
Taking Back Control: Formally Modelling a
Compiler Intermediate Representation for GPU

Computing

Alastair F. Donaldson, Imperial College London, UK
Joint work with Vasileos Klimis, Jack Clark and John Wickerson

(Imperial), Alan Baker and David Neto (Google)

Verification Seminar Series, March 2025

● Motivation for SPIR-V
● Outline of approach to improving SPIR-V
● Problems with SPIR-V definitions
● Our solution: structural dominance
● Bonus: a new method for compiler fuzzing

Overview

Graphics shaders

Graphics shader written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Graphics shaders

Graphics shader

GPU-specific
machine code

written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Shader compiler

GPUs from many vendors: AMD, Apple, ARM,
Huawei, Imagination, Intel, NVIDIA, Qualcomm

Graphics shaders

Graphics shader

GPU-specific
machine code

written in shading
languages

OpenGL
shading

language

High Level
Shading

Language

Metal
Shading

Language
OpenCL C

Shader compiler

GPUs from many vendors: AMD, Apple, ARM,
Huawei, Imagination, Intel, NVIDIA, Qualcomm

Shader compiler: the most complex part of a GPU device driver

SPIR-V: Standard, Portable Intermediate Representation

Shading
language A

Shading
language B

Shading
language C

Multiple different shader compilers

Motivation

GPU-specific machine code

Every GPU vendor has to maintain their
own set of shader compilers: a lot of work

SPIR-V: Standard, Portable Intermediate Representation

Shading
language A

Shading
language B

Shading
language C

Industry standard,
GPU-agnostic translators

Motivation

GPU-specific machine code

Every GPU vendor writes a compiler for
SPIR-V - reduces overall burden

SPIR-V

SPIR-V specification had some major problems

Problems related to sophisticated rules about control flow

Intended to help developers and compiler writers

Not helping in practice:

● Dzmitry Malyshau, Mozilla: Horrors of SPIR-V
● Sean Baxter, Circle compiler: Targeting SPIR-V is super easy and the

structurization requirements totally won't make you want to throw yourself off
a cliff

● Hans-Kristian Arntzen, Arntzen Software: My personal hell of translating DXIL
to SPIR-V

http://kvark.github.io/spirv/2021/05/01/spirv-horrors.html
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://twitter.com/seanbax/status/1348780718797807622
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/
https://themaister.net/blog/2021/09/05/my-personal-hell-of-translating-dxil-to-spir-v-part-1/

Sources of truth about SPIR-V

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Best-effort initial
interpretation

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Formulate solutions to
known problems

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Formulate solutions to
known problems

Solutions informed
by experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Fix flaws in model
identified by tests

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generate

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Agreement

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Cross-check
against test suites

Modelling SPIR-V control flow in Alloy

Prose specification Conformance test suites

Validation tooling Experts

David Alan

Alloy
model

Interesting valid and
invalid control flow
graphs

Automatically
generateCross-check

against
validator

Fix
validator

Consult with experts

Fix flaws in model
identified by validator

Cross-check
against test suites

Fix ill-formed tests

Consult with
experts

Fix flaws in model
identified by tests

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Experts

Agreement

AgreementAgreement

Virtuous cycle improved formal model, conformance tests + tooling

Prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Experts

Agreement

AgreementAgreement

Update
specification

Our changes are now integrated into the SPIR-V specification

Better prose specification Better conformance test suites

Better validation tooling

David Alan

Alloy
model

Satisfied experts

Agreement

AgreementAgreement

Agreement

Insight into problems with SPIR-V control flow

Let’s look at the definitions of control flow constructs in SPIR-V before our changes

Structured control flow in SPIR-V

High level program Possible SPIR-V
representation

Structured control flow in SPIR-V

SPIR-V program

Control flow graph

Use special edges
to record

merge blocks

continue targets

Structured control flow in SPIR-V

Selection construct: intuitively, the body of an if-then-else

Selection construct: original definition

Block 𝐴 dominates block 𝐵 if
every path from entry to 𝐵
includes 𝐴

Blocks dominated by 3?

{3, 4, 5, 6, 7}

Path: just edges

Selection construct: original definition

A selection construct:
includes the blocks
dominated by a selection
header, while excluding
blocks dominated by the
selection construct’s
merge block

Selection construct: original definition

Works as desired in this example!

Problematic example: loop with early break

Selection construct
headed at 3?

