Two Dimensional Bounded Model Checking: A Novel Verification Strategy

Tephilla Prince IIT Dharwad

An Ongoing work with Prof. Ramchandra Phawade and Prof. S. Sheerazuddin

05/07/2022

Contributions

- A novel technique 2D-BMC to verify the properties of the system.
- A counting logic language L_C for describing the counting and temporal properties of the system.
- Our tool DCModelChecker that uses 2D-BMC and \mathcal{L}_C .

An empty Parking Lot waits for vehicles

No parking space

single server-multiple client system (clients of the same type)

State diagram of Autonomous Parking System (APS)

State diagram of vehicle in APS

Initially the server is ready

Client exits the parking space

Client is terminated

Server is ready for more requests generate_client_ request ready parking_requested client place server place enabled transition transition

A new Client parking request

is received

Server rejects the Client parking request

6 / 32

Client is terminated unsuc-

cessfully

6 / 32

Is the number of clients occupying parking lots = number of requests granted always?

$$G((\#x)p2(x) \le p3(x)\&\neg((\#x)p3(x) > p2(x)))$$

There is no counterexample for this property for upto bound 50

Is the number of clients occupying parking lots
 number of requests granted always?
 G((#x)n2(x) <- n3(x)&-((#x)n3(x) >

$$G((\#x)p2(x) \le p3(x)\&\neg((\#x)p3(x) > p2(x)))$$

There is no counterexample for this property for upto bound 50

Is there atleast one token in either place p₁ or p₇ or p₈?

$$G((\# x > 0)p1(x)|(\# x > 0)p7(x))$$

|(#x > 0)p8(x))|

There is no counterexample for this property for upto bound 100

Is the number of rejected requests greater than the number of accepted requests at some point?
 F((#x)p6(x) > p2(x)).
 At k = 4, κ = 1 (number of tokens), λ = 3 (time instance), we get a counterexample.

Introducing Counting Logic \mathcal{L}_C

In \mathcal{L}_{C} , there are three types of atomic formulas:

- 1. describing basic server (system) properties, P_s ¹
- 2. counting sentences like: $(\#x > \mathfrak{c})\alpha$ and $(\#x \le \mathfrak{c})\alpha$ over client (vehicle) properties ²

 $P_{c} = \{ parking_requested, occupy_parking_lot, \cdots \}$

3. comparing sentences like: $(\#x)\alpha \leq \beta$ and $(\#x)\alpha > \beta$.

 $^{{}^{1}}P_{s}$ are propositional constants

 $^{^{2}\}mathfrak{c}$ denotes the number of vehicles in α

Introducing a Counting Logic \mathcal{L}_C

Set of client (vehicle) formulas Δ :

$$\begin{array}{l} \alpha, \beta \in \Delta ::= (\#x > \mathfrak{c})p(x) \mid (\#x \leq \mathfrak{c})p(x) \\ \mid (\#x)p(x) \leq q(x) \mid (\#x)p(x) > q(x) \\ \mid \alpha \lor \beta \mid \alpha \land \beta \end{array}$$

where $p,q \in P_c$ and \mathfrak{c} is a non-negative integer

Introducing a Counting Logic \mathcal{L}_C

Set of server (system) formulas Ψ :

$$\psi \in \Psi ::= q \in P_s \mid \varphi \in \Delta \mid \neg \psi \mid \psi \lor \psi \mid \psi \land \psi$$
$$\mid X\psi \mid F\psi \mid G\psi \mid \psi_1 U\psi_2$$

 $\lambda + \kappa = k, k \ge 0, \ \lambda$: time instance, κ : no. of tokens

 $\lambda + \kappa = k, k \ge 0, \ \lambda$: time instance, κ : no. of tokens

 $\lambda + \kappa = k, k \ge 0, \ \lambda$: time instance, κ : no. of tokens

 $\lambda+\kappa=k, k\geq$ 0, λ : time instance, $\kappa:$ no. of tokens

Architecture of the Tool DCModelChecker

Experiments

Model Name	Property Category	DCModelChecker			ITS-Tools		
		sat	unsat	time(s)	sat	unsat	time(s)
Dekker-PT-010	LTL Cardinality	3	13	11.219	4	12	15.7
	LTL Fireability	2	14	10.353	2	14	18.372
	Reachability Cardinality	0	16	10.497	5	11	3.45
	Reachability Fireability	0	16	11.628	4	12	6.061

- The benchmark was obtained from MCC ³
- ITS-Tools is a state of the art symbolic model checker ⁴

³Model Checking Contest https://mcc.lip6.fr/ ⁴Yann Thierry Mieg et al.[TACAS 15]

Summary

- In BMC, "We ask whether the system *M* has any counterexample of length *k* to (property) ψ. This bounded problem is encoded into SAT." - A.Biere
- In 2D-BMC, we ask whether the system *M* has any counterexample of length λ and number of clients κ to ψ and encode this bounded problem into SMT.

