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{Control 
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7.2.0.* port 1

9.2.*.* port 2
7.2.0.* port 5

9.2.*.* port 3

Protocol + Configuration

Forwarding Tables

Runtime Behavior

{Data 
Plane

Control Plane Protocols 
RIP, OSPF, BGP, …

Network Design



Primary goal is to get traffic from point A to point B 
but …

Traffic
Engineering

Cost $$$

Security

Fault-
tolerance

Backup

Network Control Plane
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Configuration
Distributed program
Vendor-specific
Assembly-language
Thousands of lines



Misconfiguration is a BIG problem
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Data Plane Verifiers

Veriflow [Kurshid 2013]
HSA [Kazemian 2012]

NoD [Lopes 2015]

…

Anteater [Mai 2011]

Symmetries [Plotkin 2016]

Motivated many formal verification efforts
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• Data plane verification checks a snapshot of the network
• Analyzes the given forwarding rules at routers to check various properties
• Based on model checking, symbolic simulation, SAT/SMT/BDD techniques
• Routinely applied in large data centers (~10k routers) 



Motivated many formal verification efforts
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• Control plane verification checks router configurations that 
determine the forwarding rules

• Verifies all possible data planes that result from the configurations
• Based on model checking, graph-based techniques, SAT/SMT/BDD techniques
• So far, they have been demonstrated on 2-3 k routers (max)

Control Plane Simulators Control Plane Verifiers

[Gember-Jacobsen 2016]

Our work

ARCBatfish [Fogel 2015]
C-BGP [Quotin 2005] Bagpipe [Weitz 2016]

[Fayaz 2017]ERA
[Lopes 2019]FastPlane
[Prabhu 2020]Plankton
[Ye 2020]Hoyan

symbolic execution
graph-based

semi-symbolic

fully-symbolic[Becket 2017, 2018, …]



reachability

no black holesRouter or subnet equivalence no loops

no transit

=

Network Properties
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Modeling Network Control Planes
in MineSweeper

Ryan Beckett, Aarti Gupta, Ratul Mahajan, David Walker:
A General Approach to Network Configuration Verification. SIGCOMM 2017: 155-168
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𝒅

0

The origin creates an initial announcement 
stating it has a path to destination d

Other nodes that receive the announcement 
pass it on to their neighbors, possibly 
modifying it

When nodes receive multiple 
announcements, they choose a best one

Eventually (hopefully), the system converges 
to a stable solution: all nodes are happy

1

1

Idealized RIP:
A simple routing protocol

2

A Generic Routing Protocol
[Griffin and Sobrinho: Metarouting]
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Stable Paths Problem (SPP)
Imperative, Stateful Program Logic Model

Each node is locally stable

[Griffin et al. 2002]

Choices (P, u) = …
Best (u) = …

• Prior work on reasoning about protocol/network convergence
• We apply it for verifying network configurations of protocols 



• Our Idea 
Capture network control plane behavior in terms of logical constraints, 
such that satisfying solutions are stable paths in the network

• Analogy to Program Verification
Program: Satisfying solution represents a path in the program graph
Network: Satisfying solution represents stable paths in the network graph

But: arbitrary (not well-structured) graphs in network topology, a single solution 
corresponds to many paths; we target a stable routing tree

Network protocols are designed to generate stable paths
i.e., routers exchange messages to make best choice, which stays stable

Minesweeper: Insights
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Choice 1: Model routing graphs, not paths at a time
• Too many paths, but all paths share the same graph

• In the data plane, reasoning is done per-packet because there is no interference 
between packets along different paths                                                                

• But, in the control plane, routing messages along different paths interact with each 
other – modeling this interaction can be expensive! 

Choice 2: Don’t compute states due to exchange of routing messages, but 
perform search on final stable states

• Familiar lesson from symbolic model checking vs. bounded model checking

• Solve a search problem over state space, use modern SAT/SMT solvers

• Often scales better than computing sets of states iteratively

Minesweeper: Key Choices
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SRP (Stable Routing Paths) – a general, logical control plane model

Applies translation to SMT-based logic for verification

Heavily optimized to make the resulting tool practical

Framed in terms of local route processing constraints at a node

Minesweeper Approach
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Topology:

Attributes:

Preference relation:

Transfer function:

Initial value:

G = V, E, d where  d: dest ∈ V

A! = A ∪ {⊥}

≺ ∶ A × A

transfer: E × A → A!
a" ∈ A!

