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● Motivation for SPIR-V
● Outline of approach to improving SPIR-V
● Problems with SPIR-V definitions
● Our solution: structural dominance
● Bonus: a new method for compiler fuzzing

Overview
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SPIR-V: Standard, Portable Intermediate Representation
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SPIR-V specification had some major problems

Problems related to sophisticated rules about control flow

Intended to help developers and compiler writers

Not helping in practice:

● Dzmitry Malyshau, Mozilla: Horrors of SPIR-V
● Sean Baxter, Circle compiler: Targeting SPIR-V is super easy and the 

structurization requirements totally won't make you want to throw yourself off 
a cliff

● Hans-Kristian Arntzen, Arntzen Software: My personal hell of translating DXIL 
to SPIR-V

http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/
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Our changes are now integrated into the SPIR-V specification

Better prose specification Better conformance test suites

Better validation tooling

David Alan
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Insight into problems with SPIR-V control flow

Let’s look at the definitions of control flow constructs in SPIR-V before our changes



Structured control flow in SPIR-V
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Structured control flow in SPIR-V
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Selection construct: intuitively, the body of an if-then-else



Selection construct: original definition
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Selection construct: original definition
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Selection construct: original definition

Works as desired in this example!



Problematic example: loop with early break

Selection construct 
headed at 3?

Blocks dominated by 3

Minus blocks 
dominated by 3’s 
merge - i.e. by 5

{3, 4, 5, 6, 7}

{5, 6}

Yields {3, 4, 7}



Flawed attempt at a fix

A selection construct: includes the blocks dominated by a 
selection header, while excluding blocks dominated by the 
selection construct’s merge block

Furthermore, these structured control-flow constructs are 
additionally defined to exclude all outer constructs’ 
continue constructs and exclude all blocks dominated by 
all outer constructs’ merge blocks.

Complex and circular



Our solution: structural dominance
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Our solution: structural dominance

Block 𝐴 dominates block 𝐵 if every 
path from entry to 𝐵 includes 𝐴

Dominated by 3? {3, 4, 5, 6, 7}

Block 𝐴 structurally dominates block 
𝐵 if every structural path from entry to 
𝐵 includes 𝐴

{3, 4, 5, 6}Structurally dominated by 3?



Selection construct revisited

A selection construct: includes the blocks structurally 
dominated by a selection header, while excluding blocks 
structurally dominated by the selection construct’s 
merge block

Furthermore, these structured control-flow constructs are 
additionally defined to exclude all outer constructs’ 
continue constructs and exclude all blocks dominated by 
all outer constructs’ merge blocks.



Loop with early break: no problem!
Selection construct 
headed at 3?

Blocks structurally 
dominated by 3

Minus blocks 
structurally dominated 
by 3’s merge - i.e. by 5

{3, 4, 5}

{5}

Yields {3, 4}



Structural dominance allows for simple, intuitive definitions

POPL 2023 paper: details many problems that structural dominance solves

SPIR-V spec updated: definitions now based on structural dominance

SPIR-V validator: now check rules based on structural dominance

Google consult with Imperial team regarding follow-on issues



Bonus: a method for compiler fuzzing

Our Alloy model produces weird and wonderful valid SPIR-V control flow graphs

spirv-to-alloy turns these into skeletal SPIR-V code

But: code is not runnable



Bonus: a method for compiler fuzzing

Simple idea: fleshing

● Instrument CFG so that it (a) follows path dictated by input, and (b) records the 
path that was followed

● Choose a path through the CFG
● Check that when executed with input that forces this path, the path really is 

followed

Led to discovery of 20 previously unknown compiler bugs
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Run program with:

in = [1, 1, 1, 1, 0, 1, 1, 1, 0, 0] 

Expect:

out = [1, 2, 3, 5, 6,
           1, 2, 4, 5, 6,
           1, 2, 4, 7 ] 

Any other answer 
indicates compiler bug



Summary

Formal modelling of SPIR-V allowed fundamental problems to be rectified

Industry have adopted the changes we proposed

Solution - structural dominance - is pleasingly simple, perhaps obvious in hindsight

Our Alloy model can generate challenging CFGs that, after fleshing, can trigger 
compiler bugs

Future work:

● Does structural dominance have broader relevance? Perhaps not.
● Can fleshing be used to find bugs in compilers for other languages?


