
1

TLA+: The Tools, The Language, The Application

Markus A. Kuppe
makuppe@microsoft.com

Microsoft

March, 2023

2

Table of Contents

The Language

The Tools

The Application

3

Temporal Logic of Actions+

TLA+ is a specification language to
model and verify reactive systems.

Figure: Leslie Lamport

4

Key observations ; TLA (note the absent +)

▶ Linear Temporal Logic [Pnueli, 1977]
▶ Convenient to reason about & express fairness and liveness of reactive systems
▶ Less practical to axiomatically specify the actual system

▶ Instead use programming language to spec system?
▶ In TLA, we model in the logic (with temporal part pushed aside)

▶ => Extend and restrict LTL

5

TLA: Temporal Logic Actions

▶ Recall LTL only has state formulas
▶ TLA [Lamport, 1994] expressions state, action, or temporal formulae

▶ Interpreted over a state, pair of states, or sequence of states (behaviors)
▶ TLA only two1 temporal operators (let P be a state- and A an action-predicate):

▶ □P: P holds in every step/state of a behavior B
▶ ♢P: P holds in at least one step of B
▶ ♢□P: P holds in the (infinite) suffix of B
▶ □♢P: P holds repeatedly in B

▶ □ [A]v : The system only ever takes A steps
▶ ♢ [A]v : A is true of one or more steps of a B
▶ ♢□ [A]v : B’s suffix only A steps
▶ □♢ [A]v : Repeatedly A steps

1∼ □ ∼ P ⇐⇒ ♢P

5

TLA: Temporal Logic Actions

▶ Recall LTL only has state formulas
▶ TLA [Lamport, 1994] expressions state, action, or temporal formulae

▶ Interpreted over a state, pair of states, or sequence of states (behaviors)
▶ TLA only two1 temporal operators (let P be a state- and A an action-predicate):

▶ □P: P holds in every step/state of a behavior B
▶ ♢P: P holds in at least one step of B
▶ ♢□P: P holds in the (infinite) suffix of B
▶ □♢P: P holds repeatedly in B

▶ □ [A]v : The system only ever takes A steps
▶ ♢ [A]v : A is true of one or more steps of a B
▶ ♢□ [A]v : B’s suffix only A steps
▶ □♢ [A]v : Repeatedly A steps

1∼ □ ∼ P ⇐⇒ ♢P

6

TLA: Specs
MODULE HourClock

VARIABLE hr
Init

∆
= hr = . . . Defines initial states

Next
∆
= hr ′ = Constrains the next state

Spec
∆
= Init ∧2[Next]hr ∧ F Defines behaviors

7

TLA: Specs
MODULE HourClock

VARIABLE hr
Init

∆
= hr = . . . Defines initial states

Next
∆
= hr ′ = Constrains the next state

Spec
∆
= Init ∧2[Next]hr ∧ F Defines behaviors

Safety
∆
= 2(hr ∈ . . .)

Liveness
∆
= 23(hr = Midnight)

8

TLA: Specs
MODULE HourClock

VARIABLE hr
. . .
Spec

∆
= Init ∧2[Next]hr ∧ F

Safety
∆
= 2(hr ∈ . . .)

Liveness
∆
= 23(hr = 12)

THEOREM Spec =⇒ Safety
⟨1⟩1. Init =⇒ IInv
⟨1⟩2. IInv ∧ [Next]hr =⇒ IInv ′

⟨1⟩3. IInv =⇒ Safety
⟨1⟩4. QED

THEOREM Spec =⇒ Liveness

9

TLA: Refinement

MODULE MinuteClock
VARIABLE hr , min
Init

∆
= hr = . . . ∧min = . . .

Next
∆
= hr ′ = . . . ∧min′ = . . .

Spec
∆
= Init ∧2[Next]⟨hr ,min⟩ ∧ G

10

TLA: Refinement

MODULE MinuteClock
VARIABLE hr , min
Init

∆
= hr = . . . ∧min = . . .

Next
∆
= hr ′ = . . . ∧min′ = . . .

Spec
∆
= Init ∧2[Next]⟨hr ,min⟩ ∧ G

THEOREM Spec =⇒ HR !Spec
⟨1⟩1. Init =⇒ HR ! Init
⟨1⟩2. Inv ∧ [Next]⟨...⟩ =⇒ [HR !Next](HR !hr)
⟨1⟩3.2Inv ∧2[Next]⟨...⟩ ∧ G =⇒ F
⟨1⟩4. QED

▶ Implementation is (logical) implication

11

TLA: Invariance under stuttering

▶ Invariance of TF under stuttering
▶ σHC = ⟨s0, s1, s1, s1, s1, s1, s2, s3, s4, . . .⟩
▶ τMC = ⟨s0, s11 , s12 , s13 , s14 , s2, s3, s4, . . .⟩

▶ Restrictions to be invariant
▶ No (LTL) next operator
▶ □A with A an action is not well-formed: □ [A]v

▶ [A]v ⇐⇒ A ∨ v = v ′

▶ ⟨A⟩v ⇐⇒ A ∧ v ̸= v ′ 2

2Is □ ⟨A⟩v a valid formula?