Minesweeper: SRP Model
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An SRP solution is a labeling (based on neighbors): L: V → A!
An SRP solution is locally stable, i.e., each node is happy

protocol

configuration

Each SRP solution corresponds to a forwarding relation 



• Many network protocols are used in practice 
• RIP
• OSPF
• BGP (eBGP, iBGP)
• Static Routing

• Minesweeper handles them all as SRPs
• uniform model allows handling fancy features like route redistribution etc.

SRP Models for Popular Protocols 
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Routing Information Protocol (RIP)

Attributes:
A = {0. . 15}

Preference relation:
a ≺ b ⇔ a < b

Transfer function:

𝑑

transfer e, a = 7 If  a=15
otherwisea + 1

⊥

Example SRP

16



Does P hold in the network?‘‘ ’’
Network Encoding (SRP):  N

Network Property (Negated):  ¬P

⋀

Satisfiable: Property violation

Unsatisfiable: Property holds 
for all data planes

R3BGP

R!

N"

R#

R"

SMT Encoding for Verification
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Property: canReach"#

R3BGP

R!

N"

R#

R"

canReach!" ↔ forwards!",$%

canReach!& ↔
(forwards!&,!"∧ canReach!") ∨
(forwards!&,!%∧ canReach!%) ∨
(forwards!&,'%∧ canReach'%)

H"

canReach!% ↔ forwards!%,!& ∧ canReach!&

Can router R1 reach host H1?‘‘ ’’

Example: Reachability Property
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R1OSPF

R3BGP

y1 y2

y3

y4

y5
y6

x2
x3

x6

x1

x4
x5

R! R#

R"

N"

med:

}prefix:

Attribute

prefixLen:
adminDist:
localPref: [0,232)

[0,28)
[0,25)
[0,232)

metric: [0,232)
[0,232)

ospfType [0,22)

{
valid: 1 bit

y4 after R& import

L R" after export

Attributes are like states
Transfer function encodes how state is updated along a link

Encoding Transfer Function

19

SMT theories: bit vectors, LIA



OSPF Intra-area
OSPF Inter-area
eBGP Local-pref

eBGP Communities
eBGP MEDs

ImplementedFeatures

eBGP Aggregation
eBGP Path Prepending

iBGP
Route Reflectors

Static Routes
Route Redistribution

Multipath Routing

IPV6
Access Control Lists

Continued…

Common Network Design Features
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Reachability
Bounded Path Length

Equal Path Lengths
Disjoint Paths

Multipath Consistency

ImplementedProperties

Black Holes
Routing Loops

Router Equivalence
ECMP Load Balancing

Properties Supported

Minesweeper Limitations: 
Does not support convergence, quantitative/probabilistic properties
Checking multiple destinations is expensive

21
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Minesweeper Evaluation

Can Minesweeper find real bugs?

How well does Minesweeper scale?

1—23K lines of configuration each

Compared verification time across a wide variety of properties
Tested on a collection of synthetic data center benchmarks

Ran on a collection of 152 legacy networks
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Evaluation: Bug Finding
Loopback0Management interface reachability

Local equivalence of routers

Found 67 violations of the property

Found 29 violations
Example: ACL has missing entry

Blackholes occur only at the network edge

Reachability is the same after any 1 failure

Found 24 violations of the property

Found no violations of the property
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Evaluation Results

Management interface reachability

Local equivalence of routers
(For all n comparisons)
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Evaluation: Scalability

Black holes only occur 
at the network edge

Reachability is the same after 
any single link failure 
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BUT …
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A Problem of Scale

1000 5000

Other technologies, such as simulation, suffer similar, although less severe trends.

industrial data centers# of devices

Verification
Time

(Minesweeper)

500
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Abstraction
Part 1

Ryan Beckett, Aarti Gupta, Ratul Mahajan, David Walker:
Control plane compression. SIGCOMM 2018: 476-489
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Network Abstraction based on Symmetry

