
Nico Lehmann Niki VazouRose Kunkel Jordan Brown

Jean Yang Nadia Polikarpova Deian Stefan Ranjit Jhala

University of California, San Diego

Refinement Types for Secure Web Applications

https://storm-framework.github.io

Securing Web Applications

OWASP “Top 10”

Security Mixed Into “Business Logic”

Does application enforce high-level security policy?

Security Mixed Into “Business Logic”

Application

Verify!

Policies are much smaller than application code

Policy

Audit & Trust

Separate Policy from “Business Logic”

Application

Verify!

Policies are much smaller than application code

Policy

Audit & Trust

Security Typed ORM

 Database

 Web Server

 Client

HTTP
request/response

Policy

IFC

Information Flow Control
By refinement type checking

Security Typed ORM

SQL
query/update

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

Private

A “Wishlist” Application

Policy
Only the owner can access a private wish

A “Wishlist” Application

User
 name String
 email String

Wish
 owner UserId
 title String
 level String

DB Schema

A “Wishlist” Application

policy OnlyPub = \wish viewer ->
 wish.level == "public" ||
 wish.owner == viewer

User
 name String
 email String

Wish
 owner UserId
 title String
 level String

@OnlyPub

DB Schema Policy

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

} Leak!

Application Code

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

} Leak!

Application Code
All wishes owned by uid

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code
Only viewable by uid

Leak!

A “Wishlist” Application

showWishes uid = do {

 query <- (Owner ==. uid);

 wishes <- select query;

 titles <- project Title wishes;

 respond titles

}

Application Code
Response sent to sessionUser != uid

Leak!

A “Wishlist” Application

showWishes uid = do {

 viewer <- getSessionUser();

 query <- viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. query) ;

 titles <- project Title wishes;

 respond titles

}

Fix
Restrict to “public” when sessionUser != uid

A “Wishlist” Application

showWishes uid = do {

 viewer <- getSessionUser();

 query <- viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. query) ;

 titles <- project Title wishes;

 respond titles

}

Safe!

A “Wishlist” Application

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

 Database

 Web Server

 Client

HTTP
request/response

Policy ~ 1% LOC

IFC

Information Flow Control
By refinement type checking

Security Typed ORM

SQL
query/update

Anatomy of a Server
showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

Anatomy of a Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerAction

>>=
return

Anatomy of a Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerAction

>>=
return

Anatomy of a Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerActionQuery

select
project

>>=
return

Anatomy of a Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerActionQuery

select
project

>>=
return

Anatomy of a Server

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerActionQueryField

==.
&&.

select
project

>>=
return

Anatomy of a Server

ServerActionQueryField

==.
&&.

select
project

>>=
return

Anatomy of

Refinement Typed API
Security by static type checking

ServerActionQueryField

==.
&&.

select
project

>>=
return

Refinement Typed API
Security by static type checking

1

23

Anatomy of

ServerActionQueryField

==.
&&.

select
project

>>=
return

Refinement Typed API
Security by static type checking

1

23

Anatomy of

Refinement Typed API

type Nat = {x:Int | 0 <= x}

Int values that are non-negative

Refinement Typed API

{x:Int | 0 <= x} {v:Int | x <= v}→

Function type is a contract

Refinement Typed API

{x:Int | 0 <= x} {v:Int | x <= v}→
“Pre-condition”

Function type is a contract

Refinement Typed API

{x:Int | 0 <= x} {v:Int | x <= v}→

Function type is a contract

“Post-condition”

Refinement Typed API

Typing via SMT Validity Checking

double :: {x:Int | 0 <= x} {v:Int | x <= v}

double x = 2 * x

→

∀x, v . 0 ≤ x ⇒ v = 2 × x ⇒ x ≤ v

Refinement Typed API

quad :: {x:Int | 0 <= x} {v:Int | x <= v}

quad = double double

→
∘

f g = \x f (g x)∘ →

How to type “compose” ?

