
Verification of Concurrent
Programs under Release Acquire

S. Krishna
IIT Bombay

IARCS Verification Seminar Series
Dec 06, 2022

Concurrency

Concurrency

motivation

Concurrency Concurrent systems
are everywhere

motivation

Concurrency Concurrent systems
are everywhere

motivation
Multicore

architectures

Concurrency Concurrent systems
are everywhere

intel ARM IBM
Power

motivation
Multicore

architectures

Concurrency Concurrent systems
are everywhere

intel ARM IBM
Power

Distributed
databases

motivation
Multicore

architectures

Concurrency Concurrent systems
are everywhere

intel ARM IBM
Power

Facebook

Distributed
databases

motivation
Multicore

architectures

Concurrency Concurrent systems
are everywhere

intel ARM IBM
Power

Facebook

Distributed
databases

Programming
languages

motivation
Multicore

architectures

Weak memory models provide sound semantics for high
performance concurrency

Weak memory models provide sound semantics for high
performance concurrency

Sequential Consistency Relaxed models

Easy

Programmability Performance
High

Release Acquire
(RA)

Different threads observe
memory events in different

orders

Interleaving semantics

Fragment of C11

Weak memory models provide sound semantics for high
performance concurrency

The C11 Memory Model

The C11 Memory Model

Non-atomic Data accesses

The C11 Memory Model

Non-atomic Data accesses Atomic Data accesses

P
er

fo
rm

an
ce

Syn
chron

ization

The C11 Memory Model

Non-atomic Data accesses Atomic Data accesses

Relaxed

Release-Acquire

Sequential Consistency

P
er

fo
rm

an
ce

Syn
chron

ization

The C11 Memory Model

Non-atomic Data accesses Atomic Data accesses

Relaxed

Release-Acquire

Sequential Consistency

P
er

fo
rm

an
ce

Syn
chron

ization

The C11 Memory Model

Non-atomic Data accesses Atomic Data accesses

Relaxed

Release-Acquire

Sequential Consistency

P
er

fo
rm

an
ce

Syn
chron

ization

Release-Acquire : all reads are acquire, all writes are release,
updates(atomic read writes) are acquire/release

Store buffer Store buffer

x=0

Shared memory

RA execution

Specification S: not (rx=0 && ry=0)
y=0

Process 1

1. x=1;
2. ry=y;

1.
2.

Process 2

Init: x=y=0

y=1;
rx=x;

Store buffer Store buffer

x=0

Shared memory

RA execution

Specification S: not (rx=0 && ry=0)
y=0

r(x,0)

w(x,1)Process 1

1. x=1;
2. ry=y;

1.
2.

Process 2

Init: x=y=0

y=1;
rx=x;

Store buffer Store buffer

x=1

Shared memory

RA execution

Specification S: not (rx=0 && ry=0)
y=0

r(x,0)

w(x,1)Process 1

1. x=1;
2. ry=y;

Init: x=y=0

1.
2.

Process 2

rx=x;
y=1;

Store buffer Store buffer

x=1

Shared memory

RA execution

Specification S: not (rx=0 && ry=0)
y=0

r(x,0)

w(x,1)

r(y,0)

w(y,1)

Process 1

1. x=1;
2. ry=y;

Init: x=y=0

1.
2.

Process 2

rx=x;
y=1;

Store buffer Store buffer

x=1

Shared memory

RA execution

Specification S: not (rx=0 && ry=0)

y=1

r(x,0)

w(x,1)

r(y,0)

w(y,1)

Process 1

1. x=1;
2. ry=y;

Init: x=y=0

1.
2.

Process 2

rx=x;
y=1;

x=y=0

w(x,1)

r(y,0)

w(y,1)

r(x,0)

mox moy

rf rf
po po

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Message passing

Specification S: not (rx=0)

No weak behaviours

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Message passing

Specification S: not (rx=0)

Reordering writes not allowed
in RA

No weak behaviours

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Message passing

Specification S: not (rx=0)

Reordering writes not allowed
in RA

Reordering of reads
not allowed in RA

No weak behaviours

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Message passing

Specification S: not (rx=0)

Process 2 is aware of the write of 1
to x when it reads 2 from y

Reordering writes not allowed
in RA

Reordering of reads
not allowed in RA

No weak behaviours

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Message passing

Specification S: not (rx=0)

Process 2 is aware of the write of 1
to x when it reads 2 from y

Reordering writes not allowed
in RA

Reordering of reads
not allowed in RA

No weak behaviours

x=y=0

w(x,1)

w(y,2)

r(y,2)

r(x,0)

mox

moy
rf

rfpo po

Message passing

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

Specification S: not (rx=0)

x=y=0

w(x,1)

w(y,2)

r(y,2)

r(x,0)

mox

moy
rf

rfpo po

Message passing

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

hb

Specification S: not (rx=0)

Declarative Semantics for RA

(rf)reads-from : maps reads to corresponding writes s.t.

happens-before (hb) = (po ∪ rf)+ is irreflexive

(mo)modification-order : total order on same-location writes s.t.

Declarative Semantics for RA

(rf)reads-from : maps reads to corresponding writes s.t.

happens-before (hb) = (po ∪ rf)+ is irreflexive

(mo)modification-order : total order on same-location writes s.t.

w(x,v)

w(x,u)

hbmox

Declarative Semantics for RA

(rf)reads-from : maps reads to corresponding writes s.t.

happens-before (hb) = (po ∪ rf)+ is irreflexive

(mo)modification-order : total order on same-location writes s.t.

w(x,v)

w(x,u)

hbmox

w(x,v) w(x,u)mox

r(x,v)
rf

hb

Declarative Semantics for RA

(rf)reads-from : maps reads to corresponding writes s.t.

happens-before (hb) = (po ∪ rf)+ is irreflexive

(mo)modification-order : total order on same-location writes s.t.

w(x,v)

w(x,u)

hbmox

w(x,v) w(x,u)mox

r(x,v)
rf

hb

w(x,v) w(x,u)mox

arw(x,v,v’)
rf

mox

Release-Acquire (RA)

Verified compilation schemes
to TSO and Power

Batty et al’11
Batty et al’12

Sarkar et al’12

Supports optimizations

 Wx —> Ry to Ry—> Wx

Absence of data races in SC

implies no weak behaviours

SC does not! Not true for full C11!

