\ \ /
/
I\

Refinement Types for Secure Web Applications

https://storm-framework.github.1io

Nico Lehmann Rose Kunkel Jordan Brown Niki Vazou
Jean Yang Nadia Polikarpova Deian Stefan Ranyjit Jhala
—
—
\-

University of California, San Diego

Securing Web Applications

HotCRP.com Z00Mm amazZon

= Ry
N
3
&

//?/

BANK OF AMERICA

OWASP “Top 10”

Top 10 Web Application Security Risks

A1:2017-Injection: Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when
untrusted data is sent to an interpreter as part of a command or query. The attacker’s hostile data
can trick the interpreter into executing unintended commands or accessing data without proper
authorization.

A2:2017-Broken Authentication: Application functions related to authentication and session
management are often implemented incorrectly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other implementation flaws to assume other users’ identities

A3:2017-Sensitive Data Exposure: Many web applications and APIs do not properly protect
sensitive data, such as financial, healthcare, and PIl. Attackers may steal or modify such weakly

protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive data may be ‘
¥ compromised without extra protection, such as encryption at rest or in transit, and requires
: speC|aI precautlons when exchanged W|th the browser

A4: 2017-XML ExternaIEntltnes (XXE) Many older or poorly conﬁgured XML processors
evaluate external entity references within XML documents. External entities can be used to
disclose internal files using the file URI handler, internal file shares, internal port scanning, remote
code executlon and denla of serV|ce a acks

A5:2017- Broken Access Control Restnctlons on what authentlcated users are aIIowed to do
are often not properly enforced. Attackers can exploit these flaws to access unauthorized

functionality and/or data, such as access other users’ accounts, view sensitive files, modify other
, users data, change access rights, etc

A6 2017 Securlty Mlsconﬁguratlon Securlty mlsconﬁguratlon is the most commonly seen
issue. This is commonly a result of insecure default configurations, incomplete or ad hoc
configurations, open cloud storage, misconfigured HTTP headers, and verbose error messages
containing sensitive information. Not only must all operating systems, frameworks, libraries, and
applications be securely configured, but they must be patched/upgraded in a timely fashion.

A7:2017-Cross-Site Scripting XSS: XSS flaws occur whenever an application includes untrusted
data in a new web page without proper validation or escaping, or updates an existing web page
with user-supplied data using a browser API that can create HTML or JavaScript. XSS allows
attackers to execute scripts in the victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

Security Mixed Into “Business Logic”

if (4Me->can view review(sprow, $rrow)) { $myrrow = $apprrowl = $apprrow2 = null;
$rname = Ht::link($rname, Sprow->reviewurl(["r" => $rrow->reviewId])); $admin = $this->user->can administer($this->prow);
} foreach ($this->prow->reviews as display() as $rrow) {
echo $rname, ': ', $namex, . : . . v
'</divs<div class="f-h"><ul class="x mb-0">'; if ($this->user->can view review($this->prow, $rrow]) {
echo 'requested'; if (grrow->contactId === $this->user->contactId
if [$rrow->timeRequested) |{ || (t$myrrow & $this->user->is my review($rrow))) {
echo ' ', $Conf->unparse_time relative((int) $rrow->timeRequested); smyrrow = $rrow;
zf (Srrow-srequesteddy — $Me->contactid)] { } else if [$rrow->reviewStatus === ReviewInfo::RS DELIVERED
echo " by you"; && !sapprrowl
} else if ($Me->can _view review requester($prow, $rrow)) { && $rrow->requestedBy === $this->user->contactXid)| {
echo " by ", $Me->reviewer html for($rrow->requestedBy); sapprrowl = $rrow;
! el } else if |($rrow->reviewStatus === ReviewInfo::RS DELIVERED
echo '';
if ($rrow->reviewStatus === ReviewInfo::RS ACCEPTED) { && !sapprrow2
echo 'accepted’; &% $admin) {
1f (sreql1l) { Sapprrow2 = $rrow;
echo ' ', $Conf->unparse_time relative($reqll]); }
}
echo '</1i>'; }
} }

HotCRP.com

Security Mixed Into “Business Logic”

Does application enforce high-level security policy?

