MANCHESTER
1824

The University of Manchester

Exploiting the SAT Revolution
for Automated Software
Verification

™

baem\

&> Lucas Cordeiro
’\V Department of Computer Science
" lucas.cordeiro@manchester.ac.uk
https://ssvilab.github.io/lucasccordeiro/

Memory Safety Vulnerabilities

Memory errors in low-level systems software
written in unsafe programming languages such
as C or C++ represent one of the main problems in
computer security

* The top ten vulnerabilities in CWE include four types of
memory errors (out of bounds and use after free)

* Microsoft reports that around 70% of all security updates
In their products address memory issues

* Google reports a similar number regarding bugs in the
Chrome Browser

a" Microsoft Go gle

Research Questions

Given a computer program and a
specification, can we automatically verify
that the program performs as specified?

Can we leverage program
analysis/synthesis to discover more
software vulnerabilities than existing
state-of-the-art approaches?

Objective of this talk

Discuss the past, present, and future of

software model checking based on
SAT/SMT solving

BMC analyzes bounded program runs (achieving
decidability)

SAT solvers handle formulas with millions of variables
There exist better encodings using word-level theories

Invariant inference and induction help verify more
programs than plain BMC

SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

Serbrardniied prorariemeng Linguagi
& Coempder SptaTiny b yeing sodeers
= Sohanbaled SEhGipen

* Sphmrisased [ype nemi
= Sodverianed conoerrency bugfndeg
= Sodvmraated el
1,000,000 Constraints .
100,000 Constraints

unit propagation,
conflict clauses and -
non-chronological
backtracking

UOIIPT PUOIDS ‘MBIA JO JUlOd OlWYHIOB|Y

10,000 Constraints

Uy - S8INpasold uoisioaq O ‘uewyous g ‘Buiusosy

"1abuldg

|.000 Constraints
1998 2001 2004 2007 2010

CPU Time (s)

800

g

8

200

SAT Competition

¢

+

v

tere

ERN

SATzilla2012 APP
SATzilla2012 ALL
Industrial SAT Solver
lingeling (SC11 Bronze)
interactSAT

glucose

SINN

ZENN

Lingeling
linge_dyphase
simpsat

glueminisat (SC11 Silver)

glucose (SC11 Gold)
CryptoMiniSat (REF.)
minisat (REF.)

100

400 500

200 300

number of solved instances

http://www.satcompetition.org/

Software BMC

* program modelled as transition system
— State: pc and program variables
— derived from control-flow graph

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

b
1-intaf2], i, x; |
2

2 if I(x==0) then goto 7 h
v
: a a

[4:asserti<2 | I 8 assert2+i<2

3asserti>=0 7:assert2 +i>=0 ‘
2 v I
¥ ¥
5: afi] = 0. 9: ai+2] = 1; |
¥ v
6: goto 10 H 10: assert1+i>=0 ‘
v
| 11:assert1 +i<2 |
v
|12 asserta[i+1] == 1 |
¥
| ref

Software BMC

* program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

T

1 112] |

|2 if I(x==0) then goto 7 Iﬁ
¥

I 3 asserti>=0 | | T-assert2 +i>=0
v v

| 4:asserti<2 | I 8:assert2+i<2
¥ v

| 5 ali]=0; | | 9: afi+2] = 1
] v

|

v

Software BMC

* program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

« program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

Software BMC

* program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

« program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

¥

« unfolded program optimized to reduce blow-up ﬂ

— constant propagation)
— forward substitutions

> crucial

— unreachable code

[——p
¥

I 3:asserti>=0 | | T-assert2 +i>=0
v v

| 4 erti<2 ||B t2+i<2
¥ v

l 5 ali]=0 | | 9: afi+2] = 1

[] v

Software BMC

* program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

« program unfolded up to given bounds

— constant propagation)

int getPassword() {

ks

char buf[2];
gets(buf);
return strcmp(buf, "ML");

void main(){

¥

int x=getPassword();

if(x){
printf(*Access Denied\n”);
exit(0);

¥
printf("Access Granted\n”);

« unfolded program optimized to reduce blow-up ﬂ

— forward substitutions .\ crycial
— unreachable code

 front-end converts unrolled and
optimized program into SSA

Xy ==0

ag WITH [iy:=0]
do

a, WITH [2+ig:=1]
g; ?7a;:as

t, = a, [1+i,] == 1

Q
N
1 | | B VO |

Software BMC

program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

« program unfolded up to given bounds

— constant propagation)