12

TLA+

▶ Untyped3: Zermelo–Fraenkel set theory with choice
▶ LET/IN, CASE, ITE, Recursion, Modules

MODULE MinuteClock
EXTENDS FiniteSets, Sequences
CONSTANT N

VARIABLE hr , min
Init

∆
= hr ∈ (1 . . N) ∧min ∈ (0 . . 59)

Tick
∆
= min = 59 ∧min′ = 0 ∧ IF hr ̸= N THEN hr + 1 ELSE 1

Tock
∆
= min < 59 ∧min′ = min + 1 ∧ UNCHANGED hr

Spec
∆
= Init ∧2[Tick ∨ Tock]⟨hr ,min⟩ ∧ G

3Types are useful with programming languages.

13

PlusCal Algorithm Language
▶ PlusCal embeds and transpiles to, but less expressive than TLA+ [Lamport, 2009]

--algorithm BlockingQueue{
variable buffer = ⟨⟩ ; waitset = {} ;
notify

∆
= ∃w ∈ waitSet : waitSet ′ = waitSet \ {w}

wait(t)
∆
= waitSet ′ = waitSet ∪ {t}

process (p ∈ P){
put : while (TRUE){

if (isFull){
wait(self) ;
}else {
notify() ;
buffer := Append(buffer , self) ;

lbl : skip ;
} ;

} ;
}

14

Table of Contents

The Language

The Tools

The Application

15

TLA Proof System

TLA+

Toolbox

(IDE)

TLA+Proof System

Proof Manager

interpret proofs
compute proof obligations

coalesce modal /
first-order expressions

call backend provers
to attempt proof

certify proof
(optional)

SMT solvers Zenon Isabelle/TLA+ PTL (ls4)

Figure: Architecture of TLAPS [from Merz, 2019]

▶ [Chaudhuri et al., 2008, 2010, Cousineau et al., 2012]
▶ https://github.com/tlaplus/tlapm

https://github.com/tlaplus/tlapm

16

Apalache

▶ Symbolic model checker (z34) for TLA+ [Konnov et al., 2015]
▶ Handles a subclass of TLA+ that is useful in practice

▶ No Hiding (\EE & \AA), Composition, ...
▶ No Recursion (but folds)
▶ Requires types
▶ No Liveness checking

▶ https://youtu.be/K777MY4Xugs based on Biere et al. [2002]

▶ Safety checking is bounded model checking
▶ https://github.com/informalsystems/apalache/

4[de Moura and Bjørner, 2008]

https://youtu.be/K777MY4Xugs
https://github.com/informalsystems/apalache/

17

TLC

▶ Explicit-state model checker for TLA+ [Yu et al., 1999]
▶ Handles (defined) a subclass of TLA+ that is useful in practice

▶ No Hiding (\EE & \AA), Composition, ...

▶ Safety checking corresponds to Breadth-First search over on-the-fly generated
state graph

▶ Liveness checking corresponds to search for SCCs over behavior graph5

▶ https://github.com/tlaplus/tlaplus

5[Manna and Pnueli, 1995]

https://github.com/tlaplus/tlaplus

18

Table of Contents

The Language

The Tools

The Application

19

Applications of TLA+

20

Cleaner Architecture

Verhulst [2011], Head OpenComRTOS development
group:

“The [TLA+] abstraction helped a lot in
coming to a much cleaner architecture (we wit-
nessed first hand the brain washing done by years
of C programming). One of the results was that
the code size is about 5-10x less than [in the
previous version]”

21

Amazon AWS

▶ DynamoDB: scalable high-performance "no SQL" data store with cross datacenter
replication and strong consistency guarantees

▶ First informal proofs and excessive (fault-injecting) testing

▶ TLC6 found subtle bug: shortest error trace 35 steps
▶ “Using TLA+ in place of traditional proof writing would thus likely have improved

time to market, in addition to achieving greater confidence in the system’s
correctness.” [Newcombe, 2014, Newcombe et al., 2015]

▶ Fast forward to 2022: “The core replication protocol was specified using TLA+.
When new features that affect the replication protocol are added, they are
incorporated into the specification and model checked.” [Elhemali et al., 2022]

6Distributed TLC: 10 nodes with 80+ cores and 230GB RAM.

