
Two Dimensional Bounded Model Checking: A
Novel Verification Strategy

Tephilla Prince
IIT Dharwad

An Ongoing work
with Prof. Ramchandra Phawade and Prof. S. Sheerazuddin

05/07/2022

1 / 32

Contributions

I A novel technique 2D-BMC to verify the properties of the
system.

I A counting logic language LC for describing the counting and
temporal properties of the system.

I Our tool DCModelChecker that uses 2D-BMC and LC .

2 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?

Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?

Yeah, come in!

)
Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!

)
Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?

No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?

No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exiting

Parking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exiting

Parking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

A motivating example

An empty Parking Lot waits
for vehicles

P

)

Can I park here?Yeah, come in!
)

Parking Lot allocated

Unbounded number of
parking requests

)

)))))))

Can I park here?

No parking space

))))

))))

)

Can I park here?No

)

I’m exitingParking Lot Deallocated
)))

))))

single server-multiple client system (clients of the same type)

I’m exiting

))

Can I park here?
)))

))))

3 / 32

State diagram of Autonomous Parking System (APS)

server readyserver busy

request granted

deallocate parking lot

request rejected

completed processing

processing
accept reject

vehicle exits successfully

vehicle exits

4 / 32

State diagram of vehicle in APS

parking requested

occupy parking lot

exit parking lot

parking unavailable

exit parking

APS accepts

APS rejects

successful exit

unsuccessful exit

5 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

ready

readyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

ready

readyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request

Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyready

ready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request

Client exits the parking space

Client is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyreadyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking space

Client is terminated

Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyreadyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated

Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

ready

ready

ready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

ready

ready

ready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyreadyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyreadyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

ready

ready

ready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

A Petri Net for APS

generate client request

Initially the server is ready

for client requests

Client parking request is

received

Server accepts the Client

parking request
Client exits the parking spaceClient is terminated
Server is ready for more

requests

A new Client parking request

is received

Server rejects the Client

parking request

Client is terminated unsuc-

cessfully

parking requested

readyreadyready

parking requested

accept

busy

grantedgranted

exit

exitedexited

terminate

reject

rejected

terminate

rejected

client place server place

transition enabled transition

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

6 / 32

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

I Is the number of clients occupying parking lots
= number of requests granted always?

G ((#x)p2(x) <= p3(x)&¬((#x)p3(x) >
p2(x)))

There is no counterexample for this property for
upto bound 50

I Is there atleast one token in either place p1 or p7

or p8?

G ((#x > 0)p1(x)|(#x > 0)p7(x)

|(#x > 0)p8(x))

There is no counterexample for this property for
upto bound 100

7 / 32

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

I Is the number of clients occupying parking lots
= number of requests granted always?

G ((#x)p2(x) <= p3(x)&¬((#x)p3(x) >
p2(x)))

There is no counterexample for this property for
upto bound 50

I Is there atleast one token in either place p1 or p7

or p8?

G ((#x > 0)p1(x)|(#x > 0)p7(x)

|(#x > 0)p8(x))

There is no counterexample for this property for
upto bound 100

7 / 32

t0

p0

p1

t1p7

t6

p2p3

t2

p4p5

t3

t4

p6

t5

p8

t7

I Is the number of rejected
requests greater than the
number of accepted requests
at some point?

F ((#x)p6(x) > p2(x)).

At k = 4, κ = 1 (number of
tokens), λ = 3 (time
instance), we get a
counterexample.

8 / 32

Introducing Counting Logic LC

In LC , there are three types of atomic formulas:

1. describing basic server (system) properties, Ps
1

2. counting sentences like: (#x > c)α and (#x ≤ c)α over
client (vehicle) properties 2

Pc ={parking requested,occupy parking lot,· · · }
3. comparing sentences like: (#x)α ≤ β and (#x)α > β.

1Ps are propositional constants
2c denotes the number of vehicles in α

9 / 32

Introducing a Counting Logic LC

Set of client (vehicle) formulas ∆:

α, β ∈ ∆ ::= (#x > c)p(x) | (#x ≤ c)p(x)

| (#x)p(x) ≤ q(x) | (#x)p(x) > q(x)

| α ∨ β | α ∧ β

where p, q ∈ Pc and c is a non-negative integer

10 / 32

Introducing a Counting Logic LC

Set of server (system) formulas Ψ:

ψ ∈ Ψ ::= q ∈ Ps | ϕ ∈ ∆ | ¬ψ | ψ ∨ ψ | ψ ∧ ψ
| Xψ | Fψ | Gψ | ψ1Uψ2

11 / 32

The 2D-BMC strategy

λ

κ

λ+ κ = k , k ≥ 0, λ : time instance, κ: no. of tokens

[M, ψ](0,0)

