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Weak memory models provide sound semantics for high 
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Release-Acquire :  all reads are acquire, all writes are release, 
updates(atomic read writes) are acquire/release 
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Release-Acquire (RA)

Verified compilation schemes 
to TSO and Power

Batty et al’11 
Batty et al’12 

Sarkar et al’12 

Supports optimizations

  Wx —> Ry to Ry—> Wx

Absence of data races in SC

implies no weak behaviours

SC does not! Not true for full C11!

Many program logics 

RSL, GPS,OGRA 
Intuitive  semantics 



Operational Model for RA
[J. Kang et al. POPL 2017, A. Podkopaev et al. 2016, Arxiv]



Process 1

1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Process 2

Init: x=y=0

rx=0 and ry=0?

Process 1

1. x=1; 
2. y=2; 

1. while(y=0) 
skip; 

2. rx=x;
Process 2

Init: x=y=0

rx=1?



Process 1

1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Process 2

Init: x=y=0

rx=0 and ry=0?

Process 1

1. x=1; 
2. y=2; 

1. while(y=0) 
skip; 

2. rx=x;
Process 2

Init: x=y=0

rx=1?

St
or

e 
bu

ff
er

M
es

sa
ge

 p
as

si
n

g



RA: High Level Description

RA P1 P2

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0



RA: High Level Description

RA P1 P2

memory

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0



RA: High Level Description

RA P1 P2

memory

pool of 
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0



RA: High Level Description

RA P1 P2

memory

pool of 
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write 
operation



RA: High Level Description

RA P1 P2

memory

pool of 
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write 
operation

logical  
clock for x



RA: High Level Description

RA P1 P2

memory

pool of 
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write 
operation

logical  
clock for x

logical  
clock for y



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

x := 3

1 6

x := 1

4 1



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 3

1 6

x := 1

4 1



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 3

1 6

x := 1

4 1



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 3

1 6

x := 1

4 1



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 3

1 6

x := 1

4 1



RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 3

1 6

x := 1

4 1 8
4



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

max

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

max4 2

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

max

4 2

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 1

4 1

3 2

local 
view

4 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 1

4 1

3 2

local 
view

1

4 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 1

4 1

3 2

local 
view

1

4 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp      yours
3. update local view



x := 1

4 1

3 2

local 
view

4 2

1



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory
5 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory
5 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1

x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp: 

i.  newer than yours
ii. not in memory

3. copy new view to memory
5 2

x := 2

5 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1

5 2

x := 2

5 2



RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1

5 2

8
4

x := 2

5 2

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1

5 2

8
4

5

x := 2

5 2

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local 
view

4 2

1

5 2

8
4

5

x := 2

5 2

Read
1. select view in memory
2. variable time stamp      yours
3. update local view





1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

x := 0
0 0

y := 0
0 0



1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

x := 0
0 0

y := 0
0 0

0 0



1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

x := 0
0 0

y := 0
0 0

0 0 0 0



1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

y := 0
0 0

x := 0
0 0



1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

x := 1
3 0

y := 0
0 0

x := 0
0 0

3 0



1. x=1; 
2. ry=y; 

1. y=1; 
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e 
bu

ff
er

x := 1
3 0

y := 1
0 7

y := 0
0 0

x := 0
0 0

3 0 0 7



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0 0

also known as CAS/RMW



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0 0

also known as CAS/RMW



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0

y := 1
0 7

7

also known as CAS/RMW



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0

y := 1
0 7

7

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp  t    yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

y := 1
0 7

73

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp  t    yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW



RA: High Level Description

arw(x, r, r′ )

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

y := 1
0 7

7

x := 2
4 7

4

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp  t    yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW



$r2=y1. $r2 = y;
2. x = 1;

1. $r1 = x;
2. y = 1;

y=0

RA run

Reachable: $r1 =0, $r2 = 1 and $r3=2?

