

Constrained Horn Clauses for Verification and Synthesis

Grigory Fedyukovich

Automated Reasoning about Software

Logic-based verification and synthesis

A user provides a program and a desired specification

E.g., program never writes outside of allocated memory

A tool automatically constructs a model of the program

Program = formula

Use decision procedures to reason about formulas Thus, deriving properties about programs

Inspired by methods in applied science E.g., physicists in 17-19th centuries

Automated Reasoning Today

Automated verification with SMT solvers

Scale to large industrial applications

Constrained Horn Clauses (CHC):

- Symbolic representation of programs
- Safety specifications (assertions)

Verification = CHC translation + CHC solving

• E.g., SeaHorn + Spacer, JayHorn + Eldarica, or RustHorn + Holce

"Guess-and-check" invariant generation for CHC solving:

Iteratively construct proofs using SMT solvers

Successful techniques are based on simple ideas

- Property Directed Reachability / IC3
- Machine Learning / Syntax-Guided methods

SAT: Boolean Satisfiability

Given a Boolean expression, using "and" (\land), "or" (\lor) and "not" (\neg),

• Is there an assignment of true and false to the variables that makes the expression equal true?

Example:

- $(x \lor \neg y) \land (x \lor z \lor w) \land \neg z \land (w \lor y)$
- Solution: x = y = w = true, z = false

DPLL (Davis-Putnam-Logemman-Loveland, '60)

Smart enumeration of all possible SAT assignments

Many heuristics used by modern tools

Allow solving instances with millions of variables

SMT: Satisfiability Modulo Theory

Satisfiability of Boolean formulas over atoms in a theory

- E.g., $x > 2 * y 1 \land y < 4$
- A solution: x = y = 0

Extends syntax of Boolean formulas with functions and predicates

• +, -, div, select, store, bvadd, etc.

Existing solvers support many theories useful for program verification

- Equality and Uninterpreted Functions: $x = y \implies f(x) = f(y)$
- Real/Integer Linear Arithmetic: $x > 2 * y 1 \land y < 4$
- Unbounded Arrays: A = store(B, i, select(C, j))
- Bitvectors (a.k.a. machine integers): $y = x >> 4 \land z = y \& x$
- Floating point: 0.1 * x = 3.6 * y

Solving based on SAT

As well as multiple heuristics for the theory reasoning

CHC: Constrained Horn Clauses

Formula in first order logic:

$$\varphi \wedge p_1(V) \wedge \ldots \wedge p_k(V) \implies H$$

- where A is a constraint language (e.g., (non-)linear arithmetic, arrays, bit-vectors, etc.)
- φ is a constraint in A
- $p_1...p_k$ are uninterpreted relation symbols
- each $p_i(V)$ is an application of the predicate to variables
- H is either some application $p_i(V)$ or false

System of CHCs

- Only one CHC with H = false
- Has a solution if there exists an interpretation for each p_i making each CHC valid

CHC Solvers

IC3/PDR

[Hoder, Bjorner, SAT'12]

[Cimatti, Griggio, CAV' 12]

[McMillan, CAV'14]

[Komuravelli, Gurfinkel, Chaki,

Clarke, CAV'14]

CEGAR

[Unno, Terauchi, TACAS'15]

[Hojjat, Ruemmer, FMCAD'18]

[Vazou, Seidel, Jhala, etc, ICFP'14]

[Dietsch, Heizmann, Hoenicke, Nutz,

Podelski, HCVS/PERR'19]

Abstract Interpretation

[Kafle, Gallagher, Morales, CAV'16]

[Bakhirkin, Monniaux, SAS'17]

CEGIS/SyGuS

[Beyene, Popeea, Rybalchenko, CAV'13]

[Fedyukovich, Prabhu, Madhukar, Gupta,

FMCAD'18]

ML

[Champion, Chiba, Kobayashi, TACAS'18]

[Zhu, Magill, Jagannathan, PLDI'18]

Abduction

[Dillig, Dillig, Li, McMillan, OOPSLA'13]

The rest of the talk

[all papers co-authored by Fedyukovich]

FMCAD 2017:

Sampling Invariants from Frequency Distributions

CAV 2019:

Quantified Invariants via Syntax-Guided Synthesis

TACAS 2021:

Bridging Arrays and ADTs in Recursive Proofs

CP 2019:

Lemma Synthesis for Automating Induction over Algebraic Data Types

PLDI 2021:

Specification Synthesis with Constrained Horn Clauses

Example

Program in C

CHC-encoding

Symbolic execution (via *static single assignment* transformation)

Uninterpeted predicate

```
int j, m, N = nondetInt();
int *A = nondetArray(N);
int i = 0:
while (i < N) {
  if (m < A[i]) m = A[i];
  i++;
assume (0 \le j < N);
assert(m \ge A[j]);
```


Verification Conditions as CHCs

Compact representation of a loop

$$INIT(V) \implies Inv(V)$$

 $Inv(V) \wedge TR(V, V') \implies Inv(V')$
 $Inv(V') \wedge BAD(V') \implies \bot$

Getting finite traces

- Unroll the loop some k times
- Evaluate a so-called Bounded Model Checking (BMC) formula

$$\overline{\mathrm{INIT}(V)} \wedge \underbrace{\mathrm{TR}(V,V') \wedge \mathrm{TR}(V',V'') \wedge \ldots \wedge \mathrm{TR}(V^{(k-1)},V^{(k)})}_{k} \wedge \mathrm{BAD}(V^{(k)})$$
 • here, each $V^{(i)}$ is a fresh copy of V

- Increase k for finding more bugs
- But to prove that there are no bugs, we need inductive invariants

Solutions for CHCs

Inductive invariant:

- Describes all initial states
- If it describes a state from where a transition starts, then it describes a state where the transition ends
- Describes no bad states

Example

$$inv \mapsto \forall j : 0 \le j < i \implies m \ge A[j]$$

$$i' = 0 \implies inv(A', i', m', N')$$

$$inv(A, i, m, N) \land i < N \land m' = ite(m < A[i], A[i], m) \land i' = i + 1 \implies inv(A, i', m', N)$$

$$inv(A, i, m, N) \land i \ge N \land 0 \le j < N \land \neg (m \ge A[j]) \implies \bot$$

Our approach: FreqHorn

[Fedyukovich et al, FMCAD'17]

High-level view:

 Loop between a candidate generator and an SMT-solver

Candidate generator

- Syntax-Guided Synthesis (SyGuS)
- Learning from positive / negative candidates

SMT-based decision maker

 Off-the-shelf SMT solvers (for termination, nontermination, safety, etc...)

Quantified Solutions for CHCs

[Fedyukovich et al., CAV 2019]

Inductive invariant:

- Describes all initial states
- If it describes a state from where a transition starts, then it describes a state where the transition ends
- Describes no bad states

```
quantified variable progress range cell property inv \mapsto orall j . 0 \le j < i \implies m \ge A[j]
```

$$i' = 0 \implies inv(A', i', m', N')$$

$$inv(A, i, m, N) \land i < N \land m' = ite(m < A[i], A[i], m) \land i' = i + 1 \implies inv(A, i', m', N)$$

$$inv(A, i, m, N) \land i \ge N \land 0 \le j < N \land \neg (m \ge A[j]) \implies \bot$$

Obtaining Quantified Invariants

[Fedyukovich et al., CAV 2019]

 $\forall \vec{q} . progressRange(\vec{q}, counters) \implies cellProperty(\vec{q}, vars)$

Identify $counters \subseteq vars$

Variables and the direction of their change

Introduce fresh variables \vec{q} to be quantified

- One per each counter
- Progress range based on termination conditions of loops and initial values of counters

SyGuS-based sampling of cell properties

- Using automatically generated formal grammars
- Similar to the case of numeric invariants

Relational Verification with CHCs

[Mordvinov et al., LPAR'2017, FMCAD'19]

Need for multiple invariants

Solutions are often inexpressible in the constraint language

Program transformation should help

- Simplifies the verification condition
- Preserves semantics

Can be made directly on the level of CHCs

Using a product-transformation

Applications:

- Information-flow Checking
- Equivalence Checking

Application: Bridging arrays and ADT

[Fedyukovich et al., TACAS'2021]

Data structures in programs

- Arrays
- Algebraic Data Types (ADT)

