
Mahesh Viswanathan, IARCS Verification Seminar Series, October 2022

On Linear Time Decidability of
Differential Privacy for Programs
with Unbounded Inputs
Joint work with Rohit Chadha and Prasad Sistla

Accessing Sensitive Information

Database D

Accessing Sensitive Information

Database D

How can a database of personal information about individuals be accessed
securely?

query q

Response q(D)

Accessing Sensitive Information

Database D

q(D) may reveal private information

How can a database of personal information about individuals be accessed
securely?

query q

Response q(D)

Accessing Sensitive Information

Database D

q(D) may reveal private information

How can a database of personal information about individuals be accessed
securely?

query q

Response q(D)

• Security can be ensured if the data is not allowed to be accessed!

Accessing Sensitive Information

Database D

q(D) may reveal private information

How can a database of personal information about individuals be accessed
securely?

query q

Response q(D)

• Security can be ensured if the data is not allowed to be accessed!
• [Dinur-Nissim 2003] Entire database can be reconstructed using answers to a

few random aggregate queries

Differential Privacy Framework
Dwork, McSherry, Nissim, Smith 2006

Database D

Differential Privacy Framework
Dwork, McSherry, Nissim, Smith 2006

Database D

M

M is a differential privacy mechanism

Interaction between database and user meditated by an algorithm M

Differential Privacy Framework
Dwork, McSherry, Nissim, Smith 2006

Database D

M

query qquery q

q(D) M(q(D))

M is a differential privacy mechanism

Interaction between database and user meditated by an algorithm M
• Add noise to and share the noisy response q(D) M(q(D))

Differential Privacy Framework
Dwork, McSherry, Nissim, Smith 2006

Database D

M

query qquery q

q(D) M(q(D))

M is a differential privacy mechanism

Interaction between database and user meditated by an algorithm M
• Add noise to and share the noisy response q(D) M(q(D))
• Trade “accuracy” for “privacy”

Randomized Response
An Example

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

• If the result is “tails” answer truthfully

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

• If the result is “tails” answer truthfully

• If the result is “heads”, toss another coin. If the second coin toss is “heads” answer “Yes”,
else answer “No”

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

• If the result is “tails” answer truthfully

• If the result is “heads”, toss another coin. If the second coin toss is “heads” answer “Yes”,
else answer “No”

• “Privacy” arises from the plausible deniability of any outcome

Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

• If the result is “tails” answer truthfully

• If the result is “heads”, toss another coin. If the second coin toss is “heads” answer “Yes”,
else answer “No”

• “Privacy” arises from the plausible deniability of any outcome

• If is the fraction of smokers in a population, then the expected number of “Yes” responses
is

p
(1/4)(1 − p) + (3/4)p = (1/4) + (p/2)

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of on database
and is similar.”

x M D
D + x

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of on database
and is similar.”

x M D
D + x

Program : Depends on privacy budget M(ϵ) ϵ

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of on database
and is similar.”

x M D
D + x

Program : Depends on privacy budget M(ϵ) ϵ

Input to : sequence of numbers, answers to aggregate queries on M q(D) D

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of on database
and is similar.”

x M D
D + x

Program : Depends on privacy budget M(ϵ) ϵ

Input to : sequence of numbers, answers to aggregate queries on M q(D) D

Adjacency: Inputs and are adjacent if .q1 q2 |q1[i] − q2[i] | ≤ 1

Differential Privacy
Definition [Dwork, McSherry, Nissim, Smith 2006]

Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of on database
and is similar.”

x M D
D + x

Definition: is -differentially private if for any pair of adjacent inputs
and each subset of outputs

M dϵ q1, q2
S

𝖯𝗋(M(q1) ∈ S) ≤ edϵ 𝖯𝗋(M(q2) ∈ S)