𝑑 𝑑

Goal:  Compute a small compressed network with a “similar” solution to the big one
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Formalizing a Compressed SRP

𝑑 𝑑

𝑎 𝑎

𝑏! 𝑏" 𝑏

A pair of abstraction functions: (f, h)

abstracts 
network topology

abstracts 
route announcements
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𝑑 𝑑

𝑎 𝑎

𝑏! 𝑏" 𝑏𝑓

A pair of functions: (f, h)

SRP Abstraction
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𝑑 𝑑

𝑎 𝑎

𝑏! 𝑏" 𝑏

ℎ
a, b!, d a, b, d

SRP Abstraction

A pair of functions: (f, h)

SRP Abstraction
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Theorem: If an abstraction satisfies certain requirements (forall-
exists requirement, transfer equivalence requirement), then it will 
compute similar global solutions as its related concrete network.

𝑎! 𝑎"

𝑑

𝑏! 𝑏"

𝑑

𝑎

𝑏

similar (modulo h) best routes

∀𝑣, h L v = L$ f v

where:
L is a solution in concrete SRP
L’ is a solution in abstract SRP

Soundness of SRP Compression Abstraction
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3
4

𝑎! 𝑎"

𝑑

𝑏! 𝑏"

𝑑

𝑎

𝑏

(1) Reachability
(2) Routing Loops
(3) Hop Count
(4) Multipath Consistency
(5) Waypointing

But not fault-tolerance

Valid abstractions preserve: 

Corollary
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Bonsai: Control Plane Compression

The Bonsai algorithm compresses real networks by a factor of 5-7 in
the number of nodes and 5-100 in the number of edges.

It preserves many path properties, such as reachability, but not fault tolerance.

Bonsai

We have proven it correct for a wide range of routing protocols.  
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Fattree Ring

Synthetic Benchmarks
[MineSweeper verifying all-pairs reachability]
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BUT …
what if there is no topological symmetry?
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Abstraction
Part 2

Ryan Beckett, Aarti Gupta, Ratul Mahajan, David Walker:
Abstract interpretation of distributed network control planes. POPL 2020
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Leveraging Abstract Interpretation

Use abstraction on route announcements to combat complexity 

q Formalize theory of abstraction for routing protocols
§ Combine abstract interpretation …

§ … with the theory of routing algebras.

[Cousot and Cousot 1977]

[Sobrinho 2005]
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Routing algebra basics

(𝑆,⊕, 𝐹, 0,∞)

set of routes merge
S → 𝑆 → 𝑆

transfer
E → 𝑆 → 𝑆

invalid routeinitial route

(𝑉, 𝐸)𝐓𝐨𝐩𝐨𝐥𝐨𝐠𝐲:

𝐀𝐥𝐠𝐞𝐛𝐫𝐚:



(100, [], [0])

𝑅#
𝑅%

𝑅&
𝑅'𝑅(

add c1
if c1 then

lp := 200

∞

∞

∞∞

(100, [], [0])

𝑅#

(100, [R!], [0])

𝑅%

𝑅&
𝑅'𝑅(

(100, [R!], [1])

(200, [R", R!], [1])

(100, [R#, R", R!], [1])

(R, [0])

(R, [1])

(R, [0])

(R, [∗])

(R, [∗])

Example: Abstracting (simplified) BGP 
• Routing algebra: 

(R, ⊕, F , 0, ∞) 
• Routing messages R:

(local_pref, path, comm)
• Transfer F on edge (i, j):

add j to path, local_pref update

• Abstract routing messages:
(R, comm*)

R: reachability marker
comm*: (0, 1, *} for each c

uncertainty due   
to abstraction
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Abstractions as abstract routing algebras

Concrete Algebra A = (S,⊕, F, 0,∞)
Abstract Algebra A# = (S#,⊕#, F#, 0#, ∞#)

42



Soundness theorems 

Theorem 1: For a fixed asynchronous schedule, an execution of abstract 
algebra A# is sound with respect to an execution of concrete algebra A.