[M, ψ](0,1)

[M, ψ](1,0)

[M, ψ](2,0)

··
·

[M, ψ](1,1)

··
·

[M, ψ](0,2)

· · ·

· · ·

12 / 32

The 2D-BMC strategy

λ

κ

λ+ κ = k , k ≥ 0, λ : time instance, κ: no. of tokens

[M, ψ](0,0) [M, ψ](0,1)

[M, ψ](1,0)

[M, ψ](2,0)

··
·

[M, ψ](1,1)

··
·

[M, ψ](0,2)

· · ·

· · ·

12 / 32

The 2D-BMC strategy

λ

κ

λ+ κ = k , k ≥ 0, λ : time instance, κ: no. of tokens

[M, ψ](0,0) [M, ψ](0,1)

[M, ψ](1,0)

[M, ψ](2,0)

··
·

[M, ψ](1,1)

··
·

[M, ψ](0,2)

· · ·

· · ·

12 / 32

The 2D-BMC strategy

λ

κ

λ+ κ = k , k ≥ 0, λ : time instance, κ: no. of tokens

[M, ψ](0,0) [M, ψ](0,1)

[M, ψ](1,0)

[M, ψ](2,0)

··
·

[M, ψ](1,1)
··
·

[M, ψ](0,2)

· · ·

· · ·

12 / 32

Negated
property

(in NNF)ψ

property
formula
in LC

Read system
description

(M) and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

13 / 32

Negated
property

(in NNF)ψ

property
formula
in LC

Read system
description

(M) and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

13 / 32

Negated
property

(in NNF)ψ

property
formula
in LC

Read system
description

(M) and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

13 / 32

Negated
property

(in NNF)ψ

property
formula
in LC

Read system
description

(M) and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

13 / 32

ψ
Read M

and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

If k< bound
Assign k = 1

Else EXIT

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 λ =

0, κ = 1. EXIT

yes

14 / 32

ψ
Read M

and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

If k< bound
Assign k = 1

Else EXIT

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 λ =

0, κ = 1. EXIT

yes

14 / 32

ψ
Read M

and bound

At k = 0,
λ = 0, κ = 0

Is [M, ψ](0,0) SAT?
Z3

[M, ψ](0,0) is
SAT.Counter

example found
at k = 0. EXIT

[M, ψ](0,0) is
UNSAT. No

counter example
found at k = 0

yes

no

If k< bound
Assign k = 1

Else EXIT

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 λ =

0, κ = 1. EXIT

yes

14 / 32

If k< bound
Assign k = 1

Z3

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 κ =

1, λ = 0. EXIT

yes

At k = 1,
λ = 1, κ = 0

Is [M, ψ](1,0) SAT?

no

[M, ψ](1,0) is
SAT.Counter

example found
at k = 0 λ =

1, κ = 0. EXIT

yes

If k< bound
Assign k = 2

no

15 / 32

If k< bound
Assign k = 1

Z3

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 κ =

1, λ = 0. EXIT

yes

At k = 1,
λ = 1, κ = 0

Is [M, ψ](1,0) SAT?

no

[M, ψ](1,0) is
SAT.Counter

example found
at k = 0 λ =

1, κ = 0. EXIT

yes

If k< bound
Assign k = 2

no

15 / 32

If k< bound
Assign k = 1

Z3

At k = 1,
λ = 0, κ = 1

Is [M, ψ](0,1) SAT?

[M, ψ](0,1) is
SAT.Counter

example found
at k = 0 κ =

1, λ = 0. EXIT

yes

At k = 1,
λ = 1, κ = 0

Is [M, ψ](1,0) SAT?

no

[M, ψ](1,0) is
SAT.Counter

example found
at k = 0 λ =

1, κ = 0. EXIT

yes

If k< bound
Assign k = 2

no

15 / 32

Architecture of the Tool DCModelChecker

Property Formula

System Description

Pre-Processing
Module

2D-BMC
Module

bound

Z
3

S
ol

ve
r

sat + trace unsat

16 / 32

Experiments

- The benchmark was obtained from MCC 3

- ITS-Tools is a state of the art symbolic model checker 4

3Model Checking Contest https://mcc.lip6.fr/
4Yann Thierry Mieg et al.[TACAS 15]

17 / 32

Summary

λ

κ

(M, ψ)(0,0)

(M, ψ)(1,0)

(M, ψ)(2,0)

··
·

(M, ψ)(0,1)

(M, ψ)(1,1)

··
·

(M, ψ)(0,2)

· · ·

· · ·

I In BMC, “We ask whether the
system M has any counterexample
of length k to (property) ψ. This
bounded problem is encoded into
SAT.” - A.Biere

I In 2D-BMC, we ask whether the
system M has any counterexample
of length λ and number of clients
κ to ψ and encode this bounded
problem into SMT.