Program : Depends on privacy budget M(ϵ) ϵ

Input to : sequence of numbers, answers to aggregate queries on M q(D) D

Adjacency: Inputs and are adjacent if .q1 q2 |q1[i] − q2[i] | ≤ 1

Sparse Vector Technique (SVT)
An Example

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2

pdf of Lap() is a, μ
a
2

e−a|x−μ|

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
4

≥
⊤

⊥

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
4

≥
⊤

⊥

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
4

≥
⊤

⊥

Sparse Vector Technique (SVT)
An Example

Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)ϵ

2
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
4

≥
⊤

⊥

, for all adjacent inputs , for all ∀ϵ q1, q2 o ∈ ⊥* ⊤
𝖯𝗋[SVT(q1) = o] ≤ eϵ𝖯𝗋[SVT(q2) = o]

Ensuring Privacy is subtle
An Example
Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Ensuring Privacy is subtle
An Example
Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

-differentially private for all .ϵ ϵ

Ensuring Privacy is subtle
An Example
Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

output noisyT
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

-differentially private for all .ϵ ϵ

Ensuring Privacy is subtle
An Example
Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

output noisyT
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

-differentially private for all .ϵ ϵ

Ensuring Privacy is subtle
An Example
Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Input: queries Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap(,T)

output noisyT
for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

-differentially private for all .ϵ ϵ For all , not -differentially private.d dϵ

[BCJSV20] Given a program , the problem
of determining if it is -differentially private is

undecidable.

M(ϵ)
dϵ

This Talk

This Talk
An automaton model to describe some differential privacy algorithms

• The model processes an (unbounded) stream of real-valued query answers
(input) and produces a stream of outputs (finite or real-valued)

• Some well-known algorithms captured by the model

This Talk
An automaton model to describe some differential privacy algorithms

• The model processes an (unbounded) stream of real-valued query answers
(input) and produces a stream of outputs (finite or real-valued)

• Some well-known algorithms captured by the model

Identify necessary and sufficient conditions when an automaton is differentially
private

• Necessary and sufficient conditions can be checked in linear time

• Algorithm certifies differential privacy or produces counter-examples

Prior Work

• Constructing Privacy proofs: [Reed, Pierce 2010], [Gaboardi, Haeberlen, Hsu,
Narayan, Pierce 2013], [Barthe, Kopf, Olmedo, Zanella-Beguelin 2013], [Barthe,
Gaboardi, Gregoire, Hsu, Strub 2016], [Zhang, Kifer 2017], [Albarghouthi, Hsu
2018], [Wang, Ding, Wang, Kifer, Zhang 2019], [de Amorim, Gaboardi, Hsu,
Katsumata 2019]

• Discovering privacy bugs: [Ding, Wang, Wang, Zhang, Kifer 2018], [Bichsel,
Gehr, Drechsler-Cohen, Tsankov, Vechev 2018], [Wang, Ding, Kifer, Zhang 2020]

• Decision Procedures: [Barthe, Chadha, Jagannath, Sistla, V. 2019]

• This talk: Decision procedure for unbounded inputs

Differentially Private Automata (DiPA)
Overview

Differentially Private Automata (DiPA)
Overview

Parametric automata with finitely many control states and 2 variables: storage
variable x and sampling variable insample. In each step:

Differentially Private Automata (DiPA)
Overview

Parametric automata with finitely many control states and 2 variables: storage
variable x and sampling variable insample. In each step:

• A number is sampled from the Laplace distribution whose parameters
depend on the current state and is stored in insample.

Differentially Private Automata (DiPA)
Overview

Parametric automata with finitely many control states and 2 variables: storage
variable x and sampling variable insample. In each step:

• A number is sampled from the Laplace distribution whose parameters
depend on the current state and is stored in insample.

• Depending on the current state, a real number is read from input and added
to insample.

Differentially Private Automata (DiPA)
Overview

Parametric automata with finitely many control states and 2 variables: storage
variable x and sampling variable insample. In each step:

• A number is sampled from the Laplace distribution whose parameters
depend on the current state and is stored in insample.

• Depending on the current state, a real number is read from input and added
to insample.

• If an input is read, then control state is changed based on a comparison
between insample and stored value x. The transition has an output.