Theorem 2: If A# is uniquely converging, then for any asynchronous 
schedule, an execution of abstract algebra A# is sound with respect to A.
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Abstraction: key benefits

• Abstraction can (often) give precise answers 
• In our experiments, we got precise answers on 95% of real networks

• Abstraction improves performance
• Tracking less information -> less memory
• Smaller state space -> fewer iterations to converge -> less time
• Creates opportunities for sharing (e.g., for multiple destinations)

• Abstraction can enable new network analyses
• Example: potential hijacking analysis
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ShapeShifter: Fast Reachability Analysis
• Goal: allow fast analysis, while minimizing loss in precision on real networks

• What to abstract?
• Throw away: AS-path, protocol decision process variables
• Keep: BGP communities, BGP origin, protocol used
• Example map [dest ↦ abstract route] : 

• [168/8 ↦ ([0,*,0], {R1}, {BGP}) ]
• Means: “second community may be attached or not, on a route originating from 

R1 in the BGP protocol”

• Other features
• BDD-based representations for prefix sets for improved sharing
• Message scheduling heuristics for improving performance
• Modeling multiple protocols, iBGP, …
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ShapeShifter: Evaluation on real networks
• Abstract simulation finished in less than 40 sec. on each of the 127 networks

• 1-2 orders of magnitude speedup over Batfish (concrete simulator)

over Batfish

About half of networks have 
more than 50x speedup

For the remaining 5% of 
networks, can prove reachability 
for the majority of destinations 

Can prove reachability 
for all destinations for 
95% of networks 



ShapeShifter: Synthetic datacenter results

Simulation time vs. data center size
for verifying all-pairs connectivity
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BUT …

Can we scale the 
general SMT-based approach?

(Analogy: static program analysis vs. 
SMT-based program verification)



Abstraction
Part 3

Divya Raghunathan, Ryan Beckett, Aarti Gupta, David Walker:
ACORN: Network Control Plane Abstraction using Route Nondeterminism. 
(Under submission)



Inspiration: Minesweeper’s SMT-based approach

• 𝑁 : SMT formula representing network behavior
• Satisfying assignments of 𝑁 represent stable paths

• 𝑃 : SMT formula representing property to be checked

SAT

UNSAT
Property holds in all 
stable paths

Property violated in 
some stable paths

50

𝑁8 ?

SMT 
encoding

Property
𝑁 ∧ ¬𝑃 SMT

solver

Network



Goal: improve scalability

Two-part Approach

1. Hierarchy of Nondeterministic Routing Choice (NRC) Abstractions
Abstract away route selection while preserving soundness

2. SMT encoding and solvers
Symbolic graph-based encoding                                 [Bayless et al. AAAI 2015]
Use SMT solvers with specialized graph-theories, e.g., MonoSAT

51



Strategy: Abstract away route selection

• Insight: Verifying certain properties (e.g., reachability) may not need 
to identify the best route available

• Modeling route selection is expensive
• Especially for complex protocols like BGP

• One difference between data plane and control plane: route selection
• Data plane verifiers routinely scale to several thousands of routers
• Question: can we get closer to their performance? 

… Yes!
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Key Idea: Nondeterministic Routing Choice (NRC) Abstractions

• Each router nondeterministically chooses one of the routes received
• Any available route, not necessarily the best, may be chosen

• Route announcement fields involved only in route selection can be abstracted away
• Any chosen route must be compliant with policy

• For example, routes filtered based on community tags will not be chosen

• Abstract network model N’ has more routes than real network N
• N’ includes best routes and other policy-compliant routes
• N’ overapproximates N
• A hierarchy of NRC Abstractions based on routing fields

53



SMT-based verification with NRC abstraction

• 𝑁’ : SMT formula overapproximates network behavior
• Satisfying assignments of 𝑁′ represent abstract stable paths

• 𝑃 : SMT formula representing property to be checked

SAT

UNSAT

54

Property
𝑁′ ∧ ¬𝑃 SMT

solver

Network NRC 
Abstraction 

+ 
SMT encoding

Property holds in all 
abstract stable paths and 
hence in all stable paths

Property violated in some 
abstract stable path
(could be a false alarm)



