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Database D

q(D) may reveal private information

How can a database of personal information about individuals be accessed 
securely?

query q

Response q(D)

• Security can be ensured if the data is not allowed to be accessed!
• [Dinur-Nissim 2003] Entire database can be reconstructed using answers to a 

few random aggregate queries
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Database D

M

query qquery q

q(D) M(q(D))

M is a differential privacy mechanism

Interaction between database and user meditated by an algorithm M
• Add noise to  and share the noisy response q(D) M(q(D))
• Trade “accuracy” for “privacy”
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Randomized Response
An Example

• Goal: Determine how many people in a population smoke

• In response to a question “Do you smoke?”, each person is advised to answer as follows

• Toss a fair coin

• If the result is “tails” answer truthfully

• If the result is “heads”, toss another coin. If the second coin toss is “heads” answer “Yes”, 
else answer “No”

• “Privacy” arises from the plausible deniability of any outcome

• If  is the fraction of smokers in a population, then the expected number of “Yes” responses 
is 

p
(1/4)(1 − p) + (3/4)p = (1/4) + (p/2)
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Database D

Mq(D) M(q(D))

M is a differential privacy mechanism

Privacy of : “Behavior of  on database  
and  is similar.”

x M D
D + x

Definition:  is -differentially private if for any pair of adjacent inputs  
and each subset  of outputs

M dϵ q1, q2
S

𝖯𝗋(M(q1) ∈ S) ≤ edϵ 𝖯𝗋(M(q2) ∈ S)

Program : Depends on privacy budget M(ϵ) ϵ

Input to :  sequence of numbers, answers to aggregate queries on M q(D) D

Adjacency: Inputs  and  are adjacent if .q1 q2 |q1[i] − q2[i] | ≤ 1
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pdf of Lap( ) is a, μ
a
2

e−a|x−μ|
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Input: query answers Q[1..n] and threshold T
Output: first i such that Q[i] > T
noisyT = Lap( ,T)ϵ

2
for i = 1 to n 
noisyQ = Lap( ,Q[i]) 
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, for all adjacent inputs , for all  ∀ϵ q1, q2 o ∈ ⊥* ⊤
𝖯𝗋[SVT(q1) = o] ≤ eϵ𝖯𝗋[SVT(q2) = o]
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-differentially private for all .ϵ ϵ For all , not -differentially private.d dϵ



[BCJSV20] Given a program , the problem 
of determining if it is -differentially private is 

undecidable.

M(ϵ)
dϵ
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This Talk
An automaton model to describe some differential privacy algorithms


• The model processes an (unbounded) stream of real-valued query answers 
(input) and produces a stream of outputs (finite or real-valued)


• Some well-known algorithms captured by the model

Identify necessary and sufficient conditions when an automaton is differentially 
private


• Necessary and sufficient conditions can be checked in linear time


• Algorithm certifies differential privacy or produces counter-examples



Prior Work

• Constructing Privacy proofs: [Reed, Pierce 2010], [Gaboardi, Haeberlen, Hsu, 
Narayan, Pierce 2013], [Barthe, Kopf, Olmedo, Zanella-Beguelin 2013], [Barthe, 
Gaboardi, Gregoire, Hsu, Strub 2016], [Zhang, Kifer 2017], [Albarghouthi, Hsu 
2018], [Wang, Ding, Wang, Kifer, Zhang 2019], [de Amorim, Gaboardi, Hsu, 
Katsumata 2019]


• Discovering privacy bugs: [Ding, Wang, Wang, Zhang, Kifer 2018], [Bichsel, 
Gehr, Drechsler-Cohen, Tsankov, Vechev 2018], [Wang, Ding, Kifer, Zhang 2020]


• Decision Procedures: [Barthe, Chadha, Jagannath, Sistla, V. 2019]


• This talk: Decision procedure for unbounded inputs
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Overview

Parametric automata with finitely many control states and 2 variables: storage 
variable x and sampling variable insample. In each step:

• A number is sampled from the Laplace distribution whose parameters 
depend on the current state and is stored in insample.

• Depending on the current state, a real number is read from input and added 
to insample.

• If an input is read, then control state is changed based on a comparison 
between insample and stored value x. The transition has an output.