21

Amazon AWS

▶ DynamoDB: scalable high-performance "no SQL" data store with cross datacenter
replication and strong consistency guarantees

▶ First informal proofs and excessive (fault-injecting) testing

▶ TLC6 found subtle bug: shortest error trace 35 steps
▶ “Using TLA+ in place of traditional proof writing would thus likely have improved

time to market, in addition to achieving greater confidence in the system’s
correctness.” [Newcombe, 2014, Newcombe et al., 2015]

▶ Fast forward to 2022: “The core replication protocol was specified using TLA+.
When new features that affect the replication protocol are added, they are
incorporated into the specification and model checked.” [Elhemali et al., 2022]

6Distributed TLC: 10 nodes with 80+ cores and 230GB RAM.

21

Amazon AWS

▶ DynamoDB: scalable high-performance "no SQL" data store with cross datacenter
replication and strong consistency guarantees

▶ First informal proofs and excessive (fault-injecting) testing

▶ TLC6 found subtle bug: shortest error trace 35 steps
▶ “Using TLA+ in place of traditional proof writing would thus likely have improved

time to market, in addition to achieving greater confidence in the system’s
correctness.” [Newcombe, 2014, Newcombe et al., 2015]

▶ Fast forward to 2022: “The core replication protocol was specified using TLA+.
When new features that affect the replication protocol are added, they are
incorporated into the specification and model checked.” [Elhemali et al., 2022]

6Distributed TLC: 10 nodes with 80+ cores and 230GB RAM.

22

High-Profile Cloud Incident

[Hackett et al., 2022]

▶ Affected thousands of Azure customers
▶ 28 days to detect and mitigate (rollback)
▶ Span multiple teams & services

▶ Root Cause:
▶ Old: GetResourcesDataProvider(India)
▶ New: GetResourcesDataProvider(Europe)

▶ Part of resilience layer & Vetted by senior engineers

▶ 3000+ word postmortem7

7ICM postmortem #521677 (Microsoft-internal)

22

High-Profile Cloud Incident

[Hackett et al., 2022]

▶ Affected thousands of Azure customers
▶ 28 days to detect and mitigate (rollback)
▶ Span multiple teams & services

▶ Root Cause:
▶ Old: GetResourcesDataProvider(India)
▶ New: GetResourcesDataProvider(Europe)

▶ Part of resilience layer & Vetted by senior engineers

▶ 3000+ word postmortem7

7ICM postmortem #521677 (Microsoft-internal)

22

High-Profile Cloud Incident

[Hackett et al., 2022]

▶ Affected thousands of Azure customers
▶ 28 days to detect and mitigate (rollback)
▶ Span multiple teams & services

▶ Root Cause:
▶ Old: GetResourcesDataProvider(India)
▶ New: GetResourcesDataProvider(Europe)

▶ Part of resilience layer & Vetted by senior engineers

▶ 3000+ word postmortem7

7ICM postmortem #521677 (Microsoft-internal)

23

High-Profile Cloud Incident
▶ Testing poor coverage because services only exhibit some patterns at scale

work

stealing

cosmos
db

frontend
backend

exception
resource
group

deployment

service
bus

region

job
failurereplication

Figure: What to model at what level of detail?

24

High-Profile Cloud Incident

Figure: Architecture

[Hackett et al., 2022]

25

High-Profile Cloud Incident

Demo

26

Database spec

▶ Reusable DB spec modeling all five consistency levels, message loss, and replica &
region failures

▶ Found database documentation bugs
▶ Replicas and regions is the wrong mental model

▶ TLA+ specs linked as ultimate truth from the official Azure documentation

▶ Rollback does not fully address the issue => latent bug
▶ Redesign of the storage system

▶ Code (SQL) level: MonkeyDB by Biswas et al. [2021]

https://github.com/MicrosoftDocs/azure-docs/issues/95928
https://github.com/MicrosoftDocs/azure-docs/issues/97586
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#guarantees-associated-with-consistency-levels

26

Database spec

▶ Reusable DB spec modeling all five consistency levels, message loss, and replica &
region failures

▶ Found database documentation bugs
▶ Replicas and regions is the wrong mental model

▶ TLA+ specs linked as ultimate truth from the official Azure documentation

▶ Rollback does not fully address the issue => latent bug
▶ Redesign of the storage system

▶ Code (SQL) level: MonkeyDB by Biswas et al. [2021]

https://github.com/MicrosoftDocs/azure-docs/issues/95928
https://github.com/MicrosoftDocs/azure-docs/issues/97586
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#guarantees-associated-with-consistency-levels

