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Synthesis problem 2

Alonzo Church, 1957

“Given a requirement which a circuit is to satisfy,
we may suppose the requirement expressed in
some suitable logistic system which is an extension
of restricted recursive arithmetic. The synthesis
problem is then to find recursion equivalences rep-
resenting a circuit that satisfies the given require-
ment (or alternatively, to determine that there is no
such circuit).”

Given a requirement on a bit stream transformation

input

...1011

output

...0100

fill the box by a machine with output, satisfying the requirement (or state that the
requirement is not satisfiable).
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Synthesis problem formally 3

f |= φ
I O

Given a specification φ and
atomic propositons partitioned into I(nput) and O(utput),
synthesize a (finite circuit) f :

∀ input stream I : I ∥ O |= φ

where

I = i1i2i3 · · · with in ⊆ I
O = o1o2o3 · · · = f(i1)f(i1i2)f(i1i2i3) · · · with on ⊆ O

I ∥ O = i1 ∪ o1 i2 ∪ o2 i3 ∪ o3 · · ·

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | Fφ | Gφ | φUφ

Example:

ℓ1 ℓ2 · · ·

I

O

I ∥ O

Church, Ramadge&Wonham, Pnueli&Rosner,. . .
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Formal methods: precise synthesis

+ optimality of results

– scalability issues

+ precise outputs (guaranteed safety)

– precise inputs (known models)

+ specification-oriented

– ad hoc algorithms

Learning: insightful guesses

– weaker guarantees

+ scalable

– imprecise outputs

+ imprecise inputs

– simple objectives only

+ problem-independent

precise computation

focus on important stuff
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Classic solution 5

LTL synthesis:

LTL φ Deterministic
automaton

Game
Yes, controller /
No, counterex.

I ⊎ O

{r} ⊎ {g}

G(r ⇒ Fg)

“every r is
followed by g”

∅, {g}, {r , g}

{r}

∅, {r}
{g}, {r , g}

∅ ∅, {g}

{r}
{g} ∅

∅, {r}

∅
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Other appraoches 6

Fragments:
▶ R. Alur, S. La Torre: Deterministic generators and games for LTL fragments.

ACM ToCL 2004
▶ N. Piterman, A. Pnueli, Y. Sa’ar: Synthesis of Reactive(1) Designs. VMCAI

2006

Safraless:
▶ O. Kupferman, N. Piterman, M. Y. Vardi: Safraless Compositional Synthesis.

CAV 2006
▶ B. Jobstmann, R. Bloem: Optimizations for LTL Synthesis. FMCAD 2006

Bounded synthesis:
▶ S. Schewe, B. Finkbeiner: Bounded Synthesis. ATVA 2007
▶ R. Ehlers: Unbeast: Symbolic Bounded Synthesis. TACAS 2011
▶ A. Bohy, V. Bruyère, E. Filiot, N. Jin, J.-F. Raskin: Acacia+, a Tool for LTL

Synthesis. CAV 2012
▶ P. Faymonville, B. Finkbeiner, L. Tentrup: BoSy: An Experimentation

Framework for Bounded Synthesis. CAV 2017



New theory needed: LTL→automata 7

LTL formula

non-deterministic
Büchi automaton

deterministic
Rabin automaton

A. Gaiser

LTL2BA EXP

ltl2dstar EXP

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA

LTL2BA

n = 1 4
n = 2 14
n = 3 40

determinization [Safra’88,. . . ]
Rabinizer [CAV’12]
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▶ smaller automata
▶ logical structure of states
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n = 2 14 > 104 18 1
n = 3 40 > 106 462 1

determinization [Safra’88,. . . ]→large and messy

Rabinizer [CAV’12]
Rabinizer 3 [CAV’13,CAV’14]
... [CAV’16,TACAS’17a,TACAS’17b,CAV’18]
... [LICS’18, Journal of ACM’20]
→ small and with logical structure



Semantic labelling: Example 8

¬a ∨ GF(a ∧ Xb) ; a ∧ Xb GF(a ∧ Xb) ; b GF(a ∧ Xb) ; tt
a b



New solutions with new translations 9

LTL φ Deterministic
automaton

Game
Yes, controller /
No, counterex.

I ⊎ O

2EXP NP∩coNP

On-the-fly approaches:

φ, I,O (UN)REALIZABLE

Frontier
Exploration

Game
Solver

Backtracking

if winner determined

else
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Which one to choose?

a

¬a
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exploration hint
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Summary so far 11

Semantic labelling
▶ similar to NBA
▶ obscured by Safra
▶ recovered by direct approaches

=⇒ learning what to do



Naive heuristic: Trueness 12

Which formula is easier to satisfy?