Motivating Example with BGP

f d

e

c add c1
if c1 then
lp := 200

a f d

e

c add c1
if c1 then
lp := 200

a

f d

e

c add c1
if c1 then
lp := 200

a

4 solutions: a can reach d in all abstract stable routing trees

Route announcement from d reaches a
⇒ a can reach d in real network

Real network N Abstract network N’
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Soundness of NRC abstractions

• We use the SRP model of the network control plane 
• NRC is formulated in terms of an abstract SRP

• where the preference relation is a partial order, rather than a total order
• Partial order must be consistent with the concrete total order

• Soundness: Abstract SRP S′ overapproximates corresponding SRP 𝑆
• Stable solutions of SRP S are guaranteed to be contained in stable solutions of SRP S’
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Goal: improve scalability

Two-part Approach

1. Hierarchy of Nondeterministic Routing Choice (NRC) Abstractions
Abstract away route selection while preserving soundness

2. SMT encoding and solvers
Symbolic graph-based encoding                                 [Bayless et al. AAAI 2015]
Use SMT solvers with specialized graph-theories, e.g., MonoSAT

57



MonoSAT solver
• SMT with graph theory solver
• Uses symbolic graphs, graphs with a Boolean variable per edge

[Bayless et al. AAAI 2015]

f d

e

c

a
𝑟𝑒()
𝑟𝑒)(

𝑟𝑒)*
𝑟𝑒*)

𝑟𝑒*+
𝑟𝑒+*

𝑟𝑒,+
𝑟𝑒+,

𝑟𝑒),
𝑟𝑒,)

Symbolic graph 𝐺!" = 𝐺, 𝑅𝐸
𝐺 = (𝑉, 𝐸)
𝑅𝐸 = 𝑟𝑒#$ 𝑢, 𝑣 ∈ 𝐸}

𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒: 𝐺!" . 𝑟𝑒𝑎𝑐ℎ𝑒𝑠(𝑑, 𝑣)
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Stable paths: symbolic graph-based encoding

• Encode abstract SRP 𝑆% with SMT formula 𝑁′
• Key idea: abstract stable routing trees of S’ are captured by symbolic graph solutions

59

Formula 𝐹 over 𝑅𝐸 and other variables, can also use graph-based predicates
• Satisfying assignment of F à subgraph of G s.t. 𝑟𝑒$% is true
• E.g. 𝐹 = 𝑟𝑒!" ∧ ¬𝑟𝑒"! ∧ 𝑟𝑒#! ∧ ¬𝑟𝑒$# ∧ 𝐺%& . 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑑, 𝑓



Benefits of NRC and graph-based encoding

• Fewer variables
• Route announcement fields used only in route selection are discarded
• Community attribute sufficient for most policies evaluated

• Expensive transfers can become irrelevant during solver search
• Concrete formulation (i.e., no NRC abstraction) considers transfers from all

neighbors to compute best
• In the abstract formulation once a symbolic edge variable is assigned true, 

other neighbors become irrelevant
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ACORN prototype verifier

• Input format is an intermediate representation (IR)
• Two backend SMT solvers: MonoSAT and Z3

61

MonoSAT
Solver

Z3
Solver

Network topology
+ policy (IR)

𝑁9 ∧ ¬𝑃

𝑁: ∧ ¬𝑃
NRC Abstraction 

+ 
SMT encodingProperty



ACORN Evaluation

1. Relative performance of NRC abstraction (with / without)
2. Relative performance of graph theory capable SMT solver (MonoSAT / Z3)

Four experiment settings:
• abs_mono: NRC abstraction using MonoSAT
• abs_z3: NRC abstraction using Z3
• mono: no abstraction using MonoSAT
• z3: no abstraction using Z3
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Benchmark examples

1. Data center examples with FatTree topology (to evaluate scalability)
• Valley-free policy
• Properties: reachability (single-src), valley-free property

2. Wide Area Network (WAN) examples
• Topology zoo examples that we annotated with business relationships
• BGPStream examples, annotated using the CAIDA AS relationships dataset
• Policy implements the Gao-Rexford conditions
• Properties: reachability (all-src), no-transit property