Differentially Private Automata (DiPA)
Overview

Parametric automata with finitely many control states and 2 variables: storage
variable x and sampling variable insample. In each step:

• A number is sampled from the Laplace distribution whose parameters
depend on the current state and is stored in insample.

• Depending on the current state, a real number is read from input and added
to insample.

• If an input is read, then control state is changed based on a comparison
between insample and stored value x. The transition has an output.

• Based on the transition, the stored value x maybe be updated to insample.

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example

Non-Input State: No input read

Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example

Non-Input State: No input read

Input State: Input read is
added to insample

Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Sample from 𝖫𝖺𝗉(
ϵ
2

,0)

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Guard

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Guard

Output

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

Guard

Output

Store insample in x?

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: An Example
Input: Q[1..n]
Output: first i s.t. Q[i] > T
noisyT = Lap(,T)

for i = 1 to n
noisyQ = Lap(,Q[i])

if noisyQ noisyT
output ; exit

else
output

ϵ
2

ϵ
4

≥
⊤

⊥

DiPA: Terms and Assumptions

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with
distinct outputs

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with
distinct outputs

• Knowing the start state and the sequence of outputs, determines the sequence of transitions
taken

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with
distinct outputs

• Knowing the start state and the sequence of outputs, determines the sequence of transitions
taken

Paths: Sequence of consecutive transitions augmented with inputs

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with
distinct outputs

• Knowing the start state and the sequence of outputs, determines the sequence of transitions
taken

Paths: Sequence of consecutive transitions augmented with inputs

• For path , is the sequence of inputs and is the sequence of outputs.ρ 𝗂𝗇𝗌𝖾𝗊(ρ) 𝗈𝗎𝗍𝗌𝖾𝗊(ρ)

DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with
distinct outputs

• Knowing the start state and the sequence of outputs, determines the sequence of transitions
taken

Paths: Sequence of consecutive transitions augmented with inputs

• For path , is the sequence of inputs and is the sequence of outputs.ρ 𝗂𝗇𝗌𝖾𝗊(ρ) 𝗈𝗎𝗍𝗌𝖾𝗊(ρ)

Probability: For path from initial state, is the probability when security parameter is ρ 𝖯𝗋[ϵ0, ρ] ϵ0

Computational Problem and Results

Computational Problem and Results

-Differential Privacy: DiPA is -differentially private (for) if for all
, and any two paths starting from the initial state such that

 and adjacent and ,
.

dϵ 𝒜 dϵ d > 0
ϵ > 0 ρ1, ρ2
𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) = 𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ2)
𝖯𝗋[ϵ, ρ1] ≤ edϵ 𝖯𝗋[ϵ, ρ2]

Computational Problem and Results

-Differential Privacy: DiPA is -differentially private (for) if for all
, and any two paths starting from the initial state such that

 and adjacent and ,
.

dϵ 𝒜 dϵ d > 0
ϵ > 0 ρ1, ρ2
𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) = 𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ2)
𝖯𝗋[ϵ, ρ1] ≤ edϵ 𝖯𝗋[ϵ, ρ2]

Differential Privacy: DiPA is differentially private if is -differentially
private.

𝒜 ∃d . 𝒜 dϵ

Computational Problem and Results

-Differential Privacy: DiPA is -differentially private (for) if for all
, and any two paths starting from the initial state such that

 and adjacent and ,
.

dϵ 𝒜 dϵ d > 0
ϵ > 0 ρ1, ρ2
𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) = 𝗈𝗎𝗍𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ1) 𝗂𝗇𝗌𝖾𝗊(ρ2)
𝖯𝗋[ϵ, ρ1] ≤ edϵ 𝖯𝗋[ϵ, ρ2]

Differential Privacy: DiPA is differentially private if is -differentially
private.

𝒜 ∃d . 𝒜 dϵ

Theorem: Given , there is a linear-time algorithm that can determine if is
differentially private.