18 / 32

Summary

I A novel counting logic LC

I Introduced 2D− bounded model checking strategy

I Introduced first-of-its-kind tool DCModelChecker 5 to perform
2D− BMC on Petri Nets, using LC to specify properties6

5DCModelChecker tool: https://doi.org/10.6084/m9.figshare.19875226
6Technical Report: https://iitdh.ac.in/∼prb/2dbmc tr 2.pdf.pdf

19 / 32

Future Work

I Optimize our tool by implementing an efficient linear size
encoding

I Establish Completeness Criterion for 2D-BMC and LC

I Extend LC to account for identifiable clients

I Leverage inductive reasoning to have a full decision procedure
when satisfiable (similar to the work in QCOVER, ICOVER)

Thank you for your attention

20 / 32

Future Work

I Optimize our tool by implementing an efficient linear size
encoding

I Establish Completeness Criterion for 2D-BMC and LC

I Extend LC to account for identifiable clients

I Leverage inductive reasoning to have a full decision procedure
when satisfiable (similar to the work in QCOVER, ICOVER)

Thank you for your attention

20 / 32

Backup

21 / 32

Input
Expression

Grammar

Lexer +
Parser

ANTLR tool

parse tree

Language Recognizer

Listener
Walker

output
tree

ANTLR Runtime Library

Pre-Processing Module

Figure: Pre-Processing Module architecture

22 / 32

2D− Bounded Model Checking Strategy

Petri net model M against the property ψ = ¬φ is as follows:

23 / 32

2D− Bounded Model Checking Strategy

For any κ ≥ 0, we define [M]〈0,κ〉 = I (s0) ∧ (
∧

0≤j≤np
pj0 ≤ κ).

I k has two parts λ and κ

I λ gives the bound for time instances

I κ gives the bound for number of vehicles in the parking system

23 / 32

2D− Bounded Model Checking Strategy

Inductively, for any λ > 0,
[M]〈λ,κ〉 = [M]〈λ−1,κ〉 ∧ (T (sλ−1, sλ) ∧ (

∧
0≤j≤np

pjλ ≤ κ))

23 / 32

2D− Bounded Model Checking Strategy

[M, ψ]〈λ,κ〉 = [M]〈λ,κ〉 ∧
()

23 / 32

2D− Bounded Model Checking Strategy

[M, ψ]〈λ,κ〉 = [M]〈λ,κ〉 ∧
((
¬L〈λ,κ〉 ∧ [ψ]0〈λ,κ〉

)
∨ ()

)

23 / 32

2D− Bounded Model Checking Strategy

[M, ψ]〈λ,κ〉 = [M]〈λ,κ〉∧
((
¬L〈λ,κ〉∧[ψ]0〈λ,κ〉

)
∨

k∨
l=0

(lL〈λ,κ〉∧l [ψ]0〈λ,κ〉)
)

23 / 32

Semantics

The logic is interpreted over model sequences. Formally, a model is
a sequence % = m0,m1, . . ., where for all i ≥ 0 we have a triple
mi = (νi ,Vi , ξi) such that:

1. νi ⊂fin Ps , gives the local properties of the server at instant i .

2. Vi ⊂fin CN gives the clients alive at instant i , where CN is a
countable set of client names that can be assigned to the
vehicles in the system. Further, for all i ≥ 0, Vi+1 ⊆ Vi or
Vi ⊆ Vi+1.

3. ξi : Vi → 2Pc gives the properties satisfied by each live agent
at the ith instant.

24 / 32

Semantics

The truth of a formula at an instant in the model is given by the
relations |= and |=∆ defined by induction over the structure of ψ
and α respectively as follows:

1. %, i |= q iff q ∈ νi . Note that q’s denote atomic local server
propositions. Therefore, a q holds in the model % at instance i
if q is in the set νi .

2. %, i |= ϕ iff %, i |=∆ ϕ. Recall that ϕ is a sentence from the
set of client formulae ∆. In order to define the satisfiability of
ϕ, we need to use the rules defined for the relation |=∆.

3. %, i |= ¬ψ iff %, i 6|= ψ. This rule is standard.

4. %, i |= ψ ∨ ψ′ iff %, i |= ψ or %, i |= ψ′. This rule is standard.

25 / 32

Semantics

5. %, i |= ψ ∧ ψ′ iff %, i |= ψ and %, i |= ψ′. This rule is standard.

6. %, i |= Xψ iff %, i + 1 |= ψ. This rule is standard.

7. %, i |= Fψ iff ∃j ≥ i , %, j |= ψ. This rule is standard.