$r1=0 $r2=0Register values:
Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0 0 0



$r2=y1. $r2 = y;
2. x = 1;

1. $r1 = 0;
2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0 0 0

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(x,0)



$r2=y1. $r2 = y;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

1. $r1 = 0;

r(x,0)

w(y,1)



$r2=y1. $r2 = 1;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(y,1)
0 2

1. $r1 = 0;

r(x,0)

w(y,1)



$r2=y1. $r2 = 1;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

0 21 2

x := 1

1 2

1. $r1 = 0;

r(y,1)

w(x,1)

r(x,0)

w(y,1)



$r2=y2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

0 21 2

x := 1

1 2

3 2

x := 2

3 2

1. $r1 = 0; 1. $r2 = 1;

r(y,1)

w(x,1)

w(x,2)

r(x,0)

w(y,1)



$r2=y2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = 2; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(y,1)
0 2

w(x,1)

1 2

x := 1

1 2

3 2

x := 2

3 2

1. $r1 = 0; 1. $r2 = 1;

r(x,2)

w(x,2)

3 2

r(x,0)

w(y,1)
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Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?
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Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

Decidability/ Complexity?

Each process is finite-state

• For SC, the reachability problem is PSPACE-complete

• Nontrivial for RA since the set of paths is nonregular

 The Reachability Problem 





The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

u v
1.
2. abba a
3.

b

bbb

abb4.
ba aa

214 is a solution
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The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices
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NP
PSPACE

EXPTIME

EXPSPACE

2EXPTIME

2EXPSPACE

NON PRIMITIVE RECURSIVE

<latexit sha1_base64="rf28PY6VUKZP+MEzAyNBKkb1YHI=">AAAB7XicdVDJSgNBEO1xjXGLevTSGARPw4xINLegF48RzALJEHp6epI2Pd1Dd00gDPkHLx4U8er/ePNv7CyC64OCx3tVVNULU8ENeN67s7S8srq2Xtgobm5t7+yW9vabRmWasgZVQul2SAwTXLIGcBCsnWpGklCwVji8mvqtEdOGK3kL45QFCelLHnNKwErN7ihSYHqlsudWPb9a8fFv4rveDGW0QL1XeutGimYJk0AFMabjeykEOdHAqWCTYjczLCV0SPqsY6kkCTNBPrt2go+tEuFYaVsS8Ez9OpGTxJhxEtrOhMDA/PSm4l9eJ4P4Isi5TDNgks4XxZnAoPD0dRxxzSiIsSWEam5vxXRANKFgAyraED4/xf+T5qnrV1zv5qxcu1zEUUCH6AidIB+doxq6RnXUQBTdoXv0iJ4c5Tw4z87LvHXJWcwcoG9wXj8APhyPlQ==</latexit>...
3EXPSPACE

ELEMENTARY

NONELEMENTARY
(Primitive Recursive)

UNDECIDABLE

<latexit sha1_base64="1lvCOrYKhhagvJILFGR/bmALWPo=">AAACA3icdVDJSgNBEO2JW4xb1JteGoMQL2EmSDS3aAh4HNEskMTQ0+kkTXp6hu4aMQwJXvwVLx4U8epPePNvnCyC64OCx3tVVNVzfME1mOa7EZubX1hcii8nVlbX1jeSm1sV7QWKsjL1hKdqDtFMcMnKwEGwmq8YcR3Bqk6/OPar10xp7slLGPis6ZKu5B1OCURSK7nTAHYDYalmX9gnxdJwNMpehX5aHgwTrWTKzORNK5+z8G9iZcwJUmgGu5V8a7Q9GrhMAhVE67pl+tAMiQJOBRsmGoFmPqF90mX1iEriMt0MJz8M8X6ktHHHU1FJwBP160RIXK0HrhN1ugR6+qc3Fv/y6gF0jpshl34ATNLpok4gMHh4HAhuc8UoiEFECFU8uhXTHlGEQhTbOITPT/H/pJLNWLmMeX6YKpzO4oijXbSH0shCR6iAzpCNyoiiW3SPHtGTcWc8GM/Gy7Q1ZsxmttE3GK8fHquXMQ==</latexit>

EXPSPACE 2p(n)