Many program logics

RSL, GPS,OGRA
Intuitive semantics

Operational Model for RA
[J. Kang et al. POPL 2017, A. Podkopaev et al. 2016, Arxiv]

Process 1

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Process 2

Init: x=y=0

rx=0 and ry=0?

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

rx=1?

Process 1

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Process 2

Init: x=y=0

rx=0 and ry=0?

Process 1

1. x=1;
2. y=2;

1. while(y=0)
skip;

2. rx=x;
Process 2

Init: x=y=0

rx=1?

St
or

e
bu

ff
er

M
es

sa
ge

 p
as

si
n

g

RA: High Level Description

RA P1 P2

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

RA: High Level Description

RA P1 P2

memory

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

RA: High Level Description

RA P1 P2

memory

pool of
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

RA: High Level Description

RA P1 P2

memory

pool of
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write
operation

RA: High Level Description

RA P1 P2

memory

pool of
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write
operation

logical
clock for x

RA: High Level Description

RA P1 P2

memory

pool of
views

x := 3

1 6

y := 5

4 7

x := 1

4 1

y := 1

9 0

write
operation

logical
clock for x

logical
clock for y

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

x := 3

1 6

x := 1

4 1

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 3

1 6

x := 1

4 1

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 3

1 6

x := 1

4 1

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 3

1 6

x := 1

4 1

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 3

1 6

x := 1

4 1

RA: High Level Description

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

y := 5

4 7
y := 1

9 0

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 3

1 6

x := 1

4 1 8
4

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

max

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

max4 2

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

max

4 2

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 1

4 1

3 2

local
view

4 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 1

4 1

3 2

local
view

1

4 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 1

4 1

3 2

local
view

1

4 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2
Read
1. select view in memory
2. variable time stamp yours
3. update local view

x := 1

4 1

3 2

local
view

4 2

1

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory
5 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1 x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory
5 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

x := 2

5 2

P4

viewWrite
1. create new local view
2. variable time stamp:

i. newer than yours
ii. not in memory

3. copy new view to memory
5 2

x := 2

5 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

5 2

x := 2

5 2

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

5 2

8
4

x := 2

5 2

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

5 2

8
4

5

x := 2

5 2

Read
1. select view in memory
2. variable time stamp yours
3. update local view

RA: High Level Description

y := 1

9 0

y := 5

4 7

x := 3

1 6

P1 : a := x

P1 : b := y

P1 : x := 2

P1 P2

x := 1

4 1

3 2

local
view

4 2

1

5 2

8
4

5

x := 2

5 2

Read
1. select view in memory
2. variable time stamp yours
3. update local view

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

x := 0
0 0

y := 0
0 0

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

x := 0
0 0

y := 0
0 0

0 0

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

x := 0
0 0

y := 0
0 0

0 0 0 0

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

y := 0
0 0

x := 0
0 0

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

x := 1
3 0

y := 0
0 0

x := 0
0 0

3 0

1. x=1;
2. ry=y;

1. y=1;
2. rx=x;

Init: x=y=0

rx=0 and ry=0?

St
or

e
bu

ff
er

x := 1
3 0

y := 1
0 7

y := 0
0 0

x := 0
0 0

3 0 0 7

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0 0

also known as CAS/RMW

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0 0

also known as CAS/RMW

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0

y := 1
0 7

7

also known as CAS/RMW

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

0

y := 1
0 7

7

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp t yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

y := 1
0 7

73

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp t yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW

RA: High Level Description

arw(x, r, r′)

r := 1

r′ := 2
y := 1

x := 0
0 0

y := 0
0 0

x := 1
3 0

y := 1
0 7

7

x := 2
4 7

4

Atomic read write (or CAS)

1. select view in memory with value of r
2. variable time stamp t yours
3. update local view, and write with value of r’
4. choose timestamp t+1 in the new message

≥

also known as CAS/RMW

$r2=y1. $r2 = y;
2. x = 1;

1. $r1 = x;
2. y = 1;

y=0

RA run

Reachable: $r1 =0, $r2 = 1 and $r3=2?

$r1=0 $r2=0Register values:
Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0 0 0

$r2=y1. $r2 = y;
2. x = 1;

1. $r1 = 0;
2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0 0 0

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(x,0)

$r2=y1. $r2 = y;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

1. $r1 = 0;

r(x,0)

w(y,1)

$r2=y1. $r2 = 1;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(y,1)
0 2

1. $r1 = 0;

r(x,0)

w(y,1)

$r2=y1. $r2 = 1;
2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

0 21 2

x := 1

1 2

1. $r1 = 0;

r(y,1)

w(x,1)

r(x,0)

w(y,1)

$r2=y2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = x; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

0 21 2

x := 1

1 2

3 2

x := 2

3 2

1. $r1 = 0; 1. $r2 = 1;

r(y,1)

w(x,1)

w(x,2)

r(x,0)

w(y,1)

$r2=y2. x = 1;2. y = 1;

y=0

RA run
$r1=0 $r2=0Register values:

Process 1 Process 2

3. $r3 = 2; 3. x = 2;

x := 0

0 0

y := 0

0 0

0 0

y := 1

0 2

0 2

Reachable: $r1 =0, $r2 = 1 and $r3=2?

r(y,1)
0 2

w(x,1)

1 2

x := 1

1 2

3 2

x := 2

3 2

1. $r1 = 0; 1. $r2 = 1;

r(x,2)

w(x,2)

3 2

r(x,0)

w(y,1)

 (Non parameterized) Reachability
under RA

PLDI 2019

Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

 The Reachability Problem

Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

Decidability/ Complexity?

 The Reachability Problem

Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

Decidability/ Complexity?