26

Database spec

▶ Reusable DB spec modeling all five consistency levels, message loss, and replica &
region failures

▶ Found database documentation bugs
▶ Replicas and regions is the wrong mental model

▶ TLA+ specs linked as ultimate truth from the official Azure documentation

▶ Rollback does not fully address the issue => latent bug
▶ Redesign of the storage system

▶ Code (SQL) level: MonkeyDB by Biswas et al. [2021]

https://github.com/MicrosoftDocs/azure-docs/issues/95928
https://github.com/MicrosoftDocs/azure-docs/issues/97586
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#guarantees-associated-with-consistency-levels

26

Database spec

▶ Reusable DB spec modeling all five consistency levels, message loss, and replica &
region failures

▶ Found database documentation bugs
▶ Replicas and regions is the wrong mental model

▶ TLA+ specs linked as ultimate truth from the official Azure documentation

▶ Rollback does not fully address the issue => latent bug
▶ Redesign of the storage system

▶ Code (SQL) level: MonkeyDB by Biswas et al. [2021]

https://github.com/MicrosoftDocs/azure-docs/issues/95928
https://github.com/MicrosoftDocs/azure-docs/issues/97586
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels#guarantees-associated-with-consistency-levels

27

Confidential Consortium Framework (CCF)

▶ CCF: “Confidential Computer with
Decentralized Trust” [Shamis
et al., 2022]

▶ Based on raft with dynamic
reconfiguration [Ongardie, 2016]

▶ TLA+ spec: modify raft’s def of
commit to include signature
scheme

Figure: raft sketch (Raft Simulator)

https://raft.github.io

27

Confidential Consortium Framework (CCF)

▶ CCF: “Confidential Computer with
Decentralized Trust” [Shamis
et al., 2022]

▶ Based on raft with dynamic
reconfiguration [Ongardie, 2016]

▶ TLA+ spec: modify raft’s def of
commit to include signature
scheme

Figure: raft sketch (Raft Simulator)

https://raft.github.io

28

CCF: Quorum across all configs vs. quorum in every configs8

▶ Safety violation (multiple leaders) if
ordinary leader election coincides with
reconfiguration, s.t.
abs (|c1| − |c2|) ≥ 2
▶ Trace length 29 states

▶ First found by TLC (BFS) after 2d on
a beefy machine

▶ Independently found with TLC
(random exploration) in ∼ 10m
▶ Trace length 89 states
▶ Reduce probability of failure actions
▶ Start from randomly drawn subset of

any reachable state

8Chamayou, Howard, and Maffre

https://github.com/microsoft/CCF/issues/3948
https://github.com/microsoft/CCF/issues/3837#issue-1235295797
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303775794
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303784933
https://github.com/microsoft/CCF/blob/b6b35db71850eaa42ea4764b0f6e96ed90e3e8d5/tla/SIMccfraft.tla#L29-L38
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76

28

CCF: Quorum across all configs vs. quorum in every configs8

▶ Safety violation (multiple leaders) if
ordinary leader election coincides with
reconfiguration, s.t.
abs (|c1| − |c2|) ≥ 2
▶ Trace length 29 states

▶ First found by TLC (BFS) after 2d on
a beefy machine

▶ Independently found with TLC
(random exploration) in ∼ 10m
▶ Trace length 89 states
▶ Reduce probability of failure actions
▶ Start from randomly drawn subset of

any reachable state

8Chamayou, Howard, and Maffre

https://github.com/microsoft/CCF/issues/3948
https://github.com/microsoft/CCF/issues/3837#issue-1235295797
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303775794
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303784933
https://github.com/microsoft/CCF/blob/b6b35db71850eaa42ea4764b0f6e96ed90e3e8d5/tla/SIMccfraft.tla#L29-L38
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76

28

CCF: Quorum across all configs vs. quorum in every configs8

▶ Safety violation (multiple leaders) if
ordinary leader election coincides with
reconfiguration, s.t.
abs (|c1| − |c2|) ≥ 2
▶ Trace length 29 states

▶ First found by TLC (BFS) after 2d on
a beefy machine

▶ Independently found with TLC
(random exploration) in ∼ 10m
▶ Trace length 89 states
▶ Reduce probability of failure actions
▶ Start from randomly drawn subset of

any reachable state

8Chamayou, Howard, and Maffre

https://github.com/microsoft/CCF/issues/3948
https://github.com/microsoft/CCF/issues/3837#issue-1235295797
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303775794
https://github.com/microsoft/CCF/issues/4472#issuecomment-1303784933
https://github.com/microsoft/CCF/blob/b6b35db71850eaa42ea4764b0f6e96ed90e3e8d5/tla/SIMccfraft.tla#L29-L38
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76
https://github.com/lemmy/raft.tla/blob/17a4f670ca7a34a1a1db1b7c55c53d9080530d29/Smokeraft.tla#L64-L76

29

Implementation of Specs

▶ Refinement all the way down
▶ Validate low-level executions against spec [Joshi et al., 2003]

▶ Code generation
▶ (PGo Beschastnikh et. al.)