𝒜 𝒜

Rest of the talk: Assume output
alphabet is a finite set

Leaking Cycle
Cycle: Path that starts and ends in the same control state

Leaking Cycle: A cycle that has an assignment transition and a transition with a
guard that references value stored in x

Leaking Cycle
Cycle: Path that starts and ends in the same control state

Leaking Cycle: A cycle that has an assignment transition and a transition with a
guard that references value stored in x

Example: Consider a program that outputs
 as long as queries are ordered in

descending order, and outputs and stops
on encountering the first pair in wrong
order.

⊥
⊤

Leaking Cycle
Cycle: Path that starts and ends in the same control state

Leaking Cycle: A cycle that has an assignment transition and a transition with a
guard that references value stored in x

Example: Consider a program that outputs
 as long as queries are ordered in

descending order, and outputs and stops
on encountering the first pair in wrong
order.

⊥
⊤

Self loop on is a leaking cycle.q1

Leaking Pair
Leaking Pair: A pair of cycles connected by a path such that

• and have no assignment transitions,

• has a transition with guard insample < x and has a transition with guard insample x
(or vice versa)

• Assignment transitions in ensure that value in x is at least (or at most) what it is in

(C1, C2) ρ
C1 C2

C1 C2 ≥

ρ C1

Leaking Pair
Leaking Pair: A pair of cycles connected by a path such that

• and have no assignment transitions,

• has a transition with guard insample < x and has a transition with guard insample x
(or vice versa)

• Assignment transitions in ensure that value in x is at least (or at most) what it is in

(C1, C2) ρ
C1 C2

C1 C2 ≥

ρ C1

Example: First checks if queries are less than threshold T,
then if they are greater than T, and then stops at first
query that is less T again.

Leaking Pair
Leaking Pair: A pair of cycles connected by a path such that

• and have no assignment transitions,

• has a transition with guard insample < x and has a transition with guard insample x
(or vice versa)

• Assignment transitions in ensure that value in x is at least (or at most) what it is in

(C1, C2) ρ
C1 C2

C1 C2 ≥

ρ C1

Example: First checks if queries are less than threshold T,
then if they are greater than T, and then stops at first
query that is less T again.
Self loop on and self loop on form a leaking pair.q1 q2

Characterizing Differentially Private DiPA

Characterizing Differentially Private DiPA

Well-formed DiPA: is well formed if it has no reachable leaking cycle or
leaking pair of cycles.

𝒜

Characterizing Differentially Private DiPA

Well-formed DiPA: is well formed if it has no reachable leaking cycle or
leaking pair of cycles.

𝒜

Theorem: is differentially private if and only if it is well formed.𝒜

Not well formed DiPA not differentially private⇒

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

Observation 2: Leaking cycle or pair identify
a pair of repeatable transitions such that the
value sampled in one transition must be less
than the other.

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

Observation 2: Leaking cycle or pair identify
a pair of repeatable transitions such that the
value sampled in one transition must be less
than the other.
Observation 3: If the means of these transitions are set in opposite order of
their guards, then the probability of the path corresponding to sufficiently many
repetitions of the cycle can be upper bounded by as small a number as desired.

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

Observation 2: Leaking cycle or pair identify
a pair of repeatable transitions such that the
value sampled in one transition must be less
than the other.
Observation 3: If the means of these transitions are set in opposite order of
their guards, then the probability of the path corresponding to sufficiently many
repetitions of the cycle can be upper bounded by as small a number as desired.

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

• Set

Observation 2: Leaking cycle or pair identify
a pair of repeatable transitions such that the
value sampled in one transition must be less
than the other.
Observation 3: If the means of these transitions are set in opposite order of
their guards, then the probability of the path corresponding to sufficiently many
repetitions of the cycle can be upper bounded by as small a number as desired.

Not well formed DiPA not differentially private⇒
Observation 1: For any path , if the means of samples are set to be consistent
with the guards along a path, then for sufficiently large ,

ρ
ϵ 𝖯𝗋[ϵ, ρ] ≥ 3/4.