Each process is finite-state

 The Reachability Problem

Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

Decidability/ Complexity?

Each process is finite-state

• For SC, the reachability problem is PSPACE-complete

 The Reachability Problem

Given a program P and a (control + memory) state s

• State Reachability Problem (Safety)

Is s reachable in P under RA?

Decidability/ Complexity?

Each process is finite-state

• For SC, the reachability problem is PSPACE-complete

• Nontrivial for RA since the set of paths is nonregular

 The Reachability Problem

The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

u v
1.
2. abba a
3.

b

bbb

abb4.
ba aa

214 is a solution

The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

P1

P2 P4

P3

The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

P1

P2 P4

P3Sequence of indices

Sequence of letters

The state reachability problem is undecidable for RA

• By reduction from the Post’s correspondence Problem

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices

1

2

3

4

A B
P1 P2 P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

y1 = 1

y2 = 2

y1 = 3

P1 P2 P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

y1 = 1

y2 = 2

y1 = 3

P1 P2 P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

y1 = 1

y2 = 2

y1 = 3

P1 P2 P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

y1 = 1

y2 = 2

y1 = 3

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

y3 = 1

y4 = 2

y3 = 3

x4 =
x3 =
x4 =
x3 =

P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

✓

✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

✓
✓ ✓

✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

✓
✓ ✓
✓ ✓

✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

✓
✓ ✓
✓ ✓

✓ ✓

✓

1

2

3

4

A B x1 =
x2 =
x1 =

x2 =
x1 =
x2 =

x1 =
x2 =
x1 =

P1 P2

x3 =
x4 =

x3 =
x4 =
x3 =

x4 =
x3 =
x4 =
x3 =

P4

✓
✓ ✓
✓

✓
✓ ✓
✓ ✓

✓ ✓

✓

P4 jumps and cheats!

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t4 t′
4

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t3 t4 t′
3 t′

4

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t3 t4 t′
3 t′

4

✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t3 t4 t′
3 t′

4

✓ ✓

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t3 t4 t′
3 t′

4

✓ ✓
t7 t′

7

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

x1 =

x2 =

x1 =

P1 P2

x3 =

x4 =

x3 =

x4 =

x3 =

x4 =

x3 =

P4

t1

t2

t3

t4

t5

t6

t7

✓ ✓t′
1

t′
2

t′
3

t′
4

t′
5

t′
6

t′
7

t1 0 t′
1 0

✓ ✓ t1 t2 t′
1 t′

2

✓ ✓ t3 t4 t′
3 t′

4

✓ ✓
t7 t′

7t6 t′
6

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

t1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

t1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)

t1

t1 0 0 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)

t1

t1 0 0 0
t1 + 1 0 0 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

t1

t1 0 0 0
t1 + 1 0 0 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

t1

t1 0 0 0
t1 + 1 0 0 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

t1

t1 0 0 0
t1 + 1 0 0 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0
✓

arw(x2,) t2 t′ 1 + 1 0t1 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0
✓

arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

arw(x4,) t2 + 1 t′ 1 + 1 t′
2t1 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

arw(x4,) t2 + 1 t′ 1 + 1 t′
2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

✓

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)

t5 t4 t′ 1 + 1t′
2 + 1)arw(x1,

t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

✓

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)

t5 t4 t′ 1 + 1t′
2 + 1)arw(x1,

t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

t5 + 1 t4 t′ 1 + 1 t′
2 + 1

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

✓

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)

t5 t4 t′ 1 + 1t′
2 + 1

r(x2,)

)arw(x1,

t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

t5 + 1 t4 t′ 1 + 1 t′
2 + 1

0 0 0 0
x1 x2 x3 x4

x1 =

x2 =

x1 =

x2 =

P1 P2

x3 =

x4 =

x3 =

x4 =

P4

t2

t3

t6

✓ ✓t′
1

t′
2

t′
3

t′
6

✓

x1 = x2 = x3 = x4 =

arw(x1,)
r(x2,)

r(x4,)
arw(x3,)

t5 t4 t′ 1 + 1t′
2 + 1

r(x2,)

)arw(x1,

t4 > t2 + 1

t1

t1 0 0 0
t1 + 1 0 0 0

0 t′
1 0t1 + 1

t′ 1 + 1 0t1 + 1 0

r(x1,)

✓
arw(x2,) t2 t′ 1 + 1 0t1 + 1

t′ 1 + 1 0t1 + 1 t2 + 1

r(x3,)
arw(x4,) t2 + 1 t′ 1 + 1 t′

2t1 + 1

t′ 1 + 1 t′ 2 + 1t1 + 1 t2 + 1

✓

x2 = x4 =t4 t′
4

x1 = x3 =t5 t′
5

t5 + 1 t4 t′ 1 + 1 t′
2 + 1

0 0 0 0
x1 x2 x3 x4

RA without arw

P

NP
PSPACE

EXPTIME

EXPSPACE

2EXPTIME

2EXPSPACE

NON PRIMITIVE RECURSIVE

<latexit sha1_base64="rf28PY6VUKZP+MEzAyNBKkb1YHI=">AAAB7XicdVDJSgNBEO1xjXGLevTSGARPw4xINLegF48RzALJEHp6epI2Pd1Dd00gDPkHLx4U8er/ePNv7CyC64OCx3tVVNULU8ENeN67s7S8srq2Xtgobm5t7+yW9vabRmWasgZVQul2SAwTXLIGcBCsnWpGklCwVji8mvqtEdOGK3kL45QFCelLHnNKwErN7ihSYHqlsudWPb9a8fFv4rveDGW0QL1XeutGimYJk0AFMabjeykEOdHAqWCTYjczLCV0SPqsY6kkCTNBPrt2go+tEuFYaVsS8Ez9OpGTxJhxEtrOhMDA/PSm4l9eJ4P4Isi5TDNgks4XxZnAoPD0dRxxzSiIsSWEam5vxXRANKFgAyraED4/xf+T5qnrV1zv5qxcu1zEUUCH6AidIB+doxq6RnXUQBTdoXv0iJ4c5Tw4z87LvHXJWcwcoG9wXj8APhyPlQ==</latexit>...
3EXPSPACE