<latexit sha1_base64="X9DZEGTAZVTsya3hNHJh5GLH8jU=">AAACCXicdVDLSgMxFM34rPU16tJNsAh1U2aK+NhVRXA5orWFdiyZNNXQTGZI7ohlmC7d+CtuXCji1j9w59+Y1go+D/fC4Zx7Se4JYsE1OM6bNTY+MTk1nZvJz87NLyzaS8tnOkoUZVUaiUjVA6KZ4JJVgYNg9VgxEgaC1YLuwcCvXTGleSRPoRczPyQXknc4JWCklo2bwK4hLR/WvRNv7+Aw6/f7uHyemoqLciPLWnbBKe067u6Wi38Tt+QMUUAjeC37tdmOaBIyCVQQrRuuE4OfEgWcCpblm4lmMaFdcsEahkoSMu2nw0syvG6UNu5EyrQEPFS/bqQk1LoXBmYyJHCpf3oD8S+vkUBnx0+5jBNgkn481EkEhggPYsFtrhgF0TOEUMXNXzG9JIpQMOHlTQifl+L/yVm55G6VnOPNQmV/FEcOraI1VEQu2kYVdIQ8VEUU3aA79IAerVvr3nqynj9Gx6zRzgr6BuvlHbYqmbs=</latexit>

2EXPSPACE 22
p(n)

<latexit sha1_base64="Sr/3PVCrT9DBuqicnBCh32BeLuc=">AAACDnicdVDLTgIxFO34RHyhLt00EhLckBk0KDuUkLjEKI8EkHRKgYZOZ9LeMZLJ8ANu/BU3LjTGrWt3/o3Dw8Tnyb3JyTn3pr3H9gTXYJrvxtz8wuLScmwlvrq2vrGZ2NquatdXlFWoK1xVt4lmgktWAQ6C1T3FiGMLVrMHxbFfu2ZKc1dewtBjLYf0JO9ySiCS2olUE9gNBAelevmifFIshaPRCGevgml5abkfhmG8nUiambxp5XMW/k2sjDlBEs1Qbifemh2X+g6TQAXRumGZHrQCooBTwcJ409fMI3RAeqwRUUkcplvB5JwQpyKlg7uuiloCnqhfNwLiaD107GjSIdDXP72x+JfX8KF73Aq49Hxgkk4f6voCg4vH2eAOV4yCGEaEUMWjv2LaJ4pQiBIch/B5Kf6fVLMZK5cxzw+ThdNZHDG0i/ZQGlnoCBXQGSqjCqLoFt2jR/Rk3BkPxrPxMh2dM2Y7O+gbjNcPEDabgA==</latexit>

3EXPSPACE 22
2p(n)

<latexit sha1_base64="M9pTKniLrIOLaM+0wRmkJucM/4g=">AAACP3icdVBNbxMxEPWWrxJaCHDkYhEhcYp2K1ToraVaiUOpAjRpqjiKbGeSWvF6V/Ys6sra/DIu/QvcuHLpoQhx5YaTBonPJ4309N6MZuaJQiuHcfwpWrt2/cbNW+u3G3c2Nu/ea95/0HN5aSV0Za5z2xfcgVYGuqhQQ7+wwDOh4VjM9hf+8XuwTuXmCKsChhmfGjVRkmOQRs0eQzhDnx6kr9PDo723J/V8PqcNNlau0LxyWGnwTKipLIuRn1GmDGUZx1Mh/GFdU+bpjGUiP/Npv/Ous7efBq2uR81W3N6Jk53thP5Nkna8RIus0Bk1P7JxLssMDErNnRskcYFDzy0qqaFusNJBweWMT2EQqOEZuKFf/l/TJ0EZ00luQxmkS/XXCc8z56pMhM7F6e5PbyH+yxuUOHkx9MoUJYKRV4smpaaY00WYdKwsSNRVIFxaFW6l8pRbLjFE3ggh/PyU/p/0ttrJdjt+86y1+3IVxzp5RB6TpyQhz8kueUU6pEsk+UA+k0vyJTqPLqKv0ber1rVoNfOQ/Ibo+w+e3rCB</latexit>