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

¥

« unfolded program optimized to reduce blow-up ﬂ

— forward substitutions .\ crycial
— unreachable code

 front-end converts unrolled and
optimized program into SSA

g, = (xl = O)
na, = store(ao , iO,O)
C=|rna,=aq,

ANay = store(a2 2+ io,l)

| Aay =ite(g),a,,a;)

(i, >0ni, <2

« extraction of constraints C and properties P~ ,_|»>+0>0n2+i<2

A+, 20A1+i, <2

A select(a,,i, +1)=1

Software BMC

program modelled as transition system
— State: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

« program unfolded up to given bounds

— constant propagation)

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

ks

void main(){
int x=getPassword();
if(x){
printf(*Access Denied\n”);
exit(0);
b
printf(*Access Granted\n”);

¥

« unfolded program optimized to reduce blow-up ﬂ

— forward substitutions .\ crycial
— unreachable code

 front-end converts unrolled and
optimized program into SSA

g, = (xl = O)
na, = store(ao , iO,O)
C=|rna,=aq,

ANay = store(a2 2+ io,l)

| Aay =ite(g),a,,a;)

(i, >0ni, <2

« extraction of constraints C and properties P~ ,_|»>+0>0n2+i<2

A+, 20A1+i, <2

— specific to selected SMT solver, uses theories | rsetect(a, iy +1)=1

int getPassword() {

char buf[2];
Software BMC Gote(buf);
return strcmp(buf, "ML");

ks

program modelled as transition system

void main(){

— State: pc and program variables int x=getPassword();
: if(x){
— derived from control-flow graph printf(*Access Denied\n”);

— added safety properties as extra nodes }e"‘t(o);

° program unfolded up to given bOundS }printf(Access Granted\n”);

— constant propagation)
— forward substitutions .\ crycial "¢ = (%, =0)
— unreachable code nai=storelasi0)

« unfolded program optimized to reduce blow-up ﬂ

C=|rna,=aq,

* front-end converts unrolled and e :;O(r;(a;@;;o’l)
optimized program into SSA o ‘

« extraction of constraints C and properties P~ ,_|»>+0>0n2+i<2

A+, 20A1+i, <2

— specific to selected SMT solver, uses theories | rsetect(a, iy +1)=1

o Sat|sf|ab|||ty check of C A 7P Cordeiro et al.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE TSE, 2012

Embedded Software Verification

Powerstone: automotive-

control and fax
applications

Real-Time SNU: matrix
handling and signal
processing, cyclic-
redundancy check,
Fourier transform, and
JPEG encoding

WCET: a set of programs
for executing worst-case
time analysis

34 tasks; 900s, 15GB
ESBMC achieved the 2"d place

?‘O\(\QP\E‘ \{\é G?S\ 0@9 ch‘\ ?f‘:’% \(\6 *ei
'{\

80-

70-

60 -

(9]
O

3

Score (Max: 68)
Fey

2

D

1

D

C}

Alhawi et al.: Verification and refutation of C programs
based on k-induction and invariant inference. STTT, 2021

Difficulties in proving the correctness of
programs with loops in BMC

« BMC techniques can falsify properties up to a given depth k

— prove correctness if an upper bound of k is known

» BMC tools typically fail to verify programs with bounded or
unbounded loops

#include <assert.h>
int main() {
int x =1, y = 0;
while (y < 1000
&& nondet_int()) {

X =X +Y; Does this program terminate?
y =y +1;

}

assert(x >= y);
return 0O;

}

BMC of Software Using Interval Methods
via Contractors

1) Analyze intervals and properties
— Static Analysis

2) Convert the problem into a CSP

— Variables, Domains and Constraints

3) Apply contractor to CSP

— Forward-Backward Contractor
4) Apply reduced intervals back to
the program

1 unsigned int x=nondet_uint ();
2 unsigned int y=nondet_uint ();
3 _ ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);
-
5 assert(x >= y);

1 unsigned int x=nondet_uint ();

2 unsigned int y=nondet_uint ();

3 _ _ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);

5 assert(x >= y);