Refinement Typed API
f g = \x f (g x)∘ →

() :: (Cmp p q r) (y:b {v:c|q y v})

 (x:a {v:b|p x v})

 (x:a {v:c|r x v})

where

 Cmp p q r = \x y z p x y q y z r x z

∘ ⇒ →
→ →
→ →

→ ⇒ ⇒

Refinement Bounds [Vazou et al. ICFP 15]

Refinement Bounds [Vazou et al. ICFP 15]

() :: (Cmp p q r) (y:b {v:c|q y v })

 (x:a {v:b|p x v })

 (x:a {v:c|r x v })

where

 Cmp p q r = x y z. p x y q y z r x z

∘ ⇒ →
→ →
→ →

∀ ⇒ ⇒

Refinement Parameters
Related by Horn Constraint

Instantiated at use by Liquid Typing

ServerActionQueryField

==.
&&.

select
project

>>=
return

Refinement Typed API
Security by static type checking

1

23

Anatomy of

ServerActionQueryField

==.
&&.

select
project

>>=
return

Refinement Typed API
Security by static type checking

1

23

Anatomy of

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Authorizees
Set of users authorized to access data

Auth

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Auth

Authorizees

Auth ≡ λu → u = uid

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Observers
Set of users provided access to data

Obs

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Obs

Observers

Obs ≡ λu → u = sessionUser

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Obs

Policy Enforcement

 Obs ⊆ Auth

Auth

Authorizees & Observers

showWishes uid = do {

 wishes <- select (Owner ==. uid) ;

 titles <- project Title wishes;

 respond titles

}

[Polikarpova et al. ICFP 20]

Obs
Auth

Policy Enforcement
 ∀u . u = sessionUser ⇒ u = uid

Authorizees & Observers
[Polikarpova et al. ICFP 20]

Obs

Policy Enforcement
 λu → u = sessionUser ⊆ λu → True

Auth

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

Authorizees & Observers
[Polikarpova et al. ICFP 20]

Obs

Policy Enforcement
 ∀u . u = sessionUser ⇒ True

Auth

showWishes uid = do {

 viewer <- getSessionUser();

 let qry = viewer == uid ? true : Level ==. “public”;

 wishes <- select (Owner ==. uid &&. qry) ;

 titles <- project Title wishes;

 respond titles

}

ServerActionQueryField

==.
&&.

select
project

>>=
return

Authorizees & Observers
[Polikarpova et al. ICFP 20]

Effects in the Action monad
(“Ghost” assertions for each statement)

showWishes uid = do {

 wishes <- select (Owner ==. uid);

 titles <- project Title wishes;

 respond titles

}

Effects in the Action monad

Monadic Computations Yielding t Values

Action t

Effects in the Action monad

Action Refined by “Ghost” Security Effects

Action < , > tauth obs

showWishes uid = do {

 wishes <- select (Owner ==. uid);

 titles <- project Title wishes;

 respond titles

}

STORM API: return

Pure action doesn’t access or send data

 = All users = No Usersauth obs

 a Action < , > a→ λu → True λu → False

Action Refined by “Ghost” Security Effects

 Text Action < , > ()→ λu → True λu → u = sessionUser

STORM API: respond

Does not access sensitive data

 = All users = Session Userauth obs

Action Refined by “Ghost” Security Effects

 Action a (a Action b) Action b→ → →

STORM API: “Sequence” (>>=)

Action Refined by “Ghost” Security Effects

 Action < , > a (a Action < , > b) Action < , > ba1 o1 → → a2 o2 → a o

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

 (Sub , And , Or)

 Action < , > a (a Action < , > b) Action < , > b

o2 a1 a1 a2 a o1 o2 o ⇒

a1 o1 → → a2 o2 → a o

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

 Refinement Bound* Sub

Require policy enforced at each sequencing
o2 a1

 (Sub , And , Or)

 Action < , > a (a Action < , > b) Action < , > b

o2 a1 a1 a2 a o1 o2 o ⇒

a1 o1 → → a2 o2 → a o

* see [Vazou et al. ICFP 15]

STORM API: “Sequence” (>>=)

Action Refined by “Ghost” Security Effects

 Refinement Bound* And

Ensures output’s authorizees are intersection of inputs’
a1 a2 a

 (Sub , And , Or)

 Action < , > a (a Action < , > b) Action < , > b

o2 a1 a1 a2 a o1 o2 o ⇒

a1 o1 → → a2 o2 → a o

* see [Vazou et al. ICFP 15]

