the
previous version]”
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Amazon AWS

▶ DynamoDB: scalable high-performance "no SQL" data store with cross datacenter
replication and strong consistency guarantees

▶ First informal proofs and excessive (fault-injecting) testing

▶ TLC6 found subtle bug: shortest error trace 35 steps
▶ “Using TLA+ in place of traditional proof writing would thus likely have improved

time to market, in addition to achieving greater confidence in the system’s
correctness.” [Newcombe, 2014, Newcombe et al., 2015]

▶ Fast forward to 2022: “The core replication protocol was specified using TLA+.
When new features that affect the replication protocol are added, they are
incorporated into the specification and model checked.” [Elhemali et al., 2022]

6Distributed TLC: 10 nodes with 80+ cores and 230GB RAM.
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High-Profile Cloud Incident

[Hackett et al., 2022]

▶ Affected thousands of Azure customers
▶ 28 days to detect and mitigate (rollback)
▶ Span multiple teams & services

▶ Root Cause:
▶ Old: GetResourcesDataProvider(India)
▶ New: GetResourcesDataProvider(Europe)

▶ Part of resilience layer & Vetted by senior engineers

▶ 3000+ word postmortem7

7ICM postmortem #521677 (Microsoft-internal)
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High-Profile Cloud Incident
▶ Testing poor coverage because services only exhibit some patterns at scale

work

stealing

cosmos
db

frontend
backend

exception
resource
group

deployment

service
bus

region

job
failurereplication

Figure: What to model at what level of detail?
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High-Profile Cloud Incident

Figure: Architecture

[Hackett et al., 2022]
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High-Profile Cloud Incident

Demo
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Database spec

▶ Reusable DB spec modeling all five consistency levels, message loss, and replica &
region failures

▶ Found database documentation bugs
▶ Replicas and regions is the wrong mental model

▶ TLA+ specs linked as ultimate truth from the official Azure documentation

▶ Rollback does not fully address the issue => latent bug
▶ Redesign of the storage system

▶ Code (SQL) level: MonkeyDB by Biswas et al. [2021]

https://github.com/MicrosoftDocs/azure-docs/issues/95928
https://github.com/MicrosoftDocs/azure-docs/issues/97586
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#guarantees-associated-with-consistency-levels
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Confidential Consortium Framework (CCF)

▶ CCF: “Confidential Computer with
Decentralized Trust” [Shamis
et al., 2022]

▶ Based on raft with dynamic
reconfiguration [Ongardie, 2016]

▶ TLA+ spec: modify raft’s def of
commit to include signature
scheme

Figure: raft sketch (Raft Simulator)

https://raft.github.io


27

Confidential Consortium Framework (CCF)

▶ CCF: “Confidential Computer with
Decentralized Trust” [Shamis
et al., 2022]

▶ Based on raft with dynamic
reconfiguration [Ongardie, 2016]

▶ TLA+ spec: modify raft’s def of
commit to include signature
scheme

Figure: raft sketch (Raft Simulator)

https://raft.github.io


28

CCF: Quorum across all configs vs. quorum in every configs8

▶ Safety violation (multiple leaders) if
ordinary leader election coincides with
reconfiguration, s.t.
abs (|c1| − |c2|) ≥ 2
▶ Trace length 29 states

▶ First found by TLC (BFS) after 2d on
a beefy machine

▶ Independently found with TLC
(random exploration) in ∼ 10m
▶ Trace length 89 states
▶ Reduce probability of failure actions
▶ Start from randomly drawn subset of

any reachable state

8Chamayou, Howard, and Maffre

https://github.com/microsoft/CCF/issues/3948
https://github.com/microsoft/CCF/issues/3837#issue-1235295797
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303775794
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303784933
https://github.com/microsoft/CCF/blob/b6b35db71850eaa42ea4764b0f6e96ed90e3e8d5/tla/SIMccfraft.tla#L29-L38
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76
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Implementation of Specs

▶ Refinement all the way down
▶ Validate low-level executions against spec [Joshi et al., 2003]

▶ Code generation
▶ (PGo Beschastnikh et. al.)

▶ Model-driven verification
▶ Replay high-level behaviors with implementation [Dorminey, 2019]

▶ Test-case generation
▶ Davis et al. [2020]

▶ Translate TLA+ properties to code-level properties

https://www.cs.ubc.ca/~bestchai
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CCF: Trace Validation

MODULE SystemLog
EXTENDS VectorClock , . . .
ExecLog

∆
=

CausalOrder(Deserialize(“logfile.json”))
. . .
Next

∆
=

∨ ∧ ExecLog(level).e = “BecomeLeader”
∧ state′ = ExecLog(level).state
∧ term′ ∈ 1 . . ExecLog(level).idx log holes

∨ ∧ ExecLog(level).e = “Compact”
∧ UNCHANGED vars

CCF
∆
= INSTANCE CCF with N ← . . .