Domain: [z] = [20,30] and [y] = [0, 30]
Constraint: vy — 2+ < 0

__ESBMC _assume (y <= 30 && y >= 20);

This assumption prunes our
search space to the

Apply s /’/
Contractor . (/I
[x] = [20, 30] and [y] = [0, 30] [r] = [20,30] and [y] = [20,30]
flz}>0 §= [B.00]
flx)=y—=x [f(2)1] = I N [yo] — [z0] Forward-step

x=y— f(x) [z1] = [zo] N [yo] — [f(x)1] Backward-step
y=f(x)+x [y1] =[yo] N[f(z)1] + [x1] Backward-step

Experimental Evaluation

SV-COMP 2021 benchmarks, standard PC desktop, TO = 900s

Benchmark
afnp2014.c
2dim.c
2dim-2.c
2dim-3.c

2dim-double-
inter.c

bhmr2007.c
ensure_order.c
sum01-2.c
arctan_Pade.c
gcd 2.c
gcd 3.c
verisec ...

ESBMC
w/o with
Contractor Contractor
Timeout 2.03s
Timeout 29.41s
Timeout 34.65s
Timeout 0.28s
Timeout 80.24s
Timeout 0.92s
848.01s 174.26s
678.15s 172.90s
212.82s 0.35s
58.48s 48.19s
76.09s 46.42s
0.50s 0.27s

our

search-space approach

pruned

99.99%
91%
91%
91%

93.20%
100%
100%

99.99%
100%

0.79%
0.79%
100%

(Contractor) time in sec

unknown
unknown
unknown
unknown

unknown
successful
successful
unknown
successful
unknown
unknown
successful

our
approach

0.00187
4.4E-05
2.3E-05
2.2E-05

2.3E-05
12.3338
0.00451
2.0E-05
0.0006
3.9E-05
1.9E-05
1.4E-05

Frama-C
successful
unknown
unknown
unknown

unknown
unknown
unknown
successful
successful
unknown
unknown
unknown

Induction-Based Verification for Software

k=1
while k<=max_iterations do
if base, ,, then
return trace s[0..k]
else
k=k+1
if fwd, ,, then
return true
else if step,. ,, then
return true
end if
end
return unknown

unsigned int x=%;
while(x>0) x--;
assume(x<=0);
assert(x==0);

unsigned int x=%;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=%;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Gadelha et al.: Handling loops in bounded model
checking of C programs via k-induction. STTT, 2017

Automatic Invariant Generation

 Infer invariants using intervals, octagons, and convex
polyhedral constraints for the inductive step

—eg,asxs<b,x<a x-y<byandax+by<c

+
%
-,

> X

intervals

> X

octagons

> X

convex polyhedral

« Discover linear/polynomial relations among integer/real
variables to infer loop invariants

k-Induction can prove the correctness of more
programs when the invariant generation is enabled

Verification of the Reach-Safety Category

« SV-COMP 2021, 4927 verification tasks, max. score: 7844
« ESBMC achieved the 4t place

1000 ¢

25
CBMC ———
- CPAchecker —#—
DIVIME —f—
- ESBMC-kind =—t=—
Goblint ——Se—
100 | PeSCo —&—
- Pinaka —@—
Symbiotic
UAutomizer -
Ukojak —sp—
UTaipan
Verifbs

Min. time in s

10 |

5000

Cumulative score

https://sv-comp.sosy-lab.org/2021/

Verification of the AWS Subcategory

« SV-COMP 2021, 175 verification tasks, max. score: 345
« ESBMC achieved the 2t place

1000

LS

I CBMC m—ipm
- CPA-BAM-BnB —s—
i CPAchecker =——
- DIVINE e
ESEMC-kind —=—
100 - Goblint =——
C FeSCo
I SMACK
L Symbiotic J
- UAutomizer

Min. time In s

=100 -50 0 50 100 150 200 250

https://sv-comp.sosy-lab.org/2021/

BMC for Bug Finding and Code Coverage

 Translate the program to an intermediate representation (IR)

« Add safety properties to check for errors or goals to check
for coverage

« Symbolically execute IR to produce an SSA program

* Translate the resulting SSA program into a logical formula
* Solve the formula iteratively to cover errors and goals

* Interpret the solution to figure out the input conditions

« Spit those input conditions out as a test case

C and | | SSAI SMT

Properties
and goals

Cover errors
or goals

Alshmrany et al.: FuSeBMC: A White-Box Fuzzer
for Finding Security Vulnerabilities in C
Programs. FASE, 2021