STORM

Separate Policy from “Business Logic”

Policy Application

Audit & Trust Verify!

Policies are much smaller than application code

STORM

Security Typed ORM

Policy Application
Audit & Trust

Verify!

Policies are much smaller than application code

STORM

Security Typed ORM

— E@{g Web Server |-

SQL , l/’\ HTTP
query/update | ‘ | ““' ~...’ | ;"‘, ' request/response
’0’ IF C ‘ W
[@ Database I [& Client]

Policy

Information Flow Control
By refinement type checking

I. Motivation

Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation

How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

II. Demonstration
How to secure apps with STORM?

“Wishlist” Application

Ranjit's Wishes

4
ADD TO THIS WISHLIST
. Godzilla vs. Kong: Special Edition (DVD)
= e XK Rank: 1 SAVE
ﬁ) VIEW GIFTER
| E'-'T"ﬂ Throw Throw Burrito by Exploding Kittens - A Dodgeball Card
‘, = Game - Family-Friendly Party Games - Card Games for Adults, 52 Rank: 2 e
WE==E Teens & Kids
$19.56
ﬁ) VIEW GIFTER
Co(‘;ing Coding For Dummies (For Dummies (Computers))
- e XK Rank: 3 SAVE

I like it - not a gift

DELETE

KaraoKing Karaoke Machine for Kids & Adults Wireless
Microphone Speaker with Disco Ball, 2 Wireless Bluetooth

Microphones & Phone/Tablet Holder - Karaoke Bluetooth Toys
for Kids (G100) '

$199.99

x Rank: 4 SAVE

Rt s SRR R R S N

A “Wishlist” Application

'’ Policy

Only the owner can access a private wish

A “Wishlist” Application

User
name String
email String

Wish
owner UserlId
title String
level String

DB Schema

A “Wishlist” Application

User
name String
email String

Wish
owner Userld

title String @OnlyPub
level String

f?policy OnlyPub = \wish viewer -
~ wish.level == "public" ||
wish.owner == viewer

DB Schema Policy

A “Wishlist” Application

showWishes uid = do {

Application Code

A “Wishlist” Application

showWishes uid = do {
query <- (Owner ==. uid);

wishes <- select query,;

Application Code

A “Wishlist” Application
showWishes uid = do {

titles <- project Title wishes;

Application Code

A “Wishlist” Application

showWishes uid = do {

respond titles

Application Code

A “Wishlist” Application

showWishes uid = do {
query <- (Owner ==. uid);

wishes <- select query,;

titles <- project Title wishes;
respond titles

} Leak!

Application Code

A “Wishlist” Application

showW1shes u1d = do {
f;query <~ (Owner ==. uid): |

| wishes <- select query;

titles <- project T1t1e w1shes
respond titles

} Leak!

Application Code
All wishes owned by uid

A “Wishlist” Application

showWishes uid = do {
query <- (Owner ==. uid);

wishes <- select query,;

(titles)<- project Title wishes;

~Tespond titles

Leak!

Application Code
Only viewable by uid

A “Wishlist” Application

showWishes uid = do {
query <- (Owner ==. uid);

wishes <- select query,;

titles <- project Title wishes;

respondjtitles

Leak!

Application Code

Response sent to sessionUser != uid

A “Wishlist” Application

showW1shes u1d = do {
jv1ewer <- getSess1onUser()
fquery <- viewer == uid ? true . Level ==. “pubh’c”~

iw1shes <j select (Owner ff, u1d && query)ﬁ;_w_

titles <- pr"-ct T1t1e w1shes

respong¢—1t1es

Fix

Restrict to “public” when sessionUser != uid

A “Wishlist” Application

showWishes uid = do {
viewer <- getSessionUser(),;
query <- viewer == uid ? true : Level ==. “public”;

wishes <- select (Owner ==. uid &&. query)

titles <- project Title wishes;

respond titles @
}

Safe!