ELEMENTARY

NONELEMENTARY
(Primitive Recursive)

UNDECIDABLE

<latexit sha1_base64="1lvCOrYKhhagvJILFGR/bmALWPo=">AAACA3icdVDJSgNBEO2JW4xb1JteGoMQL2EmSDS3aAh4HNEskMTQ0+kkTXp6hu4aMQwJXvwVLx4U8epPePNvnCyC64OCx3tVVNVzfME1mOa7EZubX1hcii8nVlbX1jeSm1sV7QWKsjL1hKdqDtFMcMnKwEGwmq8YcR3Bqk6/OPar10xp7slLGPis6ZKu5B1OCURSK7nTAHYDYalmX9gnxdJwNMpehX5aHgwTrWTKzORNK5+z8G9iZcwJUmgGu5V8a7Q9GrhMAhVE67pl+tAMiQJOBRsmGoFmPqF90mX1iEriMt0MJz8M8X6ktHHHU1FJwBP160RIXK0HrhN1ugR6+qc3Fv/y6gF0jpshl34ATNLpok4gMHh4HAhuc8UoiEFECFU8uhXTHlGEQhTbOITPT/H/pJLNWLmMeX6YKpzO4oijXbSH0shCR6iAzpCNyoiiW3SPHtGTcWc8GM/Gy7Q1ZsxmttE3GK8fHquXMQ==</latexit>

EXPSPACE 2p(n)

<latexit sha1_base64="X9DZEGTAZVTsya3hNHJh5GLH8jU=">AAACCXicdVDLSgMxFM34rPU16tJNsAh1U2aK+NhVRXA5orWFdiyZNNXQTGZI7ohlmC7d+CtuXCji1j9w59+Y1go+D/fC4Zx7Se4JYsE1OM6bNTY+MTk1nZvJz87NLyzaS8tnOkoUZVUaiUjVA6KZ4JJVgYNg9VgxEgaC1YLuwcCvXTGleSRPoRczPyQXknc4JWCklo2bwK4hLR/WvRNv7+Aw6/f7uHyemoqLciPLWnbBKe067u6Wi38Tt+QMUUAjeC37tdmOaBIyCVQQrRuuE4OfEgWcCpblm4lmMaFdcsEahkoSMu2nw0syvG6UNu5EyrQEPFS/bqQk1LoXBmYyJHCpf3oD8S+vkUBnx0+5jBNgkn481EkEhggPYsFtrhgF0TOEUMXNXzG9JIpQMOHlTQifl+L/yVm55G6VnOPNQmV/FEcOraI1VEQu2kYVdIQ8VEUU3aA79IAerVvr3nqynj9Gx6zRzgr6BuvlHbYqmbs=</latexit>

2EXPSPACE 22
p(n)

<latexit sha1_base64="Sr/3PVCrT9DBuqicnBCh32BeLuc=">AAACDnicdVDLTgIxFO34RHyhLt00EhLckBk0KDuUkLjEKI8EkHRKgYZOZ9LeMZLJ8ANu/BU3LjTGrWt3/o3Dw8Tnyb3JyTn3pr3H9gTXYJrvxtz8wuLScmwlvrq2vrGZ2NquatdXlFWoK1xVt4lmgktWAQ6C1T3FiGMLVrMHxbFfu2ZKc1dewtBjLYf0JO9ySiCS2olUE9gNBAelevmifFIshaPRCGevgml5abkfhmG8nUiambxp5XMW/k2sjDlBEs1Qbifemh2X+g6TQAXRumGZHrQCooBTwcJ409fMI3RAeqwRUUkcplvB5JwQpyKlg7uuiloCnqhfNwLiaD107GjSIdDXP72x+JfX8KF73Aq49Hxgkk4f6voCg4vH2eAOV4yCGEaEUMWjv2LaJ4pQiBIch/B5Kf6fVLMZK5cxzw+ThdNZHDG0i/ZQGlnoCBXQGSqjCqLoFt2jR/Rk3BkPxrPxMh2dM2Y7O+gbjNcPEDabgA==</latexit>

3EXPSPACE 22
2p(n)

<latexit sha1_base64="M9pTKniLrIOLaM+0wRmkJucM/4g=">AAACP3icdVBNbxMxEPWWrxJaCHDkYhEhcYp2K1ToraVaiUOpAjRpqjiKbGeSWvF6V/Ys6sra/DIu/QvcuHLpoQhx5YaTBonPJ4309N6MZuaJQiuHcfwpWrt2/cbNW+u3G3c2Nu/ea95/0HN5aSV0Za5z2xfcgVYGuqhQQ7+wwDOh4VjM9hf+8XuwTuXmCKsChhmfGjVRkmOQRs0eQzhDnx6kr9PDo723J/V8PqcNNlau0LxyWGnwTKipLIuRn1GmDGUZx1Mh/GFdU+bpjGUiP/Npv/Ous7efBq2uR81W3N6Jk53thP5Nkna8RIus0Bk1P7JxLssMDErNnRskcYFDzy0qqaFusNJBweWMT2EQqOEZuKFf/l/TJ0EZ00luQxmkS/XXCc8z56pMhM7F6e5PbyH+yxuUOHkx9MoUJYKRV4smpaaY00WYdKwsSNRVIFxaFW6l8pRbLjFE3ggh/PyU/p/0ttrJdjt+86y1+3IVxzp5RB6TpyQhz8kueUU6pEsk+UA+k0vyJTqPLqKv0ber1rVoNfOQ/Ibo+w+e3rCB</latexit>