STORM API: “Sequence” (>>=)

Action Refined by “Ghost” Security Effects

 Refinement Bound* Or

Ensures output’s observers are union of inputs’
o1 o2 o

 (Sub , And , Or)

 Action < , > a (a Action < , > b) Action < , > b

o2 a1 a1 a2 a o1 o2 o ⇒

a1 o1 → → a2 o2 → a o

* see [Vazou et al. ICFP 15]

STORM API: “Sequence” (>>=)

Action Refined by “Ghost” Security Effects

ServerActionQueryField

==.
&&.

select
project

>>=
return

Authorizees & Observers
[Polikarpova et al. ICFP 20]

How to track authorizees?
Action Indexed with Security Effects

ServerActionQueryField

==.
&&.

select
project

>>=
return

How to track authorizees?

Anatomy of

Refinement Typed API

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

1. Inject: Policies in database Field

DB Schema ORM Fields [Persistent]

User
 name String
 email String

Wish
 owner UserId
 title String
 level String

 Name :: Field User String
 Email :: Field User String

 Owner :: Field Wish UserId
 Title :: Field Wish String
 Level :: Field Wish String

Field row val

Column in table row with data of type val

1. Inject: Policies in database Field

 : row user Boolpol → →
 : row val Boolrep → →

Field < , > row valpol rep

Refinements are row dependent

Refine Field with authorizees & representation*

* Represent SQL query semantics at refinement type level

1. Inject: Policies in database Field

 Owner :: Field < , > Wish UserId
 Title :: Field < , > Wish String
 Level :: Field < , > Wish String

All λr v → v = owner r
Own λr v → v = title r
All λr v → v = level r

All ≡ λr u → True Own ≡ λr u → owner r = u ∨ level r = public

Field < , > row valpol rep

Refine Field with authorizees & representation*

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

2. Propagate: When building Query

A Query to find “public” Wishes of uid

 qry :: Query Wish

 qry = Owner ==. uid &&. Level ==. “public”

 : row user Boolpol → →
 : row val Boolinv → →

Refinements are row dependent

2. Propagate: When building Query

Refine Query by authorizees & result invariant*

Query < , > rowpol inv

* Represent SQL query semantics at refinement type level

Query < , > WishOwn λr → level r = public

2. Propagate: When building Query

Refine Query by authorizees & result invariant*

Own ≡ λr u → owner r = u ∨ level v = public

Authorizees: Owner unless level is public

Invariant: Every result row’s level is public

Ensured by Query builder API

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query < , > rowpol inv

 (==.), (<.), (&&.), (||.), etc.

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query builder API (==.)

 (FldEq)
 Field < , > row val val Query < , > row

rep inv ⇒
pol rep → → pol inv

FldEq = rep inv ∀r, v . (rep r v) ⇒ (inv r)

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query builder API (&&.)

 (And , And)
 Query < , > row Query < , > row Query < , > row

pol1 pol2 pol inv1 inv2 inv ⇒
pol1 inv1 → pol2 inv2 → pol inv

Output and are conjunction of inputs’pol inv

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

select
project

3. Extract: Auth at Query execution

ActionQuery

Query execution API: select

3. Extract: Auth at Query execution

 Query row Action [row]→

Query execution API: select

3. Extract: Auth at Query execution

 Query < , > row Action < , > [row]pol inv → auth None

Query execution API: select

3. Extract: Auth at Query execution

ViewPolicy = inv auth pol ∀r, u . (inv r) ⇒ (auth u) ⇒ (pol r u)

 (ViewPolicy)

 Query < , > row Action < , > [row]

inv auth pol ⇒
pol inv → auth None

Query execution API: select

Bound ViewPolicy: Invariant* rows’ authorizees satisfy policy

* Not all rows, only the inv rows returned by SQL query!

3. Extract: Auth at Query execution

 IF qry :: Query < , > WishOwn λr → level r = public

Query execution API: select

 THEN select qry :: Action < , > [Wish]λu → True None

As ∀r, u . (level r = public) ⇒ True ⇒ (owner r = u ∨ level r = public)

Authorizees of rows satisfying invariant* satisfy policy

* Not all rows, only the inv rows returned by SQL query!