II. Demonstration
How to secure apps with STORM?

III. Implementation

How does STORM enforce security?

STORM

Security Typed ORM

— E@{g Web Server |-

QUFIE
el

HTTP
§ request/response

SQL .
query/update §

[@ Database I [& Client]

Policy ~ 1% LOC

Information Flow Control
By refinement type checking

Anatomy of a Server

showWishes uid = do {

viewer <- getSessionUser();

let gry = viewer == uid
wishes <- select (Owner
titles <- project Title

respond titles

? true : Level ==,

==. uid &&. qry)

wishes:

“public”;

Anatomy of a Server

showWishes uid = do {

viewer <- getSessionUser();

let gry = viewer == uid
wishes <- select (Owner
titles <- project Title

respond titles

? true : Level ==,

==. uid &&. qry)

wishes:

“public”;

Server

Anatomy of a Server

showWishes uid = do {
viewer <- getSessionUser();
let gry = viewer == uid ? true : Level ==. “public”;
wishes <- select (Owner ==. uid &&. qry)
titles <- project Title wishes;

respond titles

>>=
return

Action —> Server

Anatomy of a Server

showWishes uid = do {
viewer <- getSessionUser();
let gry = viewer == uid ? true : Level ==. “public”;
wishes <- select (Owner ==. uid &&. qry)
titles <- project l1tle wishes;

respond titles

>>=
return

Action —> Server

Anatomy of a Server

showWishes uid = do {
viewer <- getSessionUser();
let gry = viewer == uid ? true : Level ==. “public”;
wishes <- select (Owner ==. uid &&. qry)
titles <- project l1tle wishes;

respond titles

select >>=
project return

Query —> Action——> Server

Anatomy of a Server

showWishes uid = do {
viewer <- getSessionUser();
let gry = viewer == uid ? true : Level ==. “public”;
wishes <- select (Owner ==. uid &&. qry)
titles <- project I1tlLe wishes,;

respond titles

select >>=
project return

Query —> Action——> Server

Anatomy of a Server

showWishes uid = do {
viewer <- getSessionUser();
let qry = viewer == uid ? true : lLevel ==. “public?”;
wishes <- select (Owner ==. uid &&. qry)

titles <- project I1tlLe wishes,;

respond titles

==, select >>=
&&. project return

Field —> Query —> Action—> Server

Anatomy of STORM

==, select =
&&. project return

Field ——> Query ——> Action——> Server

Refinement Typed API

Security by static type checking

Anatomy of STORM

&&. project return

~ Refinement Typed API

é .. Security by static type checking

Anatomy of STORM

~ Refinement Typed API

é .. Security by static type checking

Refinement Typed API

type Nat = {x:Int]| 0<=x}

Int values that are non-negative

Refinement Typed API

{x:Int|0<=x} = {v:Int|x<=v}

Function type 1s a contract

Refinement Typed API

“Pre COIldlthIl

{x Int\®< x}—> {v:Int|x<=v}

Function type 1s a contract

Refinement Typed API

“Post-condition”

{x:Int|0<=x} =[{v:Int|x<=v}]

Function type 1s a contract

Refinement Typed API

double :: {x:Int | 0<=x} — {v:Int | x<=vVv}

double x = 2 * X

Typing via SMT Validity Checking

Vx,v.0<x =2 v=2Xx > x<v @

Refinement Typed API

quad :: {x:Int | O<=x} = {v:Int | x<=v}

quad = double o double

How to type “compose” ?

fog=\x—> 1 (g X)

Refinement Typed API

fog=2\x > 1 (g x)

M

Refinement Bounds (vesouet ai icep 151

(¢) :: (Cmp pgr) = (y:b = {vic|lgy v})