ELEMENTARY
[

k2N
{kEXPSPACE}

<latexit sha1_base64="EXQOyxpuY5xVvazGul59Nag77Ts=">AAACNnicdVBNbxMxFPSmUNIAbWiPvVhESFyIdqMqkFugisSBhBY1aatsiLzel8SK17uy31aNVsmf4sLv4JYLBxDqtT+hzgcSBDqy5dHMe7bfBIkUBl137uS2HjzcfpTfKTx+8nR3r/hsv2PiVHNo81jG+iJgBqRQ0EaBEi4SDSwKJJwH4+OFf34F2ohYneEkgV7EhkoMBGdopX6x6SNcY9b62HrV+NBoNlpnbz9dTmezGfVTFYIONOOQVT6vl8/DGDcPNV2hb+8rueWa69WqHv2XeGV3iRJZ46Rf/OaHMU8jUMglM6bruQn2MqZRcAnTgp8aSBgfsyF0LVUsAtPLlmNP6QurhHQQa7sV0qX6Z0fGImMmUWArI4Yjs+ktxP953RQHb3qZUEmKoPjqoUEqKcZ0kSENhQaOcmIJ41rYv1I+YjYptEkXbAi/J6X3k06l7FXL7ulRqf5uHUeeHJLn5CXxyGtSJ+/JCWkTTr6QOflBfjpfne/OL+dmVZpz1j0H5C84t3cKRK4X</latexit>

NON-ELEMENTARY 2
22

··
·n

| {z }
n

<latexit sha1_base64="+YNtuJEaqzwysqGd18bKKoak7ak=">AAACTXicdVFNTxsxFPSGz6YFAhx7sYgq9bCKdkME4cbHhSOVCCBl08jrfQErXu/KfouIVpsfyAWJG/+CCwcQQvUmQWppO7Ll0bw38vM4TKUw6HkPTmVufmFxaflT9fOXldW12vrGmUkyzaHDE5noi5AZkEJBBwVKuEg1sDiUcB4Oj8r6+TVoIxJ1iqMUejG7VGIgOEMr9WtRgHCD+QEfgo6ZKsbjMd12aculbZc2vVbbrQaZikCHmnHImz9nK+BRgh+PZjFFPy+dhUsDaXVT7dfqXmPP8/d2fPo38RveBHUyw0m/dh9ECc9iUMglM6breyn2cqZRcAmFHclAyviQXULXUsViML18kkZBv1klooNE262QTtTfHTmLjRnFoe2MGV6Zj7VS/Fetm+Gg3cuFSjMExacXDTJJMaFltDQSGjjKkSWMa2FnpfyK2dzQfkAZwvtL6f/JWbPh7zS8H636/uEsjmXylWyR78Qnu2SfHJMT0iGc3JJH8kxenDvnyXl13qatFWfm2SR/oLL0C2DDs40=</latexit>
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P

NP
PSPACE

EXPTIME
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2EXPTIME

2EXPSPACE

NON PRIMITIVE RECURSIVE

<latexit sha1_base64="rf28PY6VUKZP+MEzAyNBKkb1YHI=">AAAB7XicdVDJSgNBEO1xjXGLevTSGARPw4xINLegF48RzALJEHp6epI2Pd1Dd00gDPkHLx4U8er/ePNv7CyC64OCx3tVVNULU8ENeN67s7S8srq2Xtgobm5t7+yW9vabRmWasgZVQul2SAwTXLIGcBCsnWpGklCwVji8mvqtEdOGK3kL45QFCelLHnNKwErN7ihSYHqlsudWPb9a8fFv4rveDGW0QL1XeutGimYJk0AFMabjeykEOdHAqWCTYjczLCV0SPqsY6kkCTNBPrt2go+tEuFYaVsS8Ez9OpGTxJhxEtrOhMDA/PSm4l9eJ4P4Isi5TDNgks4XxZnAoPD0dRxxzSiIsSWEam5vxXRANKFgAyraED4/xf+T5qnrV1zv5qxcu1zEUUCH6AidIB+doxq6RnXUQBTdoXv0iJ4c5Tw4z87LvHXJWcwcoG9wXj8APhyPlQ==</latexit>...
3EXPSPACE

ELEMENTARY

NONELEMENTARY
(Primitive Recursive)