ActionQueryField

==.
&&.

select
project

How to track Authorizees?

1 2 3

1. Inject: Policies in database Field

2. Propagate: When building Query

3. Extract: Auth at Query execution

ServerActionQueryField

==.
&&.

select
project

>>=
return

Refinement Typed API
Tracking authorizees & observers

1

23

Anatomy of

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can we secure web-apps with STORM?

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

Expressive
Does STORM capture interesting policies?

Convenient
How much extra work is needed to use STORM?

Auditable
Does STORM reduce the code we need to get right?

IV. Evaluation
Can we secure web-apps with STORM?

Expressive
Does STORM capture interesting policies?

System Benchmark Model Policy
UrFlow secret 8 9

poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34

Jacqueline conference* 42 46
course 32 11
health 79 23

Hails gitsar 16 21
LWeb bibifi 312 101
Total 555 314

Ported policies from 10 benchmarks from 4 previous frameworks

Expressive
Does STORM capture interesting policies?

System Benchmark Model Policy
UrFlow secret 8 9

poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34

Jacqueline conference* 42 46
course 32 11
health 79 23

Hails gitsar 16 21
LWeb bibifi 312 101
Total 555 314

Static
But not IFC

Expressive
Does STORM capture interesting policies?

System Benchmark Model Policy
UrFlow secret 8 9

poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34

Jacqueline conference* 42 46
course 32 11
health 79 23

Hails gitsar 16 21
LWeb bibifi 312 101
Total 555 314

Static
But not IFC

* STORM supports all but one policy that relies on missing DB rows

Dynamic
Overhead & late checks

IV. Evaluation
Can we secure web-apps with

STORM?
Expressive

Does STORM capture interesting policies?

Convenient
How much extra work is needed to use STORM?

Auditable
Does STORM reduce the code we need to get right?

Convenient
How much extra work is needed to use STORM?
getAuthors :: p:Paper -> Action <\u -> PcOrAuthOrAccepted p u, None> [Text]

getAuthors paper = do {

 (paperId, authorId) <- project2 (PaperId, PaperAuthor) paper;

 author <- select (UserId ==. authorId);
 authors <- mapT (project UserName) author;

 coauthors <- select (PaperCoauthorPaper ==. paperId);
 coauthorNames <- mapT (project PaperCoauthorAuthor) coauthors;

 return $ authors ++ coauthorNames;
}

Type Annotations
Specify server function’s authorizees & observers

Convenient
How much extra work is needed to use STORM?

1 line of annotation per 20 lines of code

0

250

500

750

1000

conference course wishlist voltron disco

Type Annotations

IV. Evaluation
Can we secure web-apps with

STORM?
Expressive

Does STORM capture interesting policies?

Convenient
How much extra work is needed to use STORM?

Auditable
Does STORM reduce the code we need to get right?

Auditable
Does STORM reduce the code we need to get right?

Disco & Voltron
We built two full-fledged JS web apps with UIs …

Auditable
Does STORM reduce the code we need to get right?

Server Client

HTTP

Disco & Voltron
We built two full-fledged JS web apps with UIs …

PLDI/PLMW(Jun 20) & CAV/VMW(Jul 20), ~100 Users

Disco (“Virtual Hallway Track”)

Disco (“Virtual Hallway Track”)

Voltron (“Real-time Group Editor”)

Two instructors, 5 classes Fall 2020-21, 50 - 200 Students

Voltron (“Real-time Group Editor”)

Auditable
Does STORM reduce the code we need to get right?

Application LOC

Server Models Policy Client

voltron 756 32 37 1012

disco 859 42 32 4630

Total 1615 74 69 5642

STORM Centralizes & Reduces Trusted Code*

Policy < 4% of Server (< 1% of Server+Client)

I. Motivation
Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation
How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

Refinement Types for Secure Web Applications

https://storm-framework.github.io

Refinement Types for Secure Web Apps

https://storm-framework.github.io

GHC Plugin verifier runs at each compilation

For Details, Proofs, Case studies, Evaluation…
“Refinement Types for Secure Web Apps”, Lehmann et al. OSDI 2021