— (X:a = {v:b|p x Vv})

— (X:a = {v:c|r x v})
where

Cmppgr =\Xy zZ—=>pXy=>qQyzZ>=>T"rNX7Z

Refinement Bounds (vesouet a. icep 151

(¢) 2 (Cmp p g r) = (y:b = {v:ic|gy Vv })

— (Xx:a = {v:b|lp x v })

— (X:a — {v:c|lr x v })
where

Cmppgr =VXxyz.pXxXy = qyz=>rX?zZz

Refinement Parameters

Related by Horn Constraint

Instantiated at use by Liquid Typing

Anatomy of STORM

~ Refinement Typed API

é .. Security by static type checking

Anatomy of STORM

> Action — Server :

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

: wishes <- select (Owner ==. uid) ; :
L . . . , . Auth
- titles <- project Title wishes; :

respond titles

}

Authorizees

Set of users authorized to access data

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

: wishes <- select (Owner ==. uid) ; :
L . . . , . Auth
- titles <- project Title wishes; :

respond titles

}

Authorizees

Auth = Au = u = uid

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {
wishes <- select (Owner ==. uid) ;

titles <- project Title wishes;

Observers

Set of users provided access to data

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {
wishes <- select (Owner ==. uid) ;

titles <- project Title wishes;

Observers

Obs = Au — u = sessionUser

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

. wishes <- select (Owner ==. uid) ;

i titles <- project Title wishes;

Policy Enforcement
Obs C Auth

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

. wishes <- select (Owner ==. uid) ;

g titles <- project Title wishes;

Policy Enforcement
Yu.u = sessionUser = u = uid ®

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

- .

évjewer <- getSessionUser(); _

:let qry = viewer == uid ? true : Level ==. “public”;:

€ | - Auth
‘wishes <- select (Owner ==. uid &X. qry) ;

titles <- project Title wishes;

--
--

--

Policy Enforcement

Au — u = sessionUser C Au = True

Authorizees & Observers

[Polikarpova et al. ICFP 20]

showWishes uid = do {

- .

évjewer <- getSessionUser(); _

:let qry = viewer == uid ? true : Level ==. “public”;:

€ | - Auth
‘wishes <- select (Owner ==. uid &X. qry) ;

titles <- project Title wishes;

--
--

--

Policy Enforcement
Yu.u = sessionUser = True @

Authorizees & Observers

[Polikarpova et al. ICFP 20]

>>=
return

»> Action—> Server §

Effects in the Action monad

(“Ghost” assertions for each statement)

Effects in the Action monad

showWishes uid = do {
wishes <- select (Owner ==. uid);
titles <- project Title wishes;

respond titles

}

Monadic Computations Yielding t Values

Action t

Effects in the Action monad

showWishes uid = do {
wishes <- select (Owner ==. uid);
titles <- project Title wishes;

respond titles

}

Action Refined by “Ghost” Security Effects

Action <auth, obs> t

Action Refined by “Ghost” Security Effects

STORM API: return

a = Action <Au = True, Au = False> a

Pure action doesn’t access or send data

auth = All users o0bs = No Users

Action Refined by “Ghost” Security Effects

STORM API: respond

Text — Action <Au — True, Au = u = sessionUser> ()

Does not access sensitive data

auth = All users o0bs = Session User

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

Action a = (a — Action b) — Action b

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

Action<a;,0,> a— (a—>Action<a,,0,> b) > Action<a,o> b

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

(0, a4y, a a, a, 0 0y 0) =

Action<a,;,0,> a— (a—Action<a,,0,> b) =>Action<a,o> b

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

(0, a4y, a a, a, 0 0y 0) =

Action<a,,0> a== (a—Action<a,,0,> b) =>Action<a,o> b

Refinement Bound* 0, a,

Require policy enforced at each sequencing

* see [Vazou et al. ICFP 15]