• Based on the transition, the stored value x maybe be updated to insample.
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DiPA: Terms and Assumptions
Assignment Transition: One where insample is assigned to x

Initialization: Initial state has only one transition which is an assignment transition and guard is 
true

Determinacy and Output Distinction: Transitions out of any state have disjoint guards with 
distinct outputs

• Knowing the start state and the sequence of outputs, determines the sequence of transitions 
taken

Paths: Sequence of consecutive transitions augmented with inputs

• For path ,  is the sequence of inputs and  is the sequence of outputs.ρ 𝗂𝗇𝗌𝖾𝗊(ρ) 𝗈𝗎𝗍𝗌𝖾𝗊(ρ)

Probability: For path  from initial state,  is the probability when security parameter is ρ 𝖯𝗋[ϵ0, ρ] ϵ0
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-Differential Privacy: DiPA  is -differentially private (for ) if for all 
, and any two paths  starting from the initial state such that 

 and adjacent  and , 
.

dϵ 𝒜 dϵ d > 0
ϵ > 0 ρ1, ρ2
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𝖯𝗋[ϵ, ρ1] ≤ edϵ 𝖯𝗋[ϵ, ρ2]

Differential Privacy: DiPA  is differentially private if  is -differentially 
private.

𝒜 ∃d . 𝒜 dϵ

Theorem: Given , there is a linear-time algorithm that can determine if  is 
differentially private.

𝒜 𝒜



Rest of the talk: Assume output 
alphabet is a finite set
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Leaking Pair: A pair of cycles  connected by a path  such that


•  and  have no assignment transitions,


•  has a transition with guard insample < x and  has a transition with guard insample  x 
(or vice versa)


• Assignment transitions in  ensure that value in x is at least (or at most) what it is in 

(C1, C2) ρ
C1 C2

C1 C2 ≥

ρ C1

Example: First checks if queries are less than threshold T, 
then if they are greater than T, and then stops at first 
query that is less T again.
Self loop on  and self loop on  form a leaking pair.q1 q2
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Well-formed DiPA:  is well formed if it has no reachable leaking cycle or 
leaking pair of cycles.

𝒜

Theorem:  is differentially private if and only if it is well formed.𝒜
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• Set 

Observation 2: Leaking cycle or pair identify 
a pair of repeatable transitions  such that the 
value sampled in one transition must be less 
than the other.
Observation 3: If the means of these transitions are set in opposite order of 
their guards, then the probability of the path corresponding to sufficiently many 
repetitions of the cycle can be upper bounded by as small a number as desired.
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Well formed  Differentially Private⇒
Critical Transition: A transition that is not part of a cycle.
Cost of a transition : If  is not critical, then cost is 0. If  is critical and source 
state of  is a non-input state, then cost of  is . Else it is .

t t t
t t d 2d

Weights: Weight of a path  is sum of costs of all transitions in . Weight of  
is maximum weight of path in .

ρ ρ 𝒜
𝒜

Theorem: A well formed DiPA  is -differentially private.𝒜 𝗐𝗍(𝒜)ϵ
Example: cost( ) = 0, cost( ) = 1/2, 
cost( ) = 2*(1/4)=1/2.


 = 1/2 + 1/2 = 1.

Thus  is -differentially private.

t11 t01
t12

𝗐𝗍(𝒜)
𝒜 ϵ
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Linear time checking of well formedness

One can check if a DiPA is well formed in linear time. If it is well formed, the 
weight can be computed in linear time, assuming constant time for arithmetic 
operations.

• For example, to check if there is a reachable leaking cycle, check if there is 
a reachable SCC that has an assignment transition, and a transition whose 
guard compares the value stored in x.



Real valued outputs

The results on checking differential privacy can be extended to DiPA with real 
valued outputs.
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In a nutshell …

• We presented a automata model that can describe some differential privacy 
algorithms

• Checking differential privacy of such algorithms for an unbounded sequence 
of inputs is decidable in linear time

• Algorithm relies on checking conditions on the underlying graph of the 
automaton
• Parameters of distributions don’t play a role: differential privacy ensured 

even if these are changed in the algorithm
• Computed values of “d” for algorithms match the theoretical bounds known



Possible next steps

• Results can be extended to automata with multiple storage variables and 
richer guard conditions


• How tight is the value of “d” computed by the algorithm?


• Checking other properties of automata-like models


• -differential privacy


• Accuracy

dϵ