Summary

- A novel counting logic \mathcal{L}_C
- ▶ Introduced 2*D*− bounded model checking strategy
- Introduced first-of-its-kind tool DCModelChecker ⁵ to perform 2D- BMC on Petri Nets, using \mathcal{L}_C to specify properties⁶

⁵DCModelChecker tool: https://doi.org/10.6084/m9.figshare.19875226 ⁶Technical Report: https://iitdh.ac.in/~prb/2dbmc_tr_2.pdf.pdf

Future Work

- Optimize our tool by implementing an efficient linear size encoding
- Establish Completeness Criterion for 2D-BMC and LC
- Extend \mathcal{L}_C to account for identifiable clients
- Leverage inductive reasoning to have a full decision procedure when satisfiable (similar to the work in QCOVER, ICOVER)

Future Work

- Optimize our tool by implementing an efficient linear size encoding
- Establish Completeness Criterion for 2D-BMC and \mathcal{L}_C
- Extend \mathcal{L}_C to account for identifiable clients
- Leverage inductive reasoning to have a full decision procedure when satisfiable (similar to the work in QCOVER, ICOVER)

Thank you for your attention

Backup

Figure: Pre-Processing Module architecture

Petri net model *M* against the property $\psi = \neg \phi$ is as follows:

For any $\kappa \geq 0$, we define $[M]_{(0,\kappa)} = I(s_0) \wedge (\bigwedge_{0 \leq j \leq n_p} p_{j0} \leq \kappa)$.

- k has two parts λ and κ
- λ gives the bound for time instances
- $\blacktriangleright \kappa$ gives the bound for number of vehicles in the parking system

Inductively, for any
$$\lambda > 0$$
,
 $[M]_{\langle \lambda,\kappa \rangle} = [M]_{\langle \lambda-1,\kappa \rangle} \wedge (T(s_{\lambda-1},s_{\lambda}) \wedge (\bigwedge_{0 \le j \le n_p} p_{j\lambda} \le \kappa))$

$$[M,\psi]_{\langle\lambda,\kappa\rangle} = [M]_{\langle\lambda,\kappa\rangle} \wedge \left(\right)$$

$$[\boldsymbol{M}, \boldsymbol{\psi}]_{\langle \lambda, \kappa \rangle} = [\boldsymbol{M}]_{\langle \lambda, \kappa \rangle} \wedge \left(\left(\neg L_{\langle \lambda, \kappa \rangle} \wedge [\boldsymbol{\psi}]^{\boldsymbol{0}}_{\langle \lambda, \kappa \rangle} \right) \vee () \right)$$

$$[M,\psi]_{\langle\lambda,\kappa\rangle} = [M]_{\langle\lambda,\kappa\rangle} \wedge \left(\left(\neg L_{\langle\lambda,\kappa\rangle} \wedge [\psi]^{\mathbf{0}}_{\langle\lambda,\kappa\rangle} \right) \vee \bigvee_{I=0}^{k} ({}_{I}L_{\langle\lambda,\kappa\rangle} \wedge_{I} [\psi]^{\mathbf{0}}_{\langle\lambda,\kappa\rangle}) \right)$$

The logic is interpreted over model sequences. Formally, a model is a sequence $\rho = m_0, m_1, \ldots$, where for all $i \ge 0$ we have a triple $m_i = (\nu_i, V_i, \xi_i)$ such that:

1. $\nu_i \subset_{fin} P_s$, gives the local properties of the server at instant *i*.

- 2. $V_i \subset_{fin} CN$ gives the clients alive at instant *i*, where *CN* is a countable set of client names that can be assigned to the vehicles in the system. Further, for all $i \ge 0$, $V_{i+1} \subseteq V_i$ or $V_i \subseteq V_{i+1}$.
- 3. $\xi_i : V_i \to 2^{P_c}$ gives the properties satisfied by each live agent at the *i*th instant.

The truth of a formula at an instant in the model is given by the relations \models and \models_{Δ} defined by induction over the structure of ψ and α respectively as follows:

- 1. $\rho, i \models q$ iff $q \in \nu_i$. Note that q's denote atomic local server propositions. Therefore, a q holds in the model ρ at instance i if q is in the set ν_i .
- *ρ*, *i* ⊨ φ iff *ρ*, *i* ⊨_Δ φ. Recall that φ is a sentence from the set of client formulae Δ. In order to define the satisfiability of φ, we need to use the rules defined for the relation ⊨_Δ.

3. $\varrho, i \models \neg \psi$ iff $\varrho, i \not\models \psi$. This rule is standard.