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

(0, a4y, a a, a, 0 0y 0) =

Action<a;,0,> a— (a—>Action<a,,0,> b) > Action<a,o> b

Refinement Bound* a, a, a

Ensures output’s authorizees are intersection of inputs’

* see [Vazou et al. ICFP 15]

Action Refined by “Ghost” Security Effects

STORM API: “Sequence” (>>=)

(0, dp, a, a, a, 0, 0, 0) =

Action<a;,0,> a— (a—>Action<da,,0,> b) > Action<a,o> b

Refinement Bound* Or 0, 0, 0

Ensures output’s observers are union of inputs’

* see [Vazou et al. ICFP 15]

Authorizees & Observers

[Polikarpova et al. ICFP 20]

>>=
return

> Action —> Server

Action Indexed with Security Effects

How to track authorizees?

Anatomy of STORM

selectf

Refinement Typed API

How to track authorizees?

How to track Authorizees

::. Se
&&. project
Field ———> Query ——> Action

1 2 3

1. Inject: Policies in database Field
2. Propagate: When building Query

3. Extract: Auth at Query execution

1. Inject: Policies in database Field

DB Schema ORM Fields [Persistent]
User

name String Name :: Field User String

email String Email :: Field User String
Wish

owner USEfId Owner :: Field Wish UserlId

title String Title :: Field Wish String

level String Level :: Field Wish String

Column in table row with data of type val

Field row val

1. Inject: Policies in database Field

Refine Field with authorizees & representation®

Field <pol, rep> row val

Refinements are row dependent

pol : row — user — Bool

rep . row — val — Bool

* Represent SQL query semantics at refinement type level

1. Inject: Policies in database Field

Refine Field with authorizees & representation®

Field <pol, rep> row val

Owner :: Field <All, Ar v - v =owner r> Wish UserId
Title :: Field <Own,Ar v > v =title r> Wish String
Level :: Field <All, Ar v —>v=level r> Wish String

All = Ar u — True Own = Ar u — owner r =uV level r = public

How to track Authorizees

::. Se
&&. project
Field ———> Query ——> Action

1 2 3

1. Inject: Policies in database Field

How to track Authorizees

::. Se
&&. project
Field ———> Query ——> Action

1 2 3

2. Propagate: When building Query

2. Propagate: When building Query

A Query to find “public” Wishes of uid

gry :: Query Wish
gry = ==. uid &&. ==. “public”

2. Propagate: When building Query

Refine Query by authorizees & result invariant*

Query <pol, inv> row

epresen uery semantics at refinemen € leve
* Rep t SQL query tics at refi t type level

2. Propagate: When building Query

Refine Query by authorizees & result invariant*

Query <Own, Ar — level r = public> Wish

Authorizees: Owner unless level is public

Invariant: Every result row’s level is public

Own = Ar u — owner r = uV level v = public

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query <pol, inv> row

Ensured by Query builder API

(==.), (<.), (&&.), ([|].), etc.

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query builder API (==.)

chlqu rep inv) =
Field <pol,rep>"raw val — val — Query <pol,inv> row

FldEq rep inv = VYr,v.(rep r v) = (inv r)

2. Propagate: When building Query

Refine Query by authorizees & result invariant

Query builder API (&&.)

(And pol; pol, pol, And inv; inv, inv) =
Query<pol;,inv;> row — Query<pol,,inv,> row — Query<pol,inv> row

Output pol and inv are conjunction of inputs’

How to track Authorizees

::. Se
&&. project
Field ———> Query ——> Action

1 2 3

2. Propagate: When building Query

How to track Authorizees

::. Se
&&. project
Field —> Query —> Action

1 2 3

3. Extract: Auth at Query execution

3. Extract: Auth at Query execution

select .
Query —> Action

Query execution API: select

3. Extract: Auth at Query execution

Query execution API: select

Query row — Action [row]

3. Extract: Auth at Query execution

Query execution API: select

Query <pol, inv> row — Action <auth, None> [row]

3. Extract: Auth at Query execution

Query execution API: select

(inv auth pol) =

Query <pol, inv> row — Action <auth, None> [row]

Bound Invariant®* rows’ authorizees satisfy policy

inv auth pol = Yr,u.(inv r) = (auth u) = (pol r u)

* Not all rows, only the inv rows returned by SQL query!