▶ Model-driven verification
▶ Replay high-level behaviors with implementation [Dorminey, 2019]

▶ Test-case generation
▶ Davis et al. [2020]

▶ Translate TLA+ properties to code-level properties

https://www.cs.ubc.ca/~bestchai

30

CCF: Trace Validation

MODULE SystemLog
EXTENDS VectorClock , . . .
ExecLog

∆
=

CausalOrder(Deserialize(“logfile.json”))
. . .
Next

∆
=

∨ ∧ ExecLog(level).e = “BecomeLeader”
∧ state′ = ExecLog(level).state
∧ term′ ∈ 1 . . ExecLog(level).idx log holes

∨ ∧ ExecLog(level).e = “Compact”
∧ UNCHANGED vars

CCF
∆
= INSTANCE CCF with N ← . . .

THEOREM Init ∧2[Next]vars =⇒
∃∃∃∃∃∃ votes : CCF ! Init
∧2[CCF !Next ∨ CCF !BL · CCF !TO]CCF !vars

▶ Spec-driven development &
regression testing

▶ Example: EWD998

▶ Only safety!
▶ Embarrassingly parallel
▶ Spec coverage implies code coverage

▶ Spec as stimulus for the execution
▶ Conformance monitoring

%E2%80%A2%20https://github.com/tlaplus/Examples/compare/master...lemmy:Examples:mku-ewd998_impl

30

CCF: Trace Validation

MODULE SystemLog
EXTENDS VectorClock , . . .
ExecLog

∆
=

CausalOrder(Deserialize(“logfile.json”))
. . .
Next

∆
=

∨ ∧ ExecLog(level).e = “BecomeLeader”
∧ state′ = ExecLog(level).state
∧ term′ ∈ 1 . . ExecLog(level).idx log holes

∨ ∧ ExecLog(level).e = “Compact”
∧ UNCHANGED vars

CCF
∆
= INSTANCE CCF with N ← . . .

THEOREM Init ∧2[Next]vars =⇒
∃∃∃∃∃∃ votes : CCF ! Init
∧2[CCF !Next ∨ CCF !BL · CCF !TO]CCF !vars

▶ Spec-driven development &
regression testing

▶ Example: EWD998

▶ Only safety!
▶ Embarrassingly parallel
▶ Spec coverage implies code coverage

▶ Spec as stimulus for the execution
▶ Conformance monitoring

%E2%80%A2%20https://github.com/tlaplus/Examples/compare/master...lemmy:Examples:mku-ewd998_impl

30

CCF: Trace Validation

MODULE SystemLog
EXTENDS VectorClock , . . .
ExecLog

∆
=

CausalOrder(Deserialize(“logfile.json”))
. . .
Next

∆
=

∨ ∧ ExecLog(level).e = “BecomeLeader”
∧ state′ = ExecLog(level).state
∧ term′ ∈ 1 . . ExecLog(level).idx log holes

∨ ∧ ExecLog(level).e = “Compact”
∧ UNCHANGED vars

CCF
∆
= INSTANCE CCF with N ← . . .

THEOREM Init ∧2[Next]vars =⇒
∃∃∃∃∃∃ votes : CCF ! Init
∧2[CCF !Next ∨ CCF !BL · CCF !TO]CCF !vars

▶ Spec-driven development &
regression testing

▶ Example: EWD998

▶ Only safety!
▶ Embarrassingly parallel
▶ Spec coverage implies code coverage

▶ Spec as stimulus for the execution
▶ Conformance monitoring

%E2%80%A2%20https://github.com/tlaplus/Examples/compare/master...lemmy:Examples:mku-ewd998_impl

31

Idea Trace Validation

Figure: Conceptual idea TLA+ trace validation [Pressler, 2018, 2020] previously explored by,
e.g., Davis et al. [2020].

32

AI, FM & modeling?

