Constrained Horn Clauses for
Verification and Synthesis

Grigory Fedyukovich

Aug 4, IARCS

Logic-based verification and synthesis
A user provides a program and a desired specification
E.g., program never writes outside of allocated memory

A tool automatically constructs a model of the program
Program = formula

Use decision procedures to reason about formulas
Thus, deriving properties about programs

Inspired by methods in applied science
E.g., physicists in 17-19t" centuries

Automated Reasoning Today

Automated verification with SMT solvers
* Scale to large industrial applications

S8

=

Constrained Horn Clauses (CHC):

* Symbolic representation of programs
» Safety specifications (assertions)

Verification = CHC translation + CHC solving
* E.g., SeaHorn + Spacer, JayHorn + Eldarica, or RustHorn + Holce

“Guess-and-check” invariant generation for CHC solving:
* |teratively construct proofs using SMT solvers

Successful techniques are based on simple ideas
* Property Directed Reachability / IC3
* Machine Learning / Syntax-Guided methods

SAT: Boolean Satisfiability

Given a Boolean expression, using “and” (A),
“or” (V) and “not” (—),

* Is there an assignment of ¢{rue and false to the variables
that makes the expression equal {rue?

Example:
e (xVy)A(xVzVw)A-zA(wVy)

e Solution: x =y = w = true, z = false
DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
* Smart enumeration of all possible SAT assignments

Many heuristics used by modern tools
* Allow solving instances with millions of variables

SMT: Satisfiability Modulo Theory

Satisfiability of Boolean formulas over atoms in a theory

* BEg, x>2xy—1ANy<4
* Asolution: z =y =0

Extends syntax of Boolean formulas with functions and
predicates
* +, -, div, select, store, bvadd, etc.

Existing solvers support many theories useful for program
verification

* Equality and Uninterpreted Functions: z =y = f(x) = f(y)

* Real/Integer Linear Arithmetic: 2 >2xy—1Ay <4

* Unbounded Arrays: A = store(B, i, select(C, 7))
* Bitvectors (a.k.a. machineintegers): y=x > 4Az=y & =

* Floating point: 0.1 xx = 3.6y

Solving based on SAT

* As well as multiple heuristics for the theory reasoning

CHC: Constrained Horn Clauses

Formula in first order logic:

ecApL(V)AN...App(V) = H

where 4 is a constraint language
(e.g., (non-)linear arithmetic, arrays, bit-vectors, etc.)

* isaconstraintin 4

* p,... D are uninterpreted relation symbols

each p; (V) is an application of the predicate to variables
H is either some application p; (V) or false

System of CHCs

* Only one CHC with H = false

* Has a solution if there exists an interpretation for each p,
making each CHC valid

CHC Solvers

IC3/PDR
[Hoder, Bjorner, SAT’12]
[Cimatti, Griggio, CAV’ 12]
[McMillan, CAV’14]
[Komuravelli, Gurfinkel, Chaki,
Clarke, CAV’14]
CEGAR
[Unno, Terauchi, TACAS'15]
[Hojjat, Ruemmer, FMICAD’18]
[Vazou, Seidel, Jhala, etc, ICFP’14]
[Dietsch, Heizmann, Hoenicke, Nutz,

Podelski, HCVS/PERR’19]

Abstract Interpretation

[Kafle, Gallagher, Morales, CAV’16]

[Bakhirkin, Monniaux, SAS’17]
CEGIS/SyGuS

[Beyene, Popeea, Rybalchenko, CAV’13]

[Fedyukovich, Prabhu, Madhukar, Gupta,

FMCAD’18]

ML

[Champion, Chiba, Kobayashi, TACAS’18]

[Zhu, Magill, Jagannathan, PLDI’18]
Abduction

[Dillig, Dillig, Li, McMillan, OOPSLA’13]

The rest of the talk

[all papers co-authored by Fedyukovich]

FMCAD 2017:

Sampling Invariants from Frequency Distributions

CAV 2019:

Quantified Invariants via Syntax-Guided Synthesis

TACAS 2021:

Bridging Arrays and ADTs in Recursive Proofs

CP 2019:

Lemma Synthesis for Automating Induction over Algebraic Data Types

PLDI 2021:

Specification Synthesis with Constrained Horn Clauses

Example

Programin C CHC-encoding
Symbolic execution (via static Uninterpeted
single assignment transformation) predicate

int j, m, N = nondetInt(); w

int *A = nondetArray(N); i =0 = inv(A,i,m,N)
int 1 = 0;

while (i < N) { nv(A,i,m, N)\ i < NA

m' = ite(m < Ali], A[i], m)A

i+4+;

}

i =1+1 = inv(A4,7,m',N)

assume (0 j < N);

< . o .
assert(m > A[j]); inv(A,i,m, N)A i > NA

0<j<NA=(m>A}]) = L

if (m < A[i)) = = A[i);

Verification Conditions as CHCs

Compact representation of a loop

INIT(V) = Inv(V)
Inv(V) ATR(V, V') = Inv(V')
Inv(V))ABAD(V') = L

Getting finite traces
* Unroll the loop some k times
* Evaluate a so-called Bounded Model Checking (BMC) formula

INIT(V) ATR(V, V') ATR(V', V") A...ATR(VED V&)Y ABAD(VF)

~~

k * here, each V¥ is a fresh copy of V

* Increase k for finding more bugs
* But to prove that there are no bugs, we need inductive invariants

Solutions for CHCs

Inductive invariant:
 Describes all initial states

* |f it describes a state from where a transition starts, then it
describes a state where the transition ends

e Describes no bad states

Example

inv—[Vj.0<j<i = m> A[j]

i i"= 0 =" 11nv(A’,7,m',N')
[inv| A, i,m, N) A< N Am! = ite(m < Afi], A[i]l,m) Ai' =i +1 = [inv[A,i',m', N)

inv(A,i,m,N)Ai>NANO<j< NA-(m2>A[j]) = L

Our approach: FREQHORN

High-level view:

* Loop between a
candidate generator and
an SMT-solver

Candidate generator

* Syntax-Guided Synthesis
(SyGusS)

* Learning from positive /
negative candidates

SMT-based decision maker

* Off-the-shelf SMT solvers
(for termination, non-
termination, safety, etc...)

[Fedyukovich et al, FMCAD’17]

SMT
check n

C

Quantified Solutions for CHCs

[Fedyukovich et al., CAV 2019]

Inductive invariant:
 Describes all initial states

* |f it describes a state from where a transition starts, then it
describes a state where the transition ends

e Describes no bad states

E\l’\mlﬂlf\

guantified variable progress range cell property

inv — Vj|]0<j<i|=m> A[j]

i i"= 0 =" 11nv(A’,7,m',N')
[inv| A, i,m, N) A< N Am! = ite(m < Afi], A[i]l,m) Ai' =i +1 = [inv[A,i',m', N)

inv(A,i,m,N)Ai>NANO<j< NA-(m2>A[j]) = L

Obtaining Quantified Invariants

[Fedyukovich et al., CAV 2019]

ldentify counters C vars
* Variables and the direction of their change

Introduce fresh variables ¢ to be quantified
* One per each counter
* Progress range based on termination conditions of loops and

initial values of counters
SyGuS-based sampling of cell properties

e Using automatically generated formal grammars
* Similar to the case of numeric invariants

Relational Verification with CHCs

[Mordvinov et al., LPAR’2017, FMCAD’19]
Need for multiple invariants
* Solutions are often inexpressible in the constraint language

Program transformation should help

» Simplifies the verification condition
* Preserves semantics

Can be made directly on the level of CHCs
* Using a product-transformation

Applications:

* Information-flow Checking
* Equivalence Checking

Application: Bridging arrays and ADT

[Fedyukovich et al., TACAS’2021]

Data structures in programs
* Arrays
* Algebraic Data Types (ADT)

Automated reasoning is hard
* Arrays need (universal) guantifiers
* ADTs need recursion

Relational verification is even harder

* Goal: prove that an ADT-implementation and an Array-
implementation of the same interface are equivalent

* Solution: synthesize relational invariants which are recursive and
quantified

Example
Two implementations of a stack

|class ListStack: |
| def init():

I xs = ai |

def push(in) :

I
Xe = @eoms lim, | sas I
I
| |
I def pop() :
| essert x= 1= ndl

out = xs.head

¥ = ya tad |

relurn o |

|class ArrStack:

| def init():
I n =20
a - [

Q
D]
Il
-
=

I def pop() :

I dszerxt 1 > [}

Example

Two implementations of a stack

Rizs. n.a) = {

Riws es) = { =

n=>0
n= 0y — an AN RGsn =1 a

generalize

(cs)