3. Extract: Auth at Query execution

Query execution API: select

IF qry :: Query <Own, Ar — level r = public> Wish

THEN select gry :: Action <Au — True, None> [Wish]

Authorizees of rows satisfying invariant* satisty policy

As Vr,u.(level r = public) = True = (owner r = u V level r = public)

* Not all rows, only the inv rows returned by SQL query!

How to track Authorizees

::. Se
&&. project
Field ———> Query ——> Action

1 2 3

1. Inject: Policies in database Field
2. Propagate: When building Query

3. Extract: Auth at Query execution

Anatomy of STORM

&&. project return

~ Refinement Typed API

~ Tracking authorizees & observers

III. Implementation

How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

IV. Evaluation

Expressive

Does STORM capture interesting policies?

Expressive

Does STORM capture interesting policies?

System Benchmark Model Policy
UrFlow secret 8 9
poll 14 16
calendar 15 29
gradebook 18 24
forum 19 34
Jacqueline conferencex 42 46
course 32 11
health 79 23
Hails gitsar 16 21
LWeb bibifi 312 101
Total 555 314

Ported policies from 10 benchmarks from 4 previous frameworks

Expressive

Does STORM capture interesting policies?

System Benchmark Model Policy

UrFlow secret 8 9 Static
poll 14 16
calendar 15 29 But not IFC
gradebook 18 24

forum 19 34

Expressive

Does STORM capture interesting policies?

System Benchmark Model Policy
Static
But not IFC
Jacqueline conferencex 42 46 Dynamic
course 32 11
health 79 23 Qverhead & late checks
Hails gitsar 16 21
LWeb bibifi 312 101
Total 555 314

* STORM supports all but one policy that relies on missing DB rows

IV. Evaluation

Convenient

How much extra work is needed to use STORM?

Convenient

How much extra work is needed to use STORM?

getAuthors :: p:Paper -> Action <\u -> PcOrAuthOrAccepted p u, None> [Text]

Type Annotations

Specity server function’s authorizees & observers

Convenient

How much extra work is needed to use STORM?

conference course wishlist voltron disco

Type Annotations

1 line of annotation per 20 lines of code

IV. Evaluation

Auditable
Does STORM reduce the code we need to get right?

Auditable
Does STORM reduce the code we need to get right?

Disco & Voltron
We built two full-fledged JS web apps with Uls ...

Auditable
Does STORM reduce the code we need to get right?

STORM — ¥ Vuejs

Server Client

Disco & Voltron
We built two full-fledged JS web apps with Uls ...

Disco (“Virtual Hallway Track”

Ranjit Jhala
Pronouns he/him
Lobb
Affiliation University of California San Diego y
Website https://ranjitjhala.github.io/ ,‘a Raniit Jhal
anjit Jhala

| am interested in Programming Languages

and Software Engineering, specifically, in

techniques for building reliable computer
systems. My work draws from, combines

and contributes to the areas of Type

Systems, Model Checking, Program Analysis

and Automated Deduction.

All Rooms
|
Cinnabar Room Royal Blue Room
&8 No topic &8 No topic
@ Nico Lehmann ;‘ Nadia Polikarpova
e Deian Stefan & Rose Kunkel

e) Jean Yang

Conifer Room

No topic

0 Jordan Brown
6 Niki Vazou

PLDI/PLMW (Jun 20) & CAV/VMW (Jul 20), ~100 Users

Disco (“Virtual Hallway Track”

Activities Places (© 0BS Studio mié 9dejun 20:25 F4H 9 B100%

[# DisCo
| OB @ 6 p 2o @M B « & B =

(O Other Bookmarks

std-Rust rustc M RustcGuide Elcse131 #CSE131 [BICSE131 = CSE240A P CSE240A 4k Dashboard | Gradescope @ RDP at Home |RDP % CSE131- Grades @ Parsing Protobuf at 2+...