Blocks dominated by 3

Minus blocks
dominated by 3’s
merge - i.e. by 5

{3, 4, 5, 6, 7}

{5, 6}

Yields {3, 4, 7}

Flawed attempt at a fix

A selection construct: includes the blocks dominated by a
selection header, while excluding blocks dominated by the
selection construct’s merge block

Furthermore, these structured control-flow constructs are
additionally defined to exclude all outer constructs’
continue constructs and exclude all blocks dominated by
all outer constructs’ merge blocks.

Complex and circular

Our solution: structural dominance

Path: just edges

Structural path: combination of

edges
and

Our solution: structural dominance

Block 𝐴 dominates block 𝐵 if every
path from entry to 𝐵 includes 𝐴

Dominated by 3? {3, 4, 5, 6, 7}

Block 𝐴 structurally dominates block
𝐵 if every structural path from entry to
𝐵 includes 𝐴

{3, 4, 5, 6}Structurally dominated by 3?

Selection construct revisited

A selection construct: includes the blocks structurally
dominated by a selection header, while excluding blocks
structurally dominated by the selection construct’s
merge block

Furthermore, these structured control-flow constructs are
additionally defined to exclude all outer constructs’
continue constructs and exclude all blocks dominated by
all outer constructs’ merge blocks.

Loop with early break: no problem!
Selection construct
headed at 3?

Blocks structurally
dominated by 3

Minus blocks
structurally dominated
by 3’s merge - i.e. by 5

{3, 4, 5}

{5}

Yields {3, 4}

Structural dominance allows for simple, intuitive definitions

POPL 2023 paper: details many problems that structural dominance solves

SPIR-V spec updated: definitions now based on structural dominance

SPIR-V validator: now check rules based on structural dominance

Google consult with Imperial team regarding follow-on issues

Bonus: a method for compiler fuzzing

Our Alloy model produces weird and wonderful valid SPIR-V control flow graphs

spirv-to-alloy turns these into skeletal SPIR-V code

But: code is not runnable

Bonus: a method for compiler fuzzing

Simple idea: fleshing

● Instrument CFG so that it (a) follows path dictated by input, and (b) records the
path that was followed

● Choose a path through the CFG
● Check that when executed with input that forces this path, the path really is

followed

Led to discovery of 20 previously unknown compiler bugs

Fleshing: example

1 2

3

4

5

6

7

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

out[i] = 2;
i++;

out[i] = 3;
i++;

out[i] = 4;
i++;

out[i] = 5;
i++;

out[i] = 6;
i++;

out[i] = 7;
i++;

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

out[i] = 2;
i++;

out[i] = 3;
i++;

out[i] = 4;
i++;

out[i] = 5;
i++;

out[i] = 6;
i++;

out[i] = 7;
i++;

c = in[j];
j++;

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

out[i] = 2;
i++;

out[i] = 3;
i++;

out[i] = 4;
i++;

out[i] = 5;
i++;

out[i] = 6;
i++;

out[i] = 7;
i++;

c = in[j];
j++;

c

!c

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

out[i] = 2;
i++;

out[i] = 3;
i++;

out[i] = 4;
i++;

out[i] = 5;
i++;

out[i] = 6;
i++;

out[i] = 7;
i++;

c = in[j];
j++;

c = in[j];
j++;

c = in[j];
j++;

c = in[j];
j++;

c

!c

c c

c

!c

!c

!c

Fleshing: example

1 2

3

4

5

6

7
out[i] = 1;
i++;

out[i] = 2;
i++;

out[i] = 3;
i++;

out[i] = 4;
i++;

out[i] = 5;
i++;

out[i] = 6;
i++;

out[i] = 7;
i++;

c = in[j];
j++;

c = in[j];
j++;

c = in[j];
j++;

c = in[j];
j++;

c

!c

c c

c

!c

!c

!c

Run program with:

in = [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]

Expect:

out = [1, 2, 3, 5, 6,
 1, 2, 4, 5, 6,
 1, 2, 4, 7]

Any other answer
indicates compiler bug

Summary

Formal modelling of SPIR-V allowed fundamental problems to be rectified

Industry have adopted the changes we proposed

Solution - structural dominance - is pleasingly simple, perhaps obvious in hindsight

Our Alloy model can generate challenging CFGs that, after fleshing, can trigger
compiler bugs

Future work:

● Does structural dominance have broader relevance? Perhaps not.
● Can fleshing be used to find bugs in compilers for other languages?