UNDECIDABLE

<latexit sha1_base64="1lvCOrYKhhagvJILFGR/bmALWPo=">AAACA3icdVDJSgNBEO2JW4xb1JteGoMQL2EmSDS3aAh4HNEskMTQ0+kkTXp6hu4aMQwJXvwVLx4U8epPePNvnCyC64OCx3tVVNVzfME1mOa7EZubX1hcii8nVlbX1jeSm1sV7QWKsjL1hKdqDtFMcMnKwEGwmq8YcR3Bqk6/OPar10xp7slLGPis6ZKu5B1OCURSK7nTAHYDYalmX9gnxdJwNMpehX5aHgwTrWTKzORNK5+z8G9iZcwJUmgGu5V8a7Q9GrhMAhVE67pl+tAMiQJOBRsmGoFmPqF90mX1iEriMt0MJz8M8X6ktHHHU1FJwBP160RIXK0HrhN1ugR6+qc3Fv/y6gF0jpshl34ATNLpok4gMHh4HAhuc8UoiEFECFU8uhXTHlGEQhTbOITPT/H/pJLNWLmMeX6YKpzO4oijXbSH0shCR6iAzpCNyoiiW3SPHtGTcWc8GM/Gy7Q1ZsxmttE3GK8fHquXMQ==</latexit>

EXPSPACE 2p(n)

<latexit sha1_base64="X9DZEGTAZVTsya3hNHJh5GLH8jU=">AAACCXicdVDLSgMxFM34rPU16tJNsAh1U2aK+NhVRXA5orWFdiyZNNXQTGZI7ohlmC7d+CtuXCji1j9w59+Y1go+D/fC4Zx7Se4JYsE1OM6bNTY+MTk1nZvJz87NLyzaS8tnOkoUZVUaiUjVA6KZ4JJVgYNg9VgxEgaC1YLuwcCvXTGleSRPoRczPyQXknc4JWCklo2bwK4hLR/WvRNv7+Aw6/f7uHyemoqLciPLWnbBKe067u6Wi38Tt+QMUUAjeC37tdmOaBIyCVQQrRuuE4OfEgWcCpblm4lmMaFdcsEahkoSMu2nw0syvG6UNu5EyrQEPFS/bqQk1LoXBmYyJHCpf3oD8S+vkUBnx0+5jBNgkn481EkEhggPYsFtrhgF0TOEUMXNXzG9JIpQMOHlTQifl+L/yVm55G6VnOPNQmV/FEcOraI1VEQu2kYVdIQ8VEUU3aA79IAerVvr3nqynj9Gx6zRzgr6BuvlHbYqmbs=</latexit>

2EXPSPACE 22
p(n)

<latexit sha1_base64="Sr/3PVCrT9DBuqicnBCh32BeLuc=">AAACDnicdVDLTgIxFO34RHyhLt00EhLckBk0KDuUkLjEKI8EkHRKgYZOZ9LeMZLJ8ANu/BU3LjTGrWt3/o3Dw8Tnyb3JyTn3pr3H9gTXYJrvxtz8wuLScmwlvrq2vrGZ2NquatdXlFWoK1xVt4lmgktWAQ6C1T3FiGMLVrMHxbFfu2ZKc1dewtBjLYf0JO9ySiCS2olUE9gNBAelevmifFIshaPRCGevgml5abkfhmG8nUiambxp5XMW/k2sjDlBEs1Qbifemh2X+g6TQAXRumGZHrQCooBTwcJ409fMI3RAeqwRUUkcplvB5JwQpyKlg7uuiloCnqhfNwLiaD107GjSIdDXP72x+JfX8KF73Aq49Hxgkk4f6voCg4vH2eAOV4yCGEaEUMWjv2LaJ4pQiBIch/B5Kf6fVLMZK5cxzw+ThdNZHDG0i/ZQGlnoCBXQGSqjCqLoFt2jR/Rk3BkPxrPxMh2dM2Y7O+gbjNcPEDabgA==</latexit>

3EXPSPACE 22
2p(n)