▶ “AI Advancements Mean Code Will Be Written in Natural English” (Vice)

▶ “In 2015, Michael Deardeuff of Amazon informed me that one sentence in [Paxos
Made Simple] is ambiguous, and interpreting it the wrong way leads to an incorrect
algorithm. Deardeuff found that a number of Paxos implementations on Github
implemented this incorrect algorithm. Apparently, the implementors did not bother
to read the precise description of the algorithm in [Part-Time Parliament]. I am
not going to remove this ambiguity or reveal where it is. Prose is not the way to
precisely describe algorithms. Do not try to implement the algorithm from this
paper. Use [Lamport, 1998] instead.“
(http://lamport.azurewebsites.net/pubs/pubs.html)

▶ Generate program code from pseudocode/specs/math and validate & verify the
AI-generated code against the high-level description

https://www.vice.com/en/article/n7zxn7/learn-to-write-ai-advancements-mean-code-will-be-written-in-natural-english
http://lamport.azurewebsites.net/pubs/pubs.html

32

AI, FM & modeling?

▶ “AI Advancements Mean Code Will Be Written in Natural English” (Vice)

▶ “In 2015, Michael Deardeuff of Amazon informed me that one sentence in [Paxos
Made Simple] is ambiguous, and interpreting it the wrong way leads to an incorrect
algorithm. Deardeuff found that a number of Paxos implementations on Github
implemented this incorrect algorithm. Apparently, the implementors did not bother
to read the precise description of the algorithm in [Part-Time Parliament]. I am
not going to remove this ambiguity or reveal where it is. Prose is not the way to
precisely describe algorithms. Do not try to implement the algorithm from this
paper. Use [Lamport, 1998] instead.“
(http://lamport.azurewebsites.net/pubs/pubs.html)

▶ Generate program code from pseudocode/specs/math and validate & verify the
AI-generated code against the high-level description

https://www.vice.com/en/article/n7zxn7/learn-to-write-ai-advancements-mean-code-will-be-written-in-natural-english
http://lamport.azurewebsites.net/pubs/pubs.html

32

AI, FM & modeling?

▶ “AI Advancements Mean Code Will Be Written in Natural English” (Vice)

▶ “In 2015, Michael Deardeuff of Amazon informed me that one sentence in [Paxos
Made Simple] is ambiguous, and interpreting it the wrong way leads to an incorrect
algorithm. Deardeuff found that a number of Paxos implementations on Github
implemented this incorrect algorithm. Apparently, the implementors did not bother
to read the precise description of the algorithm in [Part-Time Parliament]. I am
not going to remove this ambiguity or reveal where it is. Prose is not the way to
precisely describe algorithms. Do not try to implement the algorithm from this
paper. Use [Lamport, 1998] instead.“
(http://lamport.azurewebsites.net/pubs/pubs.html)

▶ Generate program code from pseudocode/specs/math and validate & verify the
AI-generated code against the high-level description

https://www.vice.com/en/article/n7zxn7/learn-to-write-ai-advancements-mean-code-will-be-written-in-natural-english
http://lamport.azurewebsites.net/pubs/pubs.html

33

Q&A

Q&A

34

Bibliography I

Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness Checking as Safety
Checking. In In FMICS’02: Formal Methods for Industrial Critical Systems, Volume
66(2) of ENTCS. Elsevier, 2002.

Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash
Lal. MonkeyDB: Effectively testing correctness under weak isolation levels.
Proceedings of the ACM on Programming Languages, 5(OOPSLA):1–27, October
2021. ISSN 2475-1421. doi: 10.1145/3485546.

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying
Safety Properties With the TLA+ Proof System. arXiv:1011.2560 [cs], 6173:
142–148, 2010. doi: 10.1007/978-3-642-14203-1_12.

Kaustuv C. Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. A TLA+
Proof System. arXiv:0811.1914 [cs], November 2008.

35

Bibliography II
E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry Reductions in Model

Checking. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Alan J. Hu, and
Moshe Y. Vardi, editors, Computer Aided Verification, volume 1427, pages 147–158.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. ISBN 978-3-540-64608-2
978-3-540-69339-0.

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and
Hernán Vanzetto. TLA+ Proofs. arXiv:1208.5933 [cs], August 2012.

A. Jesse Jiryu Davis, Judah Schvimer, and Max Hirschhorn. eXtreme Modelling in
Practice. arXiv:2006.00915 [cs], May 2020. doi: 10.14778/3397230.3397233.

Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,
John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum,
C. R. Ramakrishnan, and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 4963, pages 337–340. Springer Berlin

36

Bibliography III

Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78799-0 978-3-540-78800-3.
doi: 10.1007/978-3-540-78800-3_24.

Star Dorminey. Keyfabe: Checking C# against TLA+. 2019.

Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog, Colin
Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim Rath,
Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul, Doug
Terry, and Akshat Vig. Amazon DynamoDB: A scalable, predictably performant, and
fully managed NoSQL database service. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 1037–1048, Carlsbad, CA, July 2022. USENIX
Association. ISBN 978-1-939133-29-46.

A. Finn Hackett, Joshua Rowe, and Markus Alexander Kuppe. Understanding
Inconsistency in Azure Cosmos DB with TLA+, October 2022.

Gerard J. Holzmann and Markus Alexander Kuppe. Scalability comparison of SPIN and
TLC, 2017.

37

Bibliography IV
Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, and Yuan

Yu. Checking Cache-Coherence Protocols with TLA+. Formal Methods in System
Design, 22(2):125–131, March 2003. ISSN 0925-9856, 1572-8102. doi:
10.1023/A:1022969405325.

Igor Konnov, Josef Widder, and Helmut Veith. Challenges in Model Checking of
Fault-tolerant Designs in TLA+, 2015.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994. ISSN 01640925. doi:
10.1145/177492.177726.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16
(2):133–169, May 1998. ISSN 0734-2071, 1557-7333. doi: 10.1145/279227.279229.

Leslie Lamport. The PlusCal Algorithm Language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, volume 5684,
pages 36–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN
978-3-642-03465-7 978-3-642-03466-4.

38

Bibliography V

Leslie Lamport. Using TLC to Check Inductive Invariance, June 2018.

Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995. ISBN 978-0-387-94459-3.

Stephan Merz. Formal Specification and Verification. Association for Computing
Machinery, October 2019. ISBN 978-1-4503-7270-1. doi: 10.1145/3335772.3335780.

Chris Newcombe. Why Amazon Chose TLA+. In David Hutchison, Takeo Kanade,
Josef Kittler, Jon M. Kleinberg, Alfred Kobsa, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Demetri
Terzopoulos, Doug Tygar, Gerhard Weikum, Yamine Ait Ameur, and Klaus-Dieter
Schewe, editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z, volume
8477, pages 25–39. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN
978-3-662-43651-6 978-3-662-43652-3.

39

Bibliography VI

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. How Amazon Web Services Uses Formal Methods.
Communications of the ACM, 58(4):66–73, March 2015. ISSN 00010782. doi:
10.1145/2699417.

Diego Ongardie. Raft consensus algorithm. https://github.com/ongardie/raft.tla, 2016.

Amir Pnueli. The temporal logic of programs. pages 46–57. IEEE, September 1977.
doi: 10.1109/SFCS.1977.32.

Ron Pressler. Verifying Software Traces Against a Formal Specification with TLA+ and
TLC, 2018.

Ron Pressler. Conjunction Capers: A TLA+ Truffle - Ron Pressler, September 2020.

Alex Shamis, Peter Pietzuch, Miguel Castro, Cédric Fournet, Edward Ashton, Amaury
Chamayou, Sylvan Clebsch, Antoine Delignat-Lavaud, Matthew Kerner, Julien
Maffre, Manuel Costa, and Mark Russinovich. IA-CCF: Individual Accountability for
Permissioned Ledgers, March 2022.

40

Bibliography VII

Robert Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146–160, June 1972. ISSN 0097-5397, 1095-7111. doi:
10.1137/0201010.

Robert E. Tarjan. The concurrent algorithm, 2015.

Jaco van de Pol, Vincent Bloemen, and Alfons Laarman. Multi-core on-the-fly SCC
decomposition. pages 1–12. ACM Press, 2016. ISBN 978-1-4503-4092-2. doi:
10.1145/2851141.2851161.

Eric Verhulst. Formal Development of a Network-Centric RTOS: Software Engineering
for Reliable Embedded Systems. Springer, New York, 2011. ISBN 978-1-4419-9735-7.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA+
Specifications. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Laurence Pierre,
and Thomas Kropf, editors, Correct Hardware Design and Verification Methods,
volume 1703, pages 54–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
ISBN 978-3-540-66559-5 978-3-540-48153-9. doi: 10.1007/3-540-48153-2_6.

41

Table of Contents

Backup: Inductive Invariants

Backup: Future Work Tools

42

Find Inductive Invariant Candidates

MODULE Foo
EXTENDS Naturals

VARIABLE x

TypeOK
∆
= x ∈ SUBSET (1 . . 500) or x ∈ Nat, ...

H
∆
= . . . "interesting part"

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[Next]v Make Inv the initial predicate.

43

Find Inductive Invariant Candidates

MODULE Foo
EXTENDS Integers, Randomization

VARIABLE x

TypeOK
∆
= x ∈ RandomSubset(4711, SUBSET (1 . . 500))

H
∆
= . . .