THEOREM Init ∧2[Next]vars =⇒
∃∃∃∃∃∃ votes : CCF ! Init
∧2[CCF !Next ∨ CCF !BL · CCF !TO]CCF !vars

▶ Spec-driven development &
regression testing

▶ Example: EWD998

▶ Only safety!
▶ Embarrassingly parallel
▶ Spec coverage implies code coverage

▶ Spec as stimulus for the execution
▶ Conformance monitoring

%E2%80%A2%20https://github.com/tlaplus/Examples/compare/master...lemmy:Examples:mku-ewd998_impl
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Idea Trace Validation

Figure: Conceptual idea TLA+ trace validation [Pressler, 2018, 2020] previously explored by,
e.g., Davis et al. [2020].
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AI, FM & modeling?

▶ “AI Advancements Mean Code Will Be Written in Natural English” (Vice)

▶ “In 2015, Michael Deardeuff of Amazon informed me that one sentence in [Paxos
Made Simple] is ambiguous, and interpreting it the wrong way leads to an incorrect
algorithm. Deardeuff found that a number of Paxos implementations on Github
implemented this incorrect algorithm. Apparently, the implementors did not bother
to read the precise description of the algorithm in [Part-Time Parliament]. I am
not going to remove this ambiguity or reveal where it is. Prose is not the way to
precisely describe algorithms. Do not try to implement the algorithm from this
paper. Use [Lamport, 1998] instead.“
(http://lamport.azurewebsites.net/pubs/pubs.html)

▶ Generate program code from pseudocode/specs/math and validate & verify the
AI-generated code against the high-level description

https://www.vice.com/en/article/n7zxn7/learn-to-write-ai-advancements-mean-code-will-be-written-in-natural-english
http://lamport.azurewebsites.net/pubs/pubs.html
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Q&A

Q&A
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Find Inductive Invariant Candidates

MODULE Foo
EXTENDS Naturals

VARIABLE x

TypeOK
∆
= x ∈ SUBSET (1 . . 500) or x ∈ Nat, ...

H
∆
= . . . "interesting part"

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[Next]v Make Inv the initial predicate.
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Find Inductive Invariant Candidates

MODULE Foo
EXTENDS Integers, Randomization

VARIABLE x

TypeOK
∆
= x ∈ RandomSubset(4711, SUBSET (1 . . 500))

H
∆
= . . .

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[ . . . ]...

[Lamport, 2018]
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Schematic TLC
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Schematic TLC
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TLC: Vertical Scalability BFS
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▶ TLC beats scalability
of SPIN [Holzmann
and Kuppe, 2017]
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TLC: Horizontal Scalability BFS

▶ Executes TLC on network of machines
▶ Distributed Fingerprint Set (DHT)

▶ Nearby memory faster than (local)
disks

▶ Limitations
▶ Master is bottleneck & SPOF
▶ No liveness checking
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TLC: Horizontal Scalability BFS
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Figure: Scalability distributed TLC
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TLC: Liveness Checking

▶ Check Liveness: (Periodically) Find and check lassos for fulfilling cycles
▶ Strongly Connected Components with Tarjan [1972]

▶ Approaches: [Tarjan, 2015, van de Pol et al., 2016]

Figure: CPU usage with periodic liveness checking (32 core machine)
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TLC: Performance Next-State

▶ Simple left-to-right evaluation (interpreter) of expressions
▶ No intermediate language, no compiler
▶ No partial evaluation

▶ ⇒ Evaluation of next-state > 100x slower compared to SPIN

Figure: Throughput (ops/s) normal evaluation (red) vs. module overwrite (blue)
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TLC: No Partial Evaluation

MODULE Frob
VARIABLES x , y
Init

∆
= x = 0 ∧ y = 0

expensiveOp(n)
∆
= CHOOSE e ∈ SUBSET (1 . . n) : TRUE

NextOuch
∆
= ∧ x ′ ∈ 1 . . 100
∧ y ′ = expensiveOp(23)

NextYeah
∆
= ∧ y ′ = expensiveOp(23)
∧ x ′ ∈ 1 . . 100
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TLC: Symmetry Reduction

▶ Chooses a representative of equivalence classes (orbit) of states
▶ Constructive Orbit Problem - in general - is NP-hard [see Clarke et al., 1998]
▶ For each state enumerate |vars| ∗ |S |! ∗ |T |! where S and T are two symmetry sets

MODULE LiveSym
CONSTANT S

VARIABLE x
Spec

∆
= (x ∈ S) ∧2[x ′ ∈ S ]x

▶ Not supported by liveness checking
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TLC: Liveness under Symmetry

▶ TLA+ actions (labeled arcs) hard to account for in quotient graph
▶ Abandoned approach resulted in incompleteness of liveness checking

▶ Idea: Use quotient graph to find SCCs, re-generate actual SCC for all elements of
symmetry set
▶ Inefficient if SCCs are large
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TLC: Partial Order Reduction

▶ (Static) POR - similar to SPIN’s implementation - explored by S. Merz
▶ ⇒ Didn’t work too well
▶ SPIN fine-grained atomicity similar to programming language
▶ TLA+ due to abstractions coarse-grained atomicity

▶ Not looked at PlusCal (more fine-grained atomicity)

▶ Dynamic POR might be different (open question)
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Statistical Properties

https://www.youtube.com/watch?v=cYenTPD7740
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