• Set

Observation 2: Leaking cycle or pair identify
a pair of repeatable transitions such that the
value sampled in one transition must be less
than the other.
Observation 3: If the means of these transitions are set in opposite order of
their guards, then the probability of the path corresponding to sufficiently many
repetitions of the cycle can be upper bounded by as small a number as desired.
• Set

Well formed Differentially Private⇒

Well formed Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.

Well formed Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.
Cost of a transition : If is not critical, then cost is 0. If is critical and source
state of is a non-input state, then cost of is . Else it is .

t t t
t t d 2d

Well formed Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.
Cost of a transition : If is not critical, then cost is 0. If is critical and source
state of is a non-input state, then cost of is . Else it is .

t t t
t t d 2d

Weights: Weight of a path is sum of costs of all transitions in . Weight of
is maximum weight of path in .

ρ ρ 𝒜
𝒜

Well formed Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.
Cost of a transition : If is not critical, then cost is 0. If is critical and source
state of is a non-input state, then cost of is . Else it is .

t t t
t t d 2d

Weights: Weight of a path is sum of costs of all transitions in . Weight of
is maximum weight of path in .

ρ ρ 𝒜
𝒜

Theorem: A well formed DiPA is -differentially private.𝒜 𝗐𝗍(𝒜)ϵ

Well formed Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.
Cost of a transition : If is not critical, then cost is 0. If is critical and source
state of is a non-input state, then cost of is . Else it is .

t t t
t t d 2d

Weights: Weight of a path is sum of costs of all transitions in . Weight of
is maximum weight of path in .

ρ ρ 𝒜
𝒜

Theorem: A well formed DiPA is -differentially private.𝒜 𝗐𝗍(𝒜)ϵ
Example: cost() = 0, cost() = 1/2,
cost() = 2*(1/4)=1/2.

 = 1/2 + 1/2 = 1.

Thus is -differentially private.

t11 t01
t12

𝗐𝗍(𝒜)
𝒜 ϵ

Linear time checking of well formedness

Linear time checking of well formedness

One can check if a DiPA is well formed in linear time. If it is well formed, the
weight can be computed in linear time, assuming constant time for arithmetic
operations.

Linear time checking of well formedness

One can check if a DiPA is well formed in linear time. If it is well formed, the
weight can be computed in linear time, assuming constant time for arithmetic
operations.

• For example, to check if there is a reachable leaking cycle, check if there is
a reachable SCC that has an assignment transition, and a transition whose
guard compares the value stored in x.

Real valued outputs

The results on checking differential privacy can be extended to DiPA with real
valued outputs.

In a nutshell …

In a nutshell …

• We presented a automata model that can describe some differential privacy
algorithms

In a nutshell …

• We presented a automata model that can describe some differential privacy
algorithms

• Checking differential privacy of such algorithms for an unbounded sequence
of inputs is decidable in linear time

In a nutshell …

• We presented a automata model that can describe some differential privacy
algorithms

• Checking differential privacy of such algorithms for an unbounded sequence
of inputs is decidable in linear time

• Algorithm relies on checking conditions on the underlying graph of the
automaton

In a nutshell …

• We presented a automata model that can describe some differential privacy
algorithms

• Checking differential privacy of such algorithms for an unbounded sequence
of inputs is decidable in linear time

• Algorithm relies on checking conditions on the underlying graph of the
automaton
• Parameters of distributions don’t play a role: differential privacy ensured

even if these are changed in the algorithm

In a nutshell …

• We presented a automata model that can describe some differential privacy
algorithms

• Checking differential privacy of such algorithms for an unbounded sequence
of inputs is decidable in linear time

• Algorithm relies on checking conditions on the underlying graph of the
automaton
• Parameters of distributions don’t play a role: differential privacy ensured

even if these are changed in the algorithm
• Computed values of “d” for algorithms match the theoretical bounds known

Possible next steps

• Results can be extended to automata with multiple storage variables and
richer guard conditions

• How tight is the value of “d” computed by the algorithm?

• Checking other properties of automata-like models

• -differential privacy

• Accuracy

dϵ