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[. . .]...

[Lamport, 2018]

44

Table of Contents

Backup: Inductive Invariants

Backup: Future Work Tools

45

Schematic TLC

SGSG
Procedure
to generate
State Graph

Workers

FPS SQ T

Procedure
to verify all
Properties Φ

Specification Model

Violation?
̸|= Φ

success

counter
example

s

no

yes

Transition S.
Parameters

Properties

Seen states

Unseen states

Forest Exec. Trees

46

Schematic TLC

SGSG

SGSQ TTTT

Prop1Prop2
Procedure
to generate
State Graph

Workers

FPS SQ T

Procedure
to verify all
Properties Φ

Specification Model

Violation?
̸|= Φ

success

counter
example

s

no

yes

Transition S.
Parameters

Properties

Seen states

Unseen states

Forest Exec. Trees

47

TLC: Vertical Scalability BFS

0 50 100 150

0
5

10
15

20
25

30
35

Cores N

S
pe

ed
up

 Z
TLC
Spin

Dataset: 2017−02−21_x32 & 2017−02−22_x32

▶ TLC beats scalability
of SPIN [Holzmann
and Kuppe, 2017]

48

TLC: Horizontal Scalability BFS

▶ Executes TLC on network of machines
▶ Distributed Fingerprint Set (DHT)

▶ Nearby memory faster than (local)
disks

▶ Limitations
▶ Master is bottleneck & SPOF
▶ No liveness checking

49

TLC: Horizontal Scalability BFS

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Nodes

S
pe

ed
up

Dataset: Grid5k l10_n06

(a) Cost/State = 210

0 50 100 150

0
50

10
0

15
0

Nodes

S
pe

ed
up

Dataset: Grid5k l12_n06

(b) Cost/State = 212

0 50 100 150

0
50

10
0

15
0

Nodes

S
pe

ed
up

Dataset: Grid5k l14_n06

(c) Cost/State = 214

Figure: Scalability distributed TLC

50

TLC: Liveness Checking

▶ Check Liveness: (Periodically) Find and check lassos for fulfilling cycles
▶ Strongly Connected Components with Tarjan [1972]

▶ Approaches: [Tarjan, 2015, van de Pol et al., 2016]

Figure: CPU usage with periodic liveness checking (32 core machine)

51

TLC: Performance Next-State

▶ Simple left-to-right evaluation (interpreter) of expressions
▶ No intermediate language, no compiler
▶ No partial evaluation

▶ ⇒ Evaluation of next-state > 100x slower compared to SPIN

Figure: Throughput (ops/s) normal evaluation (red) vs. module overwrite (blue)

52

TLC: No Partial Evaluation

MODULE Frob
VARIABLES x , y
Init

∆
= x = 0 ∧ y = 0

expensiveOp(n)
∆
= CHOOSE e ∈ SUBSET (1 . . n) : TRUE

NextOuch
∆
= ∧ x ′ ∈ 1 . . 100
∧ y ′ = expensiveOp(23)

NextYeah
∆
= ∧ y ′ = expensiveOp(23)
∧ x ′ ∈ 1 . . 100

53

TLC: Symmetry Reduction

▶ Chooses a representative of equivalence classes (orbit) of states
▶ Constructive Orbit Problem - in general - is NP-hard [see Clarke et al., 1998]
▶ For each state enumerate |vars| ∗ |S |! ∗ |T |! where S and T are two symmetry sets

MODULE LiveSym
CONSTANT S

VARIABLE x
Spec

∆
= (x ∈ S) ∧2[x ′ ∈ S]x

▶ Not supported by liveness checking

54

TLC: Liveness under Symmetry

▶ TLA+ actions (labeled arcs) hard to account for in quotient graph
▶ Abandoned approach resulted in incompleteness of liveness checking

▶ Idea: Use quotient graph to find SCCs, re-generate actual SCC for all elements of
symmetry set
▶ Inefficient if SCCs are large

55

TLC: Partial Order Reduction

▶ (Static) POR - similar to SPIN’s implementation - explored by S. Merz
▶ ⇒ Didn’t work too well
▶ SPIN fine-grained atomicity similar to programming language
▶ TLA+ due to abstractions coarse-grained atomicity

▶ Not looked at PlusCal (more fine-grained atomicity)

▶ Dynamic POR might be different (open question)

56

Statistical Properties

https://www.youtube.com/watch?v=cYenTPD7740

	The Language
	The Tools
	The Application
	Spec to Code

	Appendix
	References
	Backup: Inductive Invariants
	Backup: Future Work Tools
	Performance & Scalability
	Evaluator
	Equivalence techniques