Naive approximation:

1. see the formula as Boolean, e.g. a ∧ GFa as A ∧ B

2. compute the probability of satisfaction by a random assignment

# satisfying assignments
# all assignments

(easy for BDDs)

We ignore
▶ ownership of propositions
▶ modal structure
▶ subgoals

GFa

2Ap

GF(a ∧ Xb) GF(a ∧ Xb)
∣∣∣∣ a

a

āb̄ a
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Trueness in action 13

Immediately solved games by initialization1

Random Trueness
(Co-)Safety 32% 65%
Near (Co-)Safety 11% 67%
Parity 10% 56%

Strix [MSL18]2

▶ winning LTL tracks in SyntComp 2018–2023
▶ by new translations + on-the-fly strategy iteration
▶ trueness-aided exploration + classic algorithm for parity games

1J. K., A. Manta, T. Meggendorfer: Semantic Labelling and Learning for Parity Game Solving in LTL
Synthesis. ATVA 2019

2P. Meyer, S. Sickert, M. Luttenberger: Strix: Explicit Reactive Synthesis Strikes Back! CAV 2018



Learning the selector heuristic 14

Involve machine learning34

1. Consider further features

2. Learn on winning/losing transitions from previously solved games

Some aspects:

▶ Models: SVM, DT, NN, GNN,. . .
▶ Ground truth: Beyond safety no maximally permissive strategies!

3J. K., A. Manta, T. Meggendorfer: Semantic Labelling and Learning for Parity Game Solving in LTL
Synthesis. ATVA 2019

4J. K., T. Meggendorfer, M. Prokop, S. Rieder: Guessing Winning Policies in LTL Synthesis by
Semantic Learning. CAV 2023
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SVM in action 15

Games where the a-priori learnt strategy is already winning [ATVA’19]:

category random trueness svm
small 20.00% 60.00% 93.33%
small safety 16.67% 100.00% 100.00%
small p-safety 16.67% 75.00% 100.00%
small co-safety 41.67% 100.00% 100.00%
small p-co-safety 33.33% 83.33% 100.00%
large 6.67% 53.33% 93.33%
large safety 0.00% 100.00% 100.00%
large co-safety 23.08% 100.00% 100.00%
lily 11.11% 44.44% 55.56%
ltl2dba 0.00% 0.00% 62.50%
ltl2dpa 0.00% 0.00% 54.55%
total 15.91% 68.18% 89.39%



SVM in action

Trueness – How easy is it to satisfy the formula (in one step)?
Train SVM with SYNTCOMP data and manual features

Predicted strategy winning? How many changes by SI, if not winning?



Summary: Circumventing Safra and PG-complexity 17

Translation LTL→automata:
▶ 2EXP (via Safra’s determinization)
▶ new, direct approaches

▶ practically more efficient
▶ preserving semantic information

Solving parity games
▶ NP∩coNP
▶ heuristics

▶ initialization
▶ on the fly



Q-Learning 18

Solved games by number of evaluation steps
▶ QLwin: Q-learning with only win/loss as reward signal
▶ QLpri : Q-learning with priority-based rewards
▶ QLsem: Q-learning with semantic rewards



On the fly synthesis: The SemML tool 19

Speed-ups:



Conclusions 20

▶ semantic information =⇒ apply learning
▶ SemML winning SyntComp
▶ not easy to learn well (complex discrete structure)
▶ lots of future work on (i) learning and (ii) theory

Thank you!
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General need for a “soft” distance between formulae 22

Proximity and relationship between formulae beyond logical implication
=⇒ embedding of formulae into spaces where learning can be done well56

Further applications:

“Learning” model checking Determine (a probability of) satisfaction of a formula
based on satisfaction of other (unrelated) formulae.

Translating, sanitizing and simplifying specifications Find the closest simple
formula to the inadequate translation from English to logic.

Requirement mining Lifting the search problem from the discrete combinatorial
space of syntactic structures of formulae to a continuous space
in which distances preserve semantic similarity.

5L. Bortolussi, G. M. Gallo, J.K., L. Nenzi: Learning Model Checking and the Kernel Trick for Signal
Temporal Logic on Stochastic Processes. TACAS 2022

6G. Saveri, L. Nenzi, L. Bortolussi, J.K.: stl2vec: Semantic and Interpretable Vector Representation of
Temporal Logic. ECAI 2024



LTL to automata 23

LTL NBA

LDGBA LDBA

DGRA DRA

DPA
[VW86] etc.

[EK14]

[SEJK16]
[EKRS17]

[KMWW17]

[Pit06, Sch09]

[Saf88]

[CY88]

[KE12]

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DRA DTGRA

LTL2BA ltl2dstar Rabinizer Rabinizer 3

n = 1 4 4 4 1
n = 2 14 > 104 18 1
n = 3 40 > 106 462 1
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Jan Křetı́nský and Javier Esparza.
Deterministic automata for the (F,G)-fragment of LTL.
In CAV, volume 7358 of LNCS, pages 7–22, 2012.
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Experiments 24

Games where the initial strategy is winning

category games random trueness svm
small 15 3 20.00% 9 60.00% 14 93.33%
small safety 12 2 16.67% 12 100.00% 12 100.00%
small p-safety 12 2 16.67% 9 75.00% 12 100.00%
small co-safety 12 5 41.67% 12 100.00% 12 100.00%
small p-co-safety 12 4 33.33% 10 83.33% 12 100.00%
large 15 1 6.67% 8 53.33% 14 93.33%
large safety 13 0 0.00% 13 100.00% 13 100.00%
large co-safety 13 3 23.08% 13 100.00% 13 100.00%
lily 9 1 11.11% 4 44.44% 5 55.56%
ltl2dba 8 0 0.00% 0 0.00% 5 62.50%
ltl2dpa 11 0 0.00% 0 0.00% 6 54.55%
total 132 21 15.91% 90 68.18% 118 89.39%