ELEMENTARY
[

k2N
{kEXPSPACE}

<latexit sha1_base64="EXQOyxpuY5xVvazGul59Nag77Ts=">AAACNnicdVBNbxMxFPSmUNIAbWiPvVhESFyIdqMqkFugisSBhBY1aatsiLzel8SK17uy31aNVsmf4sLv4JYLBxDqtT+hzgcSBDqy5dHMe7bfBIkUBl137uS2HjzcfpTfKTx+8nR3r/hsv2PiVHNo81jG+iJgBqRQ0EaBEi4SDSwKJJwH4+OFf34F2ohYneEkgV7EhkoMBGdopX6x6SNcY9b62HrV+NBoNlpnbz9dTmezGfVTFYIONOOQVT6vl8/DGDcPNV2hb+8rueWa69WqHv2XeGV3iRJZ46Rf/OaHMU8jUMglM6bruQn2MqZRcAnTgp8aSBgfsyF0LVUsAtPLlmNP6QurhHQQa7sV0qX6Z0fGImMmUWArI4Yjs+ktxP953RQHb3qZUEmKoPjqoUEqKcZ0kSENhQaOcmIJ41rYv1I+YjYptEkXbAi/J6X3k06l7FXL7ulRqf5uHUeeHJLn5CXxyGtSJ+/JCWkTTr6QOflBfjpfne/OL+dmVZpz1j0H5C84t3cKRK4X</latexit>

NON-ELEMENTARY 2
22

··
·n

| {z }
n

<latexit sha1_base64="+YNtuJEaqzwysqGd18bKKoak7ak=">AAACTXicdVFNTxsxFPSGz6YFAhx7sYgq9bCKdkME4cbHhSOVCCBl08jrfQErXu/KfouIVpsfyAWJG/+CCwcQQvUmQWppO7Ll0bw38vM4TKUw6HkPTmVufmFxaflT9fOXldW12vrGmUkyzaHDE5noi5AZkEJBBwVKuEg1sDiUcB4Oj8r6+TVoIxJ1iqMUejG7VGIgOEMr9WtRgHCD+QEfgo6ZKsbjMd12aculbZc2vVbbrQaZikCHmnHImz9nK+BRgh+PZjFFPy+dhUsDaXVT7dfqXmPP8/d2fPo38RveBHUyw0m/dh9ECc9iUMglM6breyn2cqZRcAmFHclAyviQXULXUsViML18kkZBv1klooNE262QTtTfHTmLjRnFoe2MGV6Zj7VS/Fetm+Gg3cuFSjMExacXDTJJMaFltDQSGjjKkSWMa2FnpfyK2dzQfkAZwvtL6f/JWbPh7zS8H636/uEsjmXylWyR78Qnu2SfHJMT0iGc3JJH8kxenDvnyXl13qatFWfm2SR/oLL0C2DDs40=</latexit>

Ackerman 3, 4, 8, 2048, 22
2·

··
2

| {z }
2048

, . . .

P

NP
PSPACE

EXPTIME

EXPSPACE

2EXPTIME

2EXPSPACE

NON PRIMITIVE RECURSIVE

<latexit sha1_base64="rf28PY6VUKZP+MEzAyNBKkb1YHI=">AAAB7XicdVDJSgNBEO1xjXGLevTSGARPw4xINLegF48RzALJEHp6epI2Pd1Dd00gDPkHLx4U8er/ePNv7CyC64OCx3tVVNULU8ENeN67s7S8srq2Xtgobm5t7+yW9vabRmWasgZVQul2SAwTXLIGcBCsnWpGklCwVji8mvqtEdOGK3kL45QFCelLHnNKwErN7ihSYHqlsudWPb9a8fFv4rveDGW0QL1XeutGimYJk0AFMabjeykEOdHAqWCTYjczLCV0SPqsY6kkCTNBPrt2go+tEuFYaVsS8Ez9OpGTxJhxEtrOhMDA/PSm4l9eJ4P4Isi5TDNgks4XxZnAoPD0dRxxzSiIsSWEam5vxXRANKFgAyraED4/xf+T5qnrV1zv5qxcu1zEUUCH6AidIB+doxq6RnXUQBTdoXv0iJ4c5Tw4z87LvHXJWcwcoG9wXj8APhyPlQ==</latexit>...
3EXPSPACE

ELEMENTARY

NONELEMENTARY
(Primitive Recursive)

UNDECIDABLE

<latexit sha1_base64="1lvCOrYKhhagvJILFGR/bmALWPo=">AAACA3icdVDJSgNBEO2JW4xb1JteGoMQL2EmSDS3aAh4HNEskMTQ0+kkTXp6hu4aMQwJXvwVLx4U8epPePNvnCyC64OCx3tVVNVzfME1mOa7EZubX1hcii8nVlbX1jeSm1sV7QWKsjL1hKdqDtFMcMnKwEGwmq8YcR3Bqk6/OPar10xp7slLGPis6ZKu5B1OCURSK7nTAHYDYalmX9gnxdJwNMpehX5aHgwTrWTKzORNK5+z8G9iZcwJUmgGu5V8a7Q9GrhMAhVE67pl+tAMiQJOBRsmGoFmPqF90mX1iEriMt0MJz8M8X6ktHHHU1FJwBP160RIXK0HrhN1ugR6+qc3Fv/y6gF0jpshl34ATNLpok4gMHh4HAhuc8UoiEFECFU8uhXTHlGEQhTbOITPT/H/pJLNWLmMeX6YKpzO4oijXbSH0shCR6iAzpCNyoiiW3SPHtGTcWc8GM/Gy7Q1ZsxmttE3GK8fHquXMQ==</latexit>

EXPSPACE 2p(n)