Machine details: 2.3 GHz Intel i7 processor, 16 GB RAM
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[Gao and Rexford. SIGMETRICS 2000]



FatTree network with valley-free policy
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c = 0: route has 0 Aggr nodes
c = 1: route has 1 Aggr nodes
c = 2: route has 2 Aggr nodes
c = 3: route has ≥ 3 Aggr nodes



Results for FatTrees with valley-free policy

65

• Abstract settings verify both properties without false alarms
• abs_mono verifies reachability for a FatTree with 36,980 routers in 40 mins

• Abstract settings are uniformly better than concrete settings (upto 52x speedup for MonoSAT)
• MonoSAT better for reachability but Z3 better for valley-free property

Reachability
(single-src)

Valley-free 
property



Topology Zoo network: Example

Policy implements Gao-Rexford conditions:
• Prefer Cust < Peer < Prov (Cust most preferred)
• Don’t export routes from Peer/Prov to another Peer/Prov 

(no-transit property)

[Gao and Rexford. SIGMETRICS 2000]

42 nodes, 50 edges. Each node is an AS.
Edges annotated with business relationships 
(customer/peer/provider)
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Results for Topology Zoo networks

67

• Abstract settings verify both properties without false alarms
• Abstract settings are uniformly better than concrete settings (relative speedup of 3x)
• MonoSAT better for both properties

Reachability
(all-src)

No-transit 
property



Results for BGPStream networks

68

• Abstract settings verify no-transit property in all networks, and reachability in 6/10 networks
• Abstract settings are better than concrete settings

• MonoSAT: speedup of 323x for reachability, and 120x for no-transit
• Z3: benefit of NRC not as pronounced; no-abstraction setting sometimes better for no-transit

Reachability
(all-src)

No-transit 
property



NRC Refinement

69

• 4/10 false alarms are handled using a more precise abstraction that models local preference
• NRC abstraction hierarchy provides a tradeoff between performance and precision



Comparison of ACORN with other tools

70

• NV uses MTBDD-based simulation and SMT
• ShapeShifter uses BDD-based simulation with 

abstract interpretation

• Both NV and ShapeShifter run out of memory 
for networks with > 3000 nodes

• ACORN scales to ≈37,000 nodes 

• SAT/SMT techniques seem more scalable than 
BDD-based methods (again!)

Reachability (single-src) on FatTree benchmarks 
with valley-free policy



ACORN: Summary of experimental results
• NRC can verify reachability for ≈37,000 routers within an hour

• Far exceeds performance of existing control plane verifiers

• NRC improves scalability for both solvers, all benchmarks
• Abstract settings uniformly better than concrete settings

• NRC could verify realistic policies 
• Common policies on data center networks, no false alarms with least precision
• Some false alarms in WANs, refinements verified successfully
• Future work: CEGAR-based refinement

• MonoSAT’s graph theory solver useful for reachability
• Z3 sometimes better for policy-based properties
• This needs further investigation
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• Build the logic-based model first, leverage domain insights
• modeling the network control plane stable behavior enabled direct use of SMT 

technology for verification

• Don’t abstract too early
• our SMT-based model is rich in detail, captures many features (e.g., local preferences, 

route redistribution) considered important by network practitioners

• Build logic-based abstractions, compositional methods, CEGAR, <your-favorite-method> 
on top of the logic-based model
• Bonsai: Symmetry-based abstractions [Beckett et al. SIGCOMM 2018]
• Shapeshifter: Abstract Interpretation [Beckett et al. POPL 2020]
• Origami: Failure analysis [Giannarakis et al. CAV 2019]
• NV: Programmable Platform [Giannarakis et al. PLDI 2020]
• ACORN: Nondeterministic route selection [under submission]
• Timepiece: Modular verification [under submission]

Lessons (re-)Learned
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• Many challenges still remain: scalability, failure analysis, …

• Quantitative/probabilistic properties
• Some existing efforts (e.g., Probabilistic NetKat, ApproxFlow) 
Ø Model counting techniques
Ø Probabilistic verification

• Automated synthesis with verification
Ø Leverage machine learning + deductive techniques

Future Opportunities
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