Coverage Test Generation for Security

X = input();
if (x >= 10)
{
if (x < 100)
vulnerable_code();
else
func_a();
¥
else
func_b();

Kruegel, C., "Finding Vulnerabilities in Embedded Software", UC Santa Barbara

Coverage Test Generation for Security

X = input();
if (x >= 10) State A
{ Variables
if (x < 100) X =?7??
vulnerable_code();
else Constraints
funca(); |
¥
else

func_b();

Coverage Test Generation for Security

X = input(); State A
if (x >=10) Variables
{. X=7???
if (x < 100)
vulnerable_code(); Constraints,
e I Se Yy L
func_a(); | a—
> State AA State AB
else . .
func_b(); Variables Variables
X=7??? X=7???
Constraints Constraints

X <10 X >=10

Coverage Test Generation for Security

X = Input(); State AA State AB
if (x >=10)

{ Variables Variables
if (x < 100) X=22? X = 2?7
vulnerable_code(); . .

Constraints Constraints
else
func_a(); x <10 x >=10
b
else

func_b();

Coverage Test Generation for Security

X = input();
if (x >= 10)
{
if (x < 100)
vulnerable_code();
else

func_a();
)
else
func_b();

State AA State AB
Variables Variables
X =777 X =777

Constraints

| Constraint

x<+10 Jx>= 180\
State ABA | |State
Variables Variables
X =777 X =227

Constraints

X >=10
X <100

Constraints

x>=10
x >= 100

Coverage Test Generation for Security

X = input(); State ABA
if (x >=10) Variables
1 X = 227

if (x < 100)
vulnerable_code(); Constraints
else X >=10
func_a(); X < 100
; i
else
func_b(); Concretized
ABA
Variables
X =99

Competition on Software Testing 2021:
Results of the Cover-Error Category

700
CMA-ES-Fuzz
CoVeriTest ==
600 FuSeBMC —tf~ =
HyblidTiger =g —
KLEE =—f==—
500 }— Legion -
@ LibKluzzer
é PRTest
% 400 |+ Symbiotic _|
%‘ TracerX
5 VeriFuzz
£
ESOD — —
£
=
200 —
100 |~ =
0 4
0 100 200 300 400 500

Cumulative score

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 2nd place in
Overall, and 3rd place in Energy Consumption

https://test-comp.sosy-lab.org/2021/

Achievements

Distinguished Paper Award at ACM ICSE'11
(acceptance rate 14%)

28 awards from the international competitions
on software verification (SV-COMP) and testing
(Test-Comp) 2012-2021 at TACAS/FASE

— Bug finding
— Cover error

Intel deploys ESBMC in production as one of its
verification engines for verifying firmware in C

Nokia has found security vulnerabilities in
telecommunication software written in C++

Conclusions

SAT/SMT-based software model checking is a
competitive method to verify programs

We handle a variety of properties

— Memory

— Reachabillity

— Concurrency

We support incremental verification, k-induction,
termination, and invariant inference

The tools have been applied to find security

vulnerabilities in large-scale software (D
CELEGANT
systems ("

Thank you

aeb ESBMC is an open source, permissively licensed, context-bounded model
p checker based on satisfiability modulo theories for the verification of single- and
8 multi-threaded C/C++ programs. It does not require the user to annotate the

An Efficient SMT-based Bounded Model

Checker
GitHub

Documentation

News

Publications

SV-COMP

Test-Comp

People

Applications

Download Archive

Third Party Contributions
Index of Benchmarks

programs with pre- or postconditions, but allows the user to state additional
properties using assert-statements, that are then checked as well. Furthermore,
ESBMC provides two approaches (lazy and schedule recording) to model check
multi-threaded programs. It converts the verification conditions using different
background theories and passes them directly to an SMT solver.

ESBMC is a joint project with the Federal University of Amazonas, University of

Bristol, University of Manchester, University of Stellenbosch, and University of
Southampton.

News

21/03/2021: ESBMC v6.7 for Linux, macOS and Windows released.
30/12/2020: ESBMC v6.6 for Linux and MacOS released.

30/12/2020: ESBMC has successfully participated at the 10th Intl. Competition
on Software Verification held at TACAS 2021 in Luxembourg. ESBMC won first

place in the ReachSafety-XCSP subcategory. Second place in the
SoftwareSystems-AWS-C-Common-ReachSafety, ReachSafety-ECA, and

http://esbmc.org/

https://github.com/esbmc/esbmc