<latexit sha1_base64="X9DZEGTAZVTsya3hNHJh5GLH8jU=">AAACCXicdVDLSgMxFM34rPU16tJNsAh1U2aK+NhVRXA5orWFdiyZNNXQTGZI7ohlmC7d+CtuXCji1j9w59+Y1go+D/fC4Zx7Se4JYsE1OM6bNTY+MTk1nZvJz87NLyzaS8tnOkoUZVUaiUjVA6KZ4JJVgYNg9VgxEgaC1YLuwcCvXTGleSRPoRczPyQXknc4JWCklo2bwK4hLR/WvRNv7+Aw6/f7uHyemoqLciPLWnbBKe067u6Wi38Tt+QMUUAjeC37tdmOaBIyCVQQrRuuE4OfEgWcCpblm4lmMaFdcsEahkoSMu2nw0syvG6UNu5EyrQEPFS/bqQk1LoXBmYyJHCpf3oD8S+vkUBnx0+5jBNgkn481EkEhggPYsFtrhgF0TOEUMXNXzG9JIpQMOHlTQifl+L/yVm55G6VnOPNQmV/FEcOraI1VEQu2kYVdIQ8VEUU3aA79IAerVvr3nqynj9Gx6zRzgr6BuvlHbYqmbs=</latexit>

2EXPSPACE 22
p(n)

<latexit sha1_base64="Sr/3PVCrT9DBuqicnBCh32BeLuc=">AAACDnicdVDLTgIxFO34RHyhLt00EhLckBk0KDuUkLjEKI8EkHRKgYZOZ9LeMZLJ8ANu/BU3LjTGrWt3/o3Dw8Tnyb3JyTn3pr3H9gTXYJrvxtz8wuLScmwlvrq2vrGZ2NquatdXlFWoK1xVt4lmgktWAQ6C1T3FiGMLVrMHxbFfu2ZKc1dewtBjLYf0JO9ySiCS2olUE9gNBAelevmifFIshaPRCGevgml5abkfhmG8nUiambxp5XMW/k2sjDlBEs1Qbifemh2X+g6TQAXRumGZHrQCooBTwcJ409fMI3RAeqwRUUkcplvB5JwQpyKlg7uuiloCnqhfNwLiaD107GjSIdDXP72x+JfX8KF73Aq49Hxgkk4f6voCg4vH2eAOV4yCGEaEUMWjv2LaJ4pQiBIch/B5Kf6fVLMZK5cxzw+ThdNZHDG0i/ZQGlnoCBXQGSqjCqLoFt2jR/Rk3BkPxrPxMh2dM2Y7O+gbjNcPEDabgA==</latexit>

3EXPSPACE 22
2p(n)

<latexit sha1_base64="M9pTKniLrIOLaM+0wRmkJucM/4g=">AAACP3icdVBNbxMxEPWWrxJaCHDkYhEhcYp2K1ToraVaiUOpAjRpqjiKbGeSWvF6V/Ys6sra/DIu/QvcuHLpoQhx5YaTBonPJ4309N6MZuaJQiuHcfwpWrt2/cbNW+u3G3c2Nu/ea95/0HN5aSV0Za5z2xfcgVYGuqhQQ7+wwDOh4VjM9hf+8XuwTuXmCKsChhmfGjVRkmOQRs0eQzhDnx6kr9PDo723J/V8PqcNNlau0LxyWGnwTKipLIuRn1GmDGUZx1Mh/GFdU+bpjGUiP/Npv/Ous7efBq2uR81W3N6Jk53thP5Nkna8RIus0Bk1P7JxLssMDErNnRskcYFDzy0qqaFusNJBweWMT2EQqOEZuKFf/l/TJ0EZ00luQxmkS/XXCc8z56pMhM7F6e5PbyH+yxuUOHkx9MoUJYKRV4smpaaY00WYdKwsSNRVIFxaFW6l8pRbLjFE3ggh/PyU/p/0ttrJdjt+86y1+3IVxzp5RB6TpyQhz8kueUU6pEsk+UA+k0vyJTqPLqKv0ber1rVoNfOQ/Ibo+w+e3rCB</latexit>

ELEMENTARY
[

k2N
{kEXPSPACE}

<latexit sha1_base64="EXQOyxpuY5xVvazGul59Nag77Ts=">AAACNnicdVBNbxMxFPSmUNIAbWiPvVhESFyIdqMqkFugisSBhBY1aatsiLzel8SK17uy31aNVsmf4sLv4JYLBxDqtT+hzgcSBDqy5dHMe7bfBIkUBl137uS2HjzcfpTfKTx+8nR3r/hsv2PiVHNo81jG+iJgBqRQ0EaBEi4SDSwKJJwH4+OFf34F2ohYneEkgV7EhkoMBGdopX6x6SNcY9b62HrV+NBoNlpnbz9dTmezGfVTFYIONOOQVT6vl8/DGDcPNV2hb+8rueWa69WqHv2XeGV3iRJZ46Rf/OaHMU8jUMglM6bruQn2MqZRcAnTgp8aSBgfsyF0LVUsAtPLlmNP6QurhHQQa7sV0qX6Z0fGImMmUWArI4Yjs+ktxP953RQHb3qZUEmKoPjqoUEqKcZ0kSENhQaOcmIJ41rYv1I+YjYptEkXbAi/J6X3k06l7FXL7ulRqf5uHUeeHJLn5CXxyGtSJ+/JCWkTTr6QOflBfjpfne/OL+dmVZpz1j0H5C84t3cKRK4X</latexit>

NON-ELEMENTARY 2
22

··
·n

| {z }
n

<latexit sha1_base64="+YNtuJEaqzwysqGd18bKKoak7ak=">AAACTXicdVFNTxsxFPSGz6YFAhx7sYgq9bCKdkME4cbHhSOVCCBl08jrfQErXu/KfouIVpsfyAWJG/+CCwcQQvUmQWppO7Ll0bw38vM4TKUw6HkPTmVufmFxaflT9fOXldW12vrGmUkyzaHDE5noi5AZkEJBBwVKuEg1sDiUcB4Oj8r6+TVoIxJ1iqMUejG7VGIgOEMr9WtRgHCD+QEfgo6ZKsbjMd12aculbZc2vVbbrQaZikCHmnHImz9nK+BRgh+PZjFFPy+dhUsDaXVT7dfqXmPP8/d2fPo38RveBHUyw0m/dh9ECc9iUMglM6breyn2cqZRcAmFHclAyviQXULXUsViML18kkZBv1klooNE262QTtTfHTmLjRnFoe2MGV6Zj7VS/Fetm+Gg3cuFSjMExacXDTJJMaFltDQSGjjKkSWMa2FnpfyK2dzQfkAZwvtL6f/JWbPh7zS8H636/uEsjmXylWyR78Qnu2SfHJMT0iGc3JJH8kxenDvnyXl13qatFWfm2SR/oLL0C2DDs40=</latexit>

Ackerman 3, 4, 8, 2048, 22
2·

··
2

| {z }
2048

, . . .

