
Exploiting the SAT Revolution
for Automated Software

Verification

Lucas Cordeiro
Department of Computer Science

lucas.cordeiro@manchester.ac.uk
https://ssvlab.github.io/lucasccordeiro/

Memory errors in low-level systems software
written in unsafe programming languages such

as C or C++ represent one of the main problems in
computer security

Memory Safety Vulnerabilities

• The top ten vulnerabilities in CWE include four types of
memory errors (out of bounds and use after free)

• Microsoft reports that around 70% of all security updates
in their products address memory issues

• Google reports a similar number regarding bugs in the
Chrome Browser

Can we leverage program
analysis/synthesis to discover more
software vulnerabilities than existing

state-of-the-art approaches?

Research Questions

Given a computer program and a
specification, can we automatically verify
that the program performs as specified?

Objective of this talk

• BMC analyzes bounded program runs (achieving
decidability)

• SAT solvers handle formulas with millions of variables

• There exist better encodings using word-level theories

• Invariant inference and induction help verify more
programs than plain BMC

Discuss the past, present, and future of
software model checking based on

SAT/SMT solving

SAT solving as enabling technology

unit propagation,
conflict clauses and
non-chronological
backtracking

K
ro

en
ing

, D
., S

trich
m

a
n

, O
., D

ecisio
n P

roced
u

res -
A

n

A
lgo

rith
m

ic P
o

in
t o

f V
ie

w
, S

econ
d

 E
ditio

n
, S

p
rin

g
er.

SAT Competition

http://www.satcompetition.org/

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions
– unreachable code

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions
– unreachable code

• front-end converts unrolled and
optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0
a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3
t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions
– unreachable code

• front-end converts unrolled and
optimized program into SSA

• extraction of constraints C and properties P

 
 

 
































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

  

























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions
– unreachable code

• front-end converts unrolled and
optimized program into SSA

• extraction of constraints C and properties P
– specific to selected SMT solver, uses theories

 
 

 
































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

  

























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system
– state: pc and program variables
– derived from control-flow graph
– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up
– constant propagation
– forward substitutions
– unreachable code

• front-end converts unrolled and
optimized program into SSA

• extraction of constraints C and properties P
– specific to selected SMT solver, uses theories

• satisfiability check of C ¬P

 
 

 
































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

  

























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Cordeiro et al.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE TSE, 2012

Embedded Software Verification

• Powerstone: automotive-
control and fax
applications

• Real-Time SNU: matrix
handling and signal
processing, cyclic-
redundancy check,
Fourier transform, and
JPEG encoding

• WCET: a set of programs
for executing worst-case
time analysis

34 tasks; 900s, 15GB
ESBMC achieved the 2nd place

Alhawi et al.: Verification and refutation of C programs
based on k-induction and invariant inference. STTT, 2021

Difficulties in proving the correctness of
programs with loops in BMC

Does this program terminate?

• BMC techniques can falsify properties up to a given depth k

– prove correctness if an upper bound of k is known

» BMC tools typically fail to verify programs with bounded or
unbounded loops

#include <assert.h>
int main() {
int x = 1, y = 0;
while (y < 1000
&& nondet_int()) {

x = x + y;
y = y + 1;

}
assert(x >= y);
return 0;

}

BMC of Software Using Interval Methods
via Contractors

Apply
Contractor

Domain:

Constraint:

1) Analyze intervals and properties
– Static Analysis

2) Convert the problem into a CSP
– Variables, Domains and Constraints

3) Apply contractor to CSP
– Forward-Backward Contractor

4) Apply reduced intervals back to
the program

__ESBMC_assume(y <= 30 && y >= 20);

This assumption prunes our
search space to the orange area

Experimental Evaluation

Benchmark

ESBMC

w/o
Contractor

with
Contractor

search-space
pruned

our
approach

(Contractor)

our
approach

time in sec Frama-C

afnp2014.c Timeout 2.03s 99.99% unknown 0.00187 successful

2dim.c Timeout 29.41s 91% unknown 4.4E-05 unknown

2dim-2.c Timeout 34.65s 91% unknown 2.3E-05 unknown

2dim-3.c Timeout 0.28s 91% unknown 2.2E-05 unknown

2dim-double-
inter.c Timeout 80.24s 93.20% unknown 2.3E-05 unknown

bhmr2007.c Timeout 0.92s 100% successful 12.3338 unknown

ensure_order.c 848.01s 174.26s 100% successful 0.00451 unknown

sum01-2.c 678.15s 172.90s 99.99% unknown 2.0E-05 successful

arctan_Pade.c 212.82s 0.35s 100% successful 0.0006 successful

gcd_2.c 58.48s 48.19s 0.79% unknown 3.9E-05 unknown

gcd_3.c 76.09s 46.42s 0.79% unknown 1.9E-05 unknown

verisec_... 0.50s 0.27s 100% successful 1.4E-05 unknown

• SV-COMP 2021 benchmarks, standard PC desktop, TO = 900s

Induction-Based Verification for Software

unsigned int x=*;
while(x>0) x--;
assume(x<=0);
assert(x==0);

k=1
while k<=max_iterations do

if baseP,,k then
return trace s[0..k]

else
k=k+1
if fwdP,,k then
return true

else if stepP’,,k then
return true

end if
end
return unknown

unsigned int x=*;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=*;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Gadelha et al.: Handling loops in bounded model
checking of C programs via k-induction. STTT, 2017

Automatic Invariant Generation

• Infer invariants using intervals, octagons, and convex
polyhedral constraints for the inductive step

– e.g., a ≤ x ≤ b; x ≤ a, x-y ≤ b; and ax + by ≤ c

• Discover linear/polynomial relations among integer/real
variables to infer loop invariants

intervals octagons convex polyhedral

k-Induction can prove the correctness of more
programs when the invariant generation is enabled

• SV-COMP 2021, 4927 verification tasks, max. score: 7844

• ESBMC achieved the 4th place

Verification of the Reach-Safety Category

https://sv-comp.sosy-lab.org/2021/

• SV-COMP 2021, 175 verification tasks, max. score: 345

• ESBMC achieved the 2th place

Verification of the AWS Subcategory

https://sv-comp.sosy-lab.org/2021/

BMC for Bug Finding and Code Coverage

• Translate the program to an intermediate representation (IR)

• Add safety properties to check for errors or goals to check
for coverage

• Symbolically execute IR to produce an SSA program

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover errors and goals

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and
Java

IR Symex
SMT

Solver
Cover errors
or goals

Properties
and goals

SSA

Alshmrany et al.: FuSeBMC: A White-Box Fuzzer
for Finding Security Vulnerabilities in C
Programs. FASE, 2021

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Kruegel, C., "Finding Vulnerabilities in Embedded Software", UC Santa Barbara

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Competition on Software Testing 2021:
Results of the Cover-Error Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 2nd place in
Overall, and 3rd place in Energy Consumption

https://test-comp.sosy-lab.org/2021/

• Distinguished Paper Award at ACM ICSE’11
(acceptance rate 14%)

• 28 awards from the international competitions
on software verification (SV-COMP) and testing
(Test-Comp) 2012-2021 at TACAS/FASE
– Bug finding

– Cover error

• Intel deploys ESBMC in production as one of its
verification engines for verifying firmware in C

• Nokia has found security vulnerabilities in
telecommunication software written in C++

Achievements

• SAT/SMT-based software model checking is a
competitive method to verify programs

• We handle a variety of properties
– Memory

– Reachability

– Concurrency

• We support incremental verification, k-induction,
termination, and invariant inference

• The tools have been applied to find security
vulnerabilities in large-scale software
systems

Conclusions

Thank you

http://esbmc.org/
https://github.com/esbmc/esbmc