8. %, i |= Gψ iff ∀j ≥ i , %, j |= ψ. This rule is standard.

9. %, i |= ψ1Uψ2 iff ∃j ≥ i , %, j |= ψ2 and for all
i ≤ j ′ < j : %, j ′ |= ψ1. This rule is standard.

26 / 32

Semantics

10. %, i |=∆ (#x > c)p(x) iff |{a ∈ Vi | p ∈ ξi (a)}| > c. The
client formula (#x > c)p(x) holds in model % at instance i if
there are strictly more than c clients that satisfy the property
p at instance i .

11. %, i |=∆ (#x)p(x) ≤ q(x) iff
|{a ∈ Vi | p ∈ ξi (a)}| ≤ |{b ∈ Vi | q ∈ ξi (b)}|. The client
formula (#x)p(x) ≤ q(x) holds in the model % at instance i if
the number of clients satisfying property p is less than the
number of clients satisfying the property q, at the same
instance i .

12. %, i |=∆ (#x ≤ c)p(x) iff |{a ∈ Vi | p ∈ ξi (a)}| ≤ c. The
client formula (#x ≤ c)p(x) holds in model % at instance i if
there are less than c clients that satisfy the property p at
instance i .

27 / 32

Semantics

13. %, i |=∆ (#x)p(x) > q(x) iff
|{a ∈ Vi | p ∈ ξi (a)}| > |{b ∈ Vi | q ∈ ξi (b)}|. The client
formula (#x)p(x) > q(x) holds in the model % at instance i if
the number of clients satisfying property p is strictly more
than the number of clients satisfying the property q, at the
same instance i .

14. %, i |=∆ α ∨ β iff %, i |=∆ α or %, π, i |=∆ β. This rule is
standard.

15. %, i |=∆ α ∧ β iff %, i |=∆ α and %, π, i |=∆ β. This rule is
standard.

28 / 32

Preliminaries: Petri Nets

A Petri Net structure is a tuple N = (P,T ,F ,W) where

I P is a finite set of places

I T is a finite set of transitions, F ⊆ (P × T) ∪ (T × P) is the
flow relation

I W : F → ℵ0 is a weight function, where ℵ0 is the set of
non-negative integers.

I For any place (resp. transition) z of the set P ∪ T , the set
{x | (x , z) ∈ F} is called pre-transitions (resp. pre-places) of z

I the set {x | (z , x) ∈ F} is called post-transitions (resp.
post-places) of z

29 / 32

Preliminaries: Petri Nets

I A marking M of a Petri Net is a function M : P → ℵ0.

I A Petri Net (system) is a tuple M = (N,M0) where N is a
Petri Net structure and M0 is an initial marking.

I A transition t is enabled at marking M, if for each pre-place p
of t we have M(p) ≥W (p, t).

I A new marking is obtained when an enabled transition is fired,
and is obtained by removing W (p, t) tokens from each
pre-place p of t, and adding W (t, p) tokens to each post-place
p of t, leaving tokens in the remaining places as it is.

30 / 32

Preliminaries: Petri Nets

The propositional encoding of N is defined by the formula
T = Tenabled ∧ Tfirability ∧ Tnext , where:

I the formula Tenabled states that more than one transition can
be enabled at a time. i.e, it is an or over the preconditions of
all enabled transitions and is given by
Tenabled = pret0 ∨ pret1 ∨ · · · ∨ pretn ;

I the formula Tnext gives us the next transition that will be
fired, and is expressed as an or expression over each transition
and its postcondition and all other transitions and
postconditions are negated.
Tnext =

(t0 ∧ ¬t1 ∧ · · · ∧ ¬tn ∧ postt0 ∧ ¬postt1 ∧ · · · ∧ ¬posttn)∨
(¬t0 ∧ t1 ∧ · · · ∧ ¬tn ∧ ¬postt0 ∧ postt1 ∧ · · · ∧ ¬posttn) ∨ · · · ∨
(¬t0 ∧ ¬t1 ∧ · · · ∧ tn ∧ ¬postt0 ∧ ¬postt1 ∧ · · · ∧ posttn);

31 / 32

Preliminaries: Petri Nets

I the formula Tfirability relates the pre condition of a transition
with its distinct postcondition and is given as

Tfirability = (postt0 → pret0) ∧ (postt1 → pret1) ∧ · · · ∧ (posttn →
pretn);

where for each ti , preti is a propositional formula defined over
place variables encoding that the precondition of firing ti is
satisfied and postti is a formula defined over place variables
encoding the update in tokens after firing ti is satisfied.

We denote the encoding of Petri Net system M = (N,M0) by
[M] = (T ,M0) where M0 is the initial assignment of the marking
vector M.

32 / 32