Reachability of RA without arw

OPEN

Context-bounded Analysis (CBA)

Context-bounded Analysis (CBA)

 Efficient under-approximation technique for SC [Qadeer et
al. 2005, Lal et al. 2009, Torre et al. 2009]

 A context denotes one active process in a run

 For instance, has an unbounded context switch,
while is 1-context bounded

• Several tools: CHESS, Corral, CSeq, etc

(P1P2)*
P1P*2

Context-bounded Analysis (CBA)

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices

Context-bounded Analysis (CBA)

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices

The state reachability problem is still undecidable for RA
with a bounded number (3) of context switches

(context: only one “active” process)
P1 runs; P2 runs; P3 runs; P4 runs

Context-bounded Analysis (CBA)

P1

P2 P4

P3Sequence of indices

Sequence of letters

Sequence of letters

Sequence of indices

The state reachability problem is still undecidable for RA
with a bounded number (3) of context switches

(context: only one “active” process)
P1 runs; P2 runs; P3 runs; P4 runs

Need a different under approximation for RA

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

r(y,3)

r(x,0)

w(y,1)

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

No View switch

View Switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

2-bounded run

A view-switch happens when
a process reads a value

written by another process,
and changes its view

No View switch

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

Bounding the number of
essential views in the memory

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

Bounding the number of
essential views in the memory

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

r(x,2)

w(x,2)

r(y,1)

w(y,3)

View switch

View switch

r(y,3)

r(x,0)

w(y,1)

A view-switch happens when
a process reads a value

written by another process,
and changes its view

Bounding the number of
essential views in the memory

x := 2
5 3

y := 1
0 2

y := 0
0 0

x := 0
0 0

x := 1
1 2

y := 3
0 3

The undecidability proof needed unbounded number of view switches

K-bounded Reachability Problem

K-bounded Reachability Problem

Definition

Reachability problem restricted to K-bounded runs

K-bounded Reachability Problem

Definition

Reachability problem restricted to K-bounded runs

Theorem
The K-bounded reachability for RA is reducible to

K+n bounded context reachability under SC

Code-to-code
translation

K-bounded Reachability Problem

Definition

Reachability problem restricted to K-bounded runs

Theorem
The K-bounded reachability for RA is reducible to

K+n bounded context reachability under SC

Corollary
The K-bounded reachability for RA is decidable

for finite-state programs

Code-to-code
translation

View bounding under RA to Context bounding under SC

View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

• K time stamps, one per essential message

View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

• K time stamps, one per essential message

• Another K time stamps for comparison corresponding to a

view change

View bounding under RA to Context bounding under SC

• View bound K implies K essential messages

• K time stamps, one per essential message

• Another K time stamps for comparison corresponding to a

view change

• 2K time stamps

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)

• On each write x:=v in process p, update pval(x) in pview_x

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)

• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes,

pUseful(x)=true, and update ptime(x)

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)

• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes,

pUseful(x)=true, and update ptime(x)

• Guess if this will result in an essential message. If yes, add to

Messages if pUseful(x)=true for all pview_x in pView

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)

• On each write x:=v in process p, update pval(x) in pview_x

• Guess if this will be used in a time stamp comparison. If yes,

pUseful(x)=true, and update ptime(x)

• Guess if this will result in an essential message. If yes, add to

Messages if pUseful(x)=true for all pview_x in pView

• Once all essential messages are generated, Messages has all necessary

data, simply run all processes to completion (K+n context switches).

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of Messages, each of type (var, View)

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)

• On each read r:=x, guess if this read is view altering. If yes,

check if pUseful(x) is true in pview_x, and pUseful(var) is true

in pView for all var

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)

• On each read r:=x, guess if this read is view altering. If yes,

check if pUseful(x) is true in pview_x, and pUseful(var) is true

in pView for all var

• Pick up a suitable m=(x, View) from Messages

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)

• On each read r:=x, guess if this read is view altering. If yes,

check if pUseful(x) is true in pview_x, and pUseful(var) is true

in pView for all var

• Pick up a suitable m=(x, View) from Messages

• Update ptime(var), pval(var) in pView if ptime(var) is at most

mtime(var)

Per process p, maintain pView=(pview_x,….pview_z),
pview_x=(ptime(x), pval(x), pUseful(x))

Globally, maintain a set of messages, each of type (var, View)

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

First essential
message

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

First essential
message

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

First essential
message

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

y=1

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

r(y,1)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

r(y,1)

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

r(y,1)

second essential
message

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

r(y,1)

Guess essential messages,
run processes generating
them in order

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

r(y,1)

Guess essential messages,
run processes generating
them in order

Once all essential messages
are generated, run all
processes to completion

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

r(y,1)

Guess essential messages,
run processes generating
them in order

Once all essential messages
are generated, run all
processes to completion

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

r(y,1)

Guess essential messages,
run processes generating
them in order

Once all essential messages
are generated, run all
processes to completion

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

Interface
r(y,1)

Interface

Guess essential messages,
run processes generating
them in order

Once all essential messages
are generated, run all
processes to completion

Locality Validation

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

Interface
r(y,1)

Interface

Locality Validation

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

Interface
r(y,1)

Interface

Locality Validation

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

Interface

Simulate P1 under SC

r(y,1)

Interface

Locality Validation

w(y,1)

r(x,2)

w(x,2)

r(x,0)

w(x,1)

x=0 y=0

x=0 y=1

x=0 y=0

x=0 y=1
y=1

x=2 y=1
x=2

x=2 y=1

x=2 y=1

Interface

Simulate P1 under SC

r(y,1)