Admin ~ Settings

Distant Socialing

Nico Lehmann

' Pronouns he/him Lobby

Affiliation University of California San diego

@ Nico Lehmann

All Rooms
Cinnabar Room Royal Blue Room
K No topic EZD No topic
- The room is empty.

=) Nadia Polikarpova

[= P

Conifer Room
£ No topic

/a Ranjit Jhala

Voltron (“Real-time Group Editor”)

Voltron

Two instructors, 5 classes Fall 2020-21, 50 - 200 Students

Instructor: ucsd-cse230-fa20 ~

Settings

Contact Logout

ucsd-cse230-fa20

Instructor: Ranjit

Group 0

twoChar = P (\cs -> case cs of
0->10
[h] ->]
h:(h2:cs) -> [(Ch, h2), cs)]

twoChar :: Parser (Char, Char)
twoChar = P (\cs -> 777)

Group 1

twoChar :: Parser (Char, Char)
twoChar = P (\cs -> 777)

Group 2
twoChar :: Parser (Char, Char)
twoChar = P (\cs ->

0 =0
[c1] =0 --R
cl:c2:cs' = [(Cc1

twoChar = P (\cs -> 777)

Group 3 Group 4 Group 5
twoChar :: Parser (Char, Char)
twoChar :: Parser (Char, Char) twoChar :: Parser (Char, Char) twoChar = P (\cs -> case cs of
twoChar = P (\¢s -> 777) twoChar = P (\cs -> 777) o-0
-0
c:ccices -> [(c, «
- RJ: nice!
Group 6 Group 7 Group 8
-- RJ: almost there! -- RJ: nice!
twoChar :: Parser (Char, Char)

(\cs ->
case cs of
0-0
[c] > [(®), [])]
(c:dics’) > [((c, d), cs™)]

RJ: don't forget the "rest” ¢

twoChar = P (\s ->case s of
aO->0
x:[0 - []

xixs -> [(x, head xs), tail xs1)

Voltron (“Real-time Group Editor”)

@& Firefox File Edit

View History Bookmarks Tools Window Help QO 33 = 3 = 98%EA Wed85IPM Q @ =
@ @ ™ Inbox (13,36 Verified Sof storm-logo.png osdi21.pdf " Roderick Blc ¥ Home / Twit . The Demon @ New Tab O storm-frame Storm: Refir W voltron-de X +
& @ QO 8 nttps://voltron.programming.systems/home/5 10% ¥% © & INn D @ Y =
Voltron Student: ucsd-cse130-sp99 ~ Contact Logout

ucsd-cse130-sp99

Student: Ranjit

Group 0

X nadia

] A v MG Highlight All DMatcrl

disco.programming.systems is sharing your screen. Stop sharing Hide

continued from top

MOOURERO"allO00 - 00BRAZTEA '@ A

Auditable

Does STORM reduce the code we need to get right?

Application LOC
Server Models Policy
voltron 756 32 37
disco 3859 42 32
Total 1615 74 69

STORM Centralizes & Reduces Trusted Code*
Policy < 4% of Server (< 1% of Server+)

I. Motivation

Why secure web applications?

II. Demonstration
How to secure apps with STORM?

III. Implementation

How does STORM enforce security?

IV. Evaluation
Can STORM secure real web-apps?

STORM

Refinement Types for Secure Web Applications

https://storm-framework.github.io

STORM

Refinement Types for Secure Web Apps

https://storm-framework.github.io

A LiquidHaskell

GHC Plugin verifier runs at each compilation

For Details, Proofs, Case studies, Evaluation...
“Refinement Types for Secure Web Apps”, Lehmann et al. OSDI 2021