Automated reasoning is hard

- Arrays need (universal) quantifiers
- ADTs need recursion

Relational verification is even harder

- **Goal**: prove that an ADT-implementation and an Array-implementation of the same interface are equivalent
- Solution: synthesize relational invariants which are recursive and quantified

Example

Two implementations of a stack

class ListStack:	class ArrStack:
<pre>def init():</pre>	<pre>def init():</pre>
xs = nil	n = 0
	a = []
def push(in):	def push(in):
xs = cons(in, xs)	a[n] = in
	n = n + 1
<pre>def pop():</pre>	def pop():
assert xs != nil	assert n > 0
out = xs.head	n = n - 1
xs = xs.tail	return a[n]
return out	
'	

Example

Two implementations of a stack

$$\mathbf{R}(xs,n,a) = \begin{cases} n = 0 & \text{if } xs = \text{nil} \\ n > 0 \land y = a[n-1] \land \mathbf{R}(ys,n-1,a) & \text{if } xs = \text{cons}(y,ys) \end{cases}$$

$$\mathbf{R}(xs, n, a) = \begin{cases} -(n, a) \\ -(y, ys, n, a, _) \wedge \mathbf{R}(ys, _) \end{cases}$$

eneralize if xs = nilif xs = cons(y, ys)

$$\mathbf{R}(xs,cs) = \begin{cases} -(cs) & \text{if } xs = \text{nil} \\ \exists cs_r . \ _(y,ys,cs,cs_r) \land \mathbf{R}(ys,cs_r) & \text{if } xs = \text{cons}(y,ys) \end{cases}$$

Key Ideas

- Invariants describe the correspondence between programs in terms of the user-visible input and output variables
 - coincidence of preconditions
 - equivalence of outputs
 - the initiation and the consecution constraints
- Solutions for CHC use the recursive template
- CHC solver instantiates holes gradually
- CHC solver distinguishes:
 - Producers, i.e., that make the ADT "larger"
 - Consumers, i.e., that make the ADT "smaller"
 - Noops, i.e., that do not change the ADT

$$\boldsymbol{R}(xs,cs) = \begin{cases} -(cs) & \text{if } xs = \text{nil} \\ \exists cs_r . \ _(y,ys,cs,cs_r) \land \boldsymbol{R}(ys,cs_r) & \text{if } xs = \text{cons}(y,ys) \end{cases}$$

The **ADT-IND** prover

[Yang et al., CP'2019]

Specification Synthesis

```
???
 int x = 19;
 while (*) {
   int z = f();
   \mathbf{x} = \mathbf{x} + \mathbf{z};
 int y = g();
 assert (y >= x);
???
```

assertion should hold for any implementation

Specification Synthesis

Possible implementations

Specification Synthesis as CHC Problem

[Prabhu et al., PLDI'2021]

```
int x = 19;

while (*) {

int z = f();

x = x + z;

int y = g();

assert (y >= x);

(x = 19 \implies inv(x))

(x = 19 \implies inv(x))
```

Vacuous solutions

- Simply make the bodies of CHCs unsatisfiable
- Existing CHC solvers can easily discover them

Non-vacuous solutions

- Bodies of CHCs (and solutions) are satisfiable
- Require a CHC solver to do an extra SMT check for each solution

Maximal solutions

- Any weakening of solutions leads to assertion violation
- Require a CHC solver to check for assertion violations in a loop

HornSpec: Big idea

[Prabhu et al., PLDI'2021]

Evaluation

The tool

- Frequency https://github.com/grigoryfedyukovich/aeval/tree/rnd
- Built on top of the Z3 SMT solver
- Fully automated workflow
- Parallelized using Message Passing Interface

Comparable with

- Spacer, Eldarica, HOICE, MCMC, ICE, etc
- > 500 public benchmarks

Strong points of FreqHorn

- Quantified Invariants over Arrays
- ADT support
- Forward/Backward propagation using Quantifier Elimination
- Maximal Specification Synthesis

Conclusion and Future Work

- Safety verification
- Relational Verification
- Specification Synthesis

Solving Constrained Horn Clauses

- Automatic parallelization
- Security verification
- Termination Analysis
- Quantified Specification Synthesis
- Performance-aware Synthesis
- Termination-aware Synthesis