Interface

Local and global data structures
to simulate views and the memory pool

Locality Validation

w(x,2)

w(x,1)

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

r(y,1)

Locality Validation

w(x,2)

w(x,1)

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

r(y,1)

Locality Validation

w(x,2)

w(x,1)

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

Simulate P2 under SC

r(y,1)

Locality Validation

w(x,2)

w(x,1)

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

Simulate P2 under SC

r(y,1)

Local and global data structures
to simulate views and the memory pool

Locality Validation

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(x,2)

r(y,1)

w(x,1)

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

Locality Validation

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(x,2)

r(y,1)

w(x,1)

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

Locality Validation

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(x,2)

r(y,1)

w(x,1)

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

Locality Validation

x=0 y=0

x=0 y=1

x=2 y=1
x=2

w(x,2)

r(y,1)

w(x,1)

w(y,1)

r(x,2)

r(x,0)

x=0 y=0

x=0 y=1
y=1

x=2 y=1

x=2 y=1

View Bounded Model Checker (VBMC)

• Using CBMC as backend model checker

VBMC
K-bounded

reachability

C/Pthread
program Instrumented

program CBMC Reachable?

View Bounded Model Checker (VBMC)

✦ Tested with 4004 litmus tests [Sarkar et al. 2011]:

• Same results as Herd [Alglave et al. 2014]

✦ Tested on concurrent benchmarks:

• Few number of contexts sufficient for bug detection under RA

• Catches isolated bugs faster than state of the art SMC tools
Tracer, RCMC and CDSChecker

 Parameterized Reachability in RA

 Parameterized Reachability in RA

⋯

PODC 2022

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯
Unboundedly many

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯
Identical threads

Unboundedly many

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯
Identical threads

Unboundedly many

No CAS

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯
Identical threads

Unboundedly many

No CAS

Allowing CAS operations render state reachability
undecidable for parameterized RA, even with acyclic,

identical threads

 Parameterized Reachability

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯⋯ ⋯⋯
Identical threads

Unboundedly many

No CAS

Allowing CAS operations render state reachability
undecidable for parameterized RA, even with acyclic,

identical threads
Simulate the non parameterized setting

 Parameterized Reachability

Simplified Semantics

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

……

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)……

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)…… ……

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)…… ……

If (x,1) can be read, it can be read arbitrary many times

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)…… ……

If (x,1) can be read, it can be read arbitrary many times

Infinite Supply Property

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)…… ……

If (x,1) can be read, it can be read arbitrary many times

Infinite Supply Property

No recency check needed

 unbounded, identical, no CA
S

Simplified Semantics
generates (x,1,t)

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯
x := 1
a := x

...

...

x := 1
a := x

...

...

⋯

generates
(x,1,t+i)

generates
(x,1,t+i+j)

generates
(x,1,t+i+j+k)…… ……

If (x,1) can be read, it can be read arbitrary many times

Infinite Supply Property

No recency check needed

Abstraction of timestamps

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Maintain relative ordering
with distinguished threads

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Maintain relative ordering
with distinguished threads timestamps

 timestamps

𝖾𝗇𝗏 {0+,1+,2+, …}
𝖽𝗂𝗌 {0,1,2,…}

0 < 0+ < 1 < 1+ < 2…

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Maintain relative ordering
with distinguished threads timestamps

 timestamps

𝖾𝗇𝗏 {0+,1+,2+, …}
𝖽𝗂𝗌 {0,1,2,…}

0 < 0+ < 1 < 1+ < 2…

Concrete time stamps 0 2 3 5 7 8 10 11 13

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Maintain relative ordering
with distinguished threads timestamps

 timestamps

𝖾𝗇𝗏 {0+,1+,2+, …}
𝖽𝗂𝗌 {0,1,2,…}

0 < 0+ < 1 < 1+ < 2…

Concrete time stamps 0 2 3 5 7 8 10 11 13

Abstract time stamps 0 1 1+ 2 2+ 3 3+2+ 3+

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical no CAS
has CAS

Maintain relative ordering
with distinguished threads timestamps

 timestamps

𝖾𝗇𝗏 {0+,1+,2+, …}
𝖽𝗂𝗌 {0,1,2,…}

0 < 0+ < 1 < 1+ < 2…

Concrete time stamps 0 2 3 5 7 8 10 11 13

Abstract time stamps 0 1 1+ 2 2+ 3 3+2+ 3+

#timestamps=O(#(dis timestamps))

Simplified Semantics

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical
no CAS has CAS

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical

QBF Sat

no CAS has CAS

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical

QBF Sat

≤

no CAS has CAS

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical

QBF Sat

≤

≤
no CAS has CAS

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical

QBF Sat

≤

≤
Query evaluation in linear Datalog

no CAS has CAS

x := 1
a := x

...

...

x := 1
a := x

...

...

x := 1
a := x

...

...

⋯ ⋯⋯ ⋯
...

c := y
...

z := 11

...

...

x := 2
b := x

...

acyclic, distinguished unbounded, identical

QBF Sat

≤

≤
Query evaluation in linear Datalog

PSPACE completeness

no CAS has CAS

acyclic, distinguished

⋯ ⋯⋯ ⋯...

...

...

...

...

 unbounded, identical
no CAS

has CAS

acyclic, distinguished

⋯ ⋯⋯ ⋯...

...

...

...

...

 unbounded, identical

...

unrestricted

+

no CAS
has CAS

acyclic, distinguished

⋯ ⋯⋯ ⋯...

...

...

...

...

 unbounded, identical

...

unrestricted

+

NEXPTIME completeness

no CAS
has CAS

acyclic, distinguished

⋯ ⋯⋯ ⋯...

...

...

...

...⏟⏟ unbounded, identical

...

unrestricted

+

no CAS has CAS

Non primitive recursive

+

acyclic, distinguished

⋯ ⋯⋯ ⋯...

...

...

...

...⏟⏟ unbounded, identical

...

unrestricted

+

no CAS has CAS

no CAS

Decidability Open

Thankyou