Hes,. (@ ys,es, es.) A Riys es.)

it s = nil

it est— consi, s

it 2 npil

it zs — cons(y. s}

it £s — nil

it zsi — cons(y, ys)

Key |deas

Invariants describe the correspondence between programs in

terms of the user-visible input and output variables
e coincidence of preconditions
e equivalence of outputs
* theinitiation and the consecution constraints

e Solutions for CHC use the recursive template
CHC solver instantiates holes gradually

CHC solver distinguishes:
* Producers, i.e., that make the ADT “larger”
* Consumers, i.e., that make the ADT “smaller”
 Noops, i.e., that do not change the ADT

_ [es) if s = nil

Jes.. (1, s, 65, ¢5.) A R{ys es,) it #s — eonsi(y, ys)

Fiws cs| — {

The ADT-IND prover

Automation

[Yang et al., CP’2019]

* Proves the validity of universally-quantified
formulas by induction

@?Q Scves ¢ Can apply/rewrite assumptions
* Backtracks all assumptions fail
MathSAT,
zgYice : Uses proof failures to synthesize lemmas

e Can accept extra user-lemmas
e Built on top of Z3

ADT-IND

U Agaa
S8 @
v &%' a (}

Expressiveness

Specification Synthesis

int x

while

ot
=
ﬂ
“ON o~
*
1]
Lan
—~~
~

int y = g();

assert(y >= x);
,/
U .
/
- Ao for any

implementation

Zs ATE

ORIy »

o s | s

3>

185\~

Specification Synthesis

Possible implementations

d
’
int x = 19; o
while (+) { // e EEEEE .
int z = f();=o_ : : - [
=%+ 25 7=~ return 0; ! non-maximal
N I I
} SN :
int y :,g’\(.)\ \\ RN TR TR R —— 1
assert(y >= x);_ \\i !
V4 \ \~ . .
/ . "~1 return anything(-e,0); E maximal
U4 \\ I |
/ N I e ————————— -
—— A i ————— e P e —————— -
] o P :
I . : I .
P exit(0); | ireturn 19; ! return anything(19,+o,); i
| 1 I I 1 |
i | I 1 !
| 1

vacuous non-maximal maximal

Specification Synthesis as CHC Problem

[Prabhu et al., PLDI’2021]

int x = 19;
while (=) x =19 = inov(x)
int z = f()
X =X + z: inv(x)ANf(z) Ax' =x+2z = ino(x’)
} ino(x) Agly) A—-(y > x) = L
int y = g();

assert(y >= x);

Vacuous solutions
* Simply make the bodies of CHCs unsatisfiable
e Existing CHC solvers can easily discover them
Non-vacuous solutions
* Bodies of CHCs (and solutions) are satisfiable
* Require a CHC solver to do an extra SMT check for each solution

Maximal solutions
* Any weakening of solutions leads to assertion violation
e Require a CHC solver to check for assertion violations in a loop

HornSpec: Big idea

[Prabhu et al., PLDI’2021]

Initial || Backward [” Forward
Solution Propagate [«— Propagate
CHC folver

/ Solution /

= i ? [L]
‘ Irépgt VNon ls Maximal? | Maximality
H dCUouUs
. Find Weaker Checker
Solving _
CHC :
Maximal

*
*
*
| 3

SMT /" solution
DAL Model
Solver

Finder

Evaluation

The tool

e FREQHORN https://qgithub.com/qgrigoryfedyukovich/aeval/tree/rnd
e Built on top of the Z3 SMT solver
* Fully automated workflow

* Parallelized using Message Passing Interface W
. UNIVERSITY of
Comparable with WASHINGTON

* Spacer, Eldarica, HOICE, MCMC, ICE, etc
* > 500 public benchmarks

L. 3 PRINCETON
Strong points of FREQHORN UNIVERSITY
* Quantified Invariants over Arrays
 ADT support "Ti
* Forward/Backward propagation TATA
using Quantifier Elimination TATA CONSULTANCY SERVICES

* Maximal Specification Synthesis

Conclusion and Future

 Safety verification
e Relational Verification

 Specification Synthesis

Work

Solving Constrained
Horn Clauses

* Automatic parallelization
e Security verification

* Termination Analysis

* Quantified Specification Synthesis

* Performance-aware Synthesis

e Termination-aware Synthesis