<latexit sha1_base64="M9pTKniLrIOLaM+0wRmkJucM/4g=">AAACP3icdVBNbxMxEPWWrxJaCHDkYhEhcYp2K1ToraVaiUOpAjRpqjiKbGeSWvF6V/Ys6sra/DIu/QvcuHLpoQhx5YaTBonPJ4309N6MZuaJQiuHcfwpWrt2/cbNW+u3G3c2Nu/ea95/0HN5aSV0Za5z2xfcgVYGuqhQQ7+wwDOh4VjM9hf+8XuwTuXmCKsChhmfGjVRkmOQRs0eQzhDnx6kr9PDo723J/V8PqcNNlau0LxyWGnwTKipLIuRn1GmDGUZx1Mh/GFdU+bpjGUiP/Npv/Ous7efBq2uR81W3N6Jk53thP5Nkna8RIus0Bk1P7JxLssMDErNnRskcYFDzy0qqaFusNJBweWMT2EQqOEZuKFf/l/TJ0EZ00luQxmkS/XXCc8z56pMhM7F6e5PbyH+yxuUOHkx9MoUJYKRV4smpaaY00WYdKwsSNRVIFxaFW6l8pRbLjFE3ggh/PyU/p/0ttrJdjt+86y1+3IVxzp5RB6TpyQhz8kueUU6pEsk+UA+k0vyJTqPLqKv0ber1rVoNfOQ/Ibo+w+e3rCB</latexit>

ELEMENTARY
[

k2N
{kEXPSPACE}

<latexit sha1_base64="EXQOyxpuY5xVvazGul59Nag77Ts=">AAACNnicdVBNbxMxFPSmUNIAbWiPvVhESFyIdqMqkFugisSBhBY1aatsiLzel8SK17uy31aNVsmf4sLv4JYLBxDqtT+hzgcSBDqy5dHMe7bfBIkUBl137uS2HjzcfpTfKTx+8nR3r/hsv2PiVHNo81jG+iJgBqRQ0EaBEi4SDSwKJJwH4+OFf34F2ohYneEkgV7EhkoMBGdopX6x6SNcY9b62HrV+NBoNlpnbz9dTmezGfVTFYIONOOQVT6vl8/DGDcPNV2hb+8rueWa69WqHv2XeGV3iRJZ46Rf/OaHMU8jUMglM6bruQn2MqZRcAnTgp8aSBgfsyF0LVUsAtPLlmNP6QurhHQQa7sV0qX6Z0fGImMmUWArI4Yjs+ktxP953RQHb3qZUEmKoPjqoUEqKcZ0kSENhQaOcmIJ41rYv1I+YjYptEkXbAi/J6X3k06l7FXL7ulRqf5uHUeeHJLn5CXxyGtSJ+/JCWkTTr6QOflBfjpfne/OL+dmVZpz1j0H5C84t3cKRK4X</latexit>

NON-ELEMENTARY 2
22

··
·n

| {z }
n

<latexit sha1_base64="+YNtuJEaqzwysqGd18bKKoak7ak=">AAACTXicdVFNTxsxFPSGz6YFAhx7sYgq9bCKdkME4cbHhSOVCCBl08jrfQErXu/KfouIVpsfyAWJG/+CCwcQQvUmQWppO7Ll0bw38vM4TKUw6HkPTmVufmFxaflT9fOXldW12vrGmUkyzaHDE5noi5AZkEJBBwVKuEg1sDiUcB4Oj8r6+TVoIxJ1iqMUejG7VGIgOEMr9WtRgHCD+QEfgo6ZKsbjMd12aculbZc2vVbbrQaZikCHmnHImz9nK+BRgh+PZjFFPy+dhUsDaXVT7dfqXmPP8/d2fPo38RveBHUyw0m/dh9ECc9iUMglM6breyn2cqZRcAmFHclAyviQXULXUsViML18kkZBv1klooNE262QTtTfHTmLjRnFoe2MGV6Zj7VS/Fetm+Gg3cuFSjMExacXDTJJMaFltDQSGjjKkSWMa2FnpfyK2dzQfkAZwvtL6f/JWbPh7zS8H636/uEsjmXylWyR78Qnu2SfHJMT0iGc3JJH8kxenDvnyXl13qatFWfm2SR/oLL0C2DDs40=</latexit>
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Reachability of RA without arw  

OPEN



Context-bounded Analysis (CBA)



Context-bounded Analysis (CBA)

 Efficient under-approximation technique for SC [Qadeer et 
al. 2005, Lal et al. 2009, Torre et al. 2009] 

 A context denotes one active process in a run 

  For instance,  has an  unbounded context switch, 
while  is 1-context bounded 

• Several tools: CHESS, Corral, CSeq, etc

(P1P2)*
P1P*2
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P2 P4
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The state reachability problem is still undecidable for RA 
with a bounded number (3) of context switches  

(context: only one  “active” process) 
P1 runs; P2 runs; P3 runs; P4 runs 



Context-bounded Analysis (CBA)

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices

The state reachability problem is still undecidable for RA 
with a bounded number (3) of context switches  

(context: only one  “active” process) 
P1 runs; P2 runs; P3 runs; P4 runs 

Need a different under approximation for RA
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View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

2-bounded run

A view-switch happens when 
a process reads a value 

written by another process, 
and changes its view

No View switch
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View switch
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A view-switch happens when 
a process reads a value 

written by another process, 
and changes its view
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5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3



r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when 
a process reads a value 

written by another process, 
and changes its view

Bounding the  number of 
essential views in the memory
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r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when 
a process reads a value 

written by another process, 
and changes its view

Bounding the  number of 
essential views in the memory
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r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when 
a process reads a value 

written by another process, 
and changes its view

Bounding the  number of 
essential views in the memory

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

The undecidability proof needed unbounded  number of view switches
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Definition

Reachability problem restricted to K-bounded runs

Theorem
The K-bounded reachability for RA is reducible to 

K+n bounded context reachability under SC

Code-to-code 
translation



K-bounded Reachability Problem

Definition

Reachability problem restricted to K-bounded runs

Theorem
The K-bounded reachability for RA is reducible to 

K+n bounded context reachability under SC

Corollary
The K-bounded reachability for RA  is decidable 

for finite-state programs

Code-to-code 
translation
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View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

• K time stamps, one per essential message

• Another K  time stamps for comparison corresponding to a 

view change 



View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

• K time stamps, one per essential message

• Another K  time stamps for comparison corresponding to a 

view change 

• 2K time stamps



Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)
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Globally, maintain a set of Messages, each of type (var, View)



• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes, 

pUseful(x)=true, and update ptime(x)

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)



• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes, 

pUseful(x)=true, and update ptime(x)

• Guess if this will result in an essential message. If yes,  add to 

Messages if pUseful(x)=true for all pview_x in pView

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)



• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes, 

pUseful(x)=true, and update ptime(x)

• Guess if this will result in an essential message. If yes,  add to 

Messages if pUseful(x)=true for all pview_x in pView

• Once all essential messages are generated, Messages has all necessary 

data, simply run all processes to completion ( K+n context switches). 

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)



Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)



• On each read  r:=x, guess if this read is view altering. If yes, 

check if pUseful(x) is true in pview_x, and pUseful(var) is true 

in pView for all var

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)



• On each read  r:=x, guess if this read is view altering. If yes, 

check if pUseful(x) is true in pview_x, and pUseful(var) is true 

in pView for all var

• Pick up a suitable m=(x, View) from Messages

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)



• On each read  r:=x, guess if this read is view altering. If yes, 

check if pUseful(x) is true in pview_x, and pUseful(var) is true 

in pView for all var

• Pick up a suitable m=(x, View) from Messages

• Update ptime(var), pval(var)  in pView if ptime(var) is at most 

mtime(var)

Per process p, maintain pView=(pview_x,….pview_z), 
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)
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View Bounded Model Checker (VBMC)

• Using CBMC as backend model checker

VBMC
K-bounded 

reachability

C/Pthread  
program Instrumented 

program CBMC Reachable?



View Bounded Model Checker (VBMC)

✦ Tested with 4004 litmus tests [Sarkar et al. 2011]: 

• Same results as Herd [Alglave et al. 2014] 

✦ Tested on concurrent benchmarks: 

• Few number of contexts sufficient for bug detection under RA  

• Catches isolated bugs faster than state of the art SMC tools 
Tracer, RCMC and CDSChecker
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Unboundedly many

No CAS

Allowing CAS operations render state reachability  
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Simulate the non parameterized setting 

 Parameterized Reachability
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Decidability Open
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