4. $\varrho, i \models \psi \lor \psi'$ iff $\varrho, i \models \psi$ or $\varrho, i \models \psi'$. This rule is standard.

- 5. $\varrho, i \models \psi \land \psi'$ iff $\varrho, i \models \psi$ and $\varrho, i \models \psi'$. This rule is standard.
- 6. $\varrho, i \models X\psi$ iff $\varrho, i + 1 \models \psi$. This rule is standard.
- 7. $\varrho, i \models F\psi$ iff $\exists j \ge i, \ \varrho, j \models \psi$. This rule is standard.
- 8. $\varrho, i \models G\psi$ iff $\forall j \ge i$, $\varrho, j \models \psi$. This rule is standard.
- 9. $\rho, i \models \psi_1 U \psi_2$ iff $\exists j \ge i$, $\rho, j \models \psi_2$ and for all $i \le j' < j : \rho, j' \models \psi_1$. This rule is standard.

- *ρ*, *i* ⊨_Δ (#x > c)*p*(x) iff |{a ∈ V_i | *p* ∈ ξ_i(a)}| > c. The client formula (#x > c)*p*(x) holds in model *ρ* at instance *i* if there are strictly more than c clients that satisfy the property *p* at instance *i*.
- 11. $\rho, i \models_{\Delta} (\#x)p(x) \le q(x)$ iff $|\{a \in V_i \mid p \in \xi_i(a)\}| \le |\{b \in V_i \mid q \in \xi_i(b)\}|$. The client formula $(\#x)p(x) \le q(x)$ holds in the model ρ at instance *i* if the number of clients satisfying property *p* is less than the number of clients satisfying the property *q*, at the same instance *i*.
- 12. $\rho, i \models_{\Delta} (\#x \le c)p(x)$ iff $|\{a \in V_i \mid p \in \xi_i(a)\}| \le c$. The client formula $(\#x \le c)p(x)$ holds in model ρ at instance *i* if there are less than c clients that satisfy the property *p* at instance *i*.

- 13. $\rho, i \models_{\Delta} (\#x)p(x) > q(x)$ iff $|\{a \in V_i \mid p \in \xi_i(a)\}| > |\{b \in V_i \mid q \in \xi_i(b)\}|$. The client formula (#x)p(x) > q(x) holds in the model ρ at instance *i* if the number of clients satisfying property *p* is strictly more than the number of clients satisfying the property *q*, at the same instance *i*.
- 14. $\varrho, i \models_{\Delta} \alpha \lor \beta$ iff $\varrho, i \models_{\Delta} \alpha$ or $\varrho, \pi, i \models_{\Delta} \beta$. This rule is standard.
- 15. $\rho, i \models_{\Delta} \alpha \land \beta$ iff $\rho, i \models_{\Delta} \alpha$ and $\rho, \pi, i \models_{\Delta} \beta$. This rule is standard.

A Petri Net structure is a tuple N = (P, T, F, W) where

- P is a finite set of places
- ▶ *T* is a finite set of transitions, $F \subseteq (P \times T) \cup (T \times P)$ is the flow relation
- W : F → ℵ₀ is a weight function, where ℵ₀ is the set of non-negative integers.
- For any place (resp. transition) z of the set P ∪ T, the set {x | (x, z) ∈ F} is called *pre-transitions* (resp. *pre-places*) of z
- ► the set {x | (z, x) ∈ F} is called *post-transitions* (resp. *post-places*) of z

- A marking *M* of a Petri Net is a function $M : P \to \aleph_0$.
- A Petri Net (system) is a tuple $\mathcal{M} = (N, M_0)$ where N is a Petri Net structure and M_0 is an initial marking.
- A transition t is enabled at marking M, if for each pre-place p of t we have $M(p) \ge W(p, t)$.
- A new marking is obtained when an enabled transition is *fired*, and is obtained by removing W(p, t) tokens from each pre-place p of t, and adding W(t, p) tokens to each post-place p of t, leaving tokens in the remaining places as it is.

The propositional encoding of *N* is defined by the formula $T = T_{enabled} \wedge T_{firability} \wedge T_{next}$, where:

- ► the formula *T_{enabled}* states that more than one transition can be enabled at a time. i.e, it is an **or** over the preconditions of all enabled transitions and is given by *T_{enabled}* = pret₀ ∨ pret₁ ∨ · · · ∨ pret_n;
- the formula T_{next} gives us the next transition that will be fired, and is expressed as an or expression over each transition and its postcondition and all other transitions and postconditions are negated.

 $T_{next} =$

$$(t_0 \wedge \neg t_1 \wedge \cdots \wedge \neg t_n \wedge post_{t_0} \wedge \neg post_{t_1} \wedge \cdots \wedge \neg post_{t_n}) \lor (\neg t_0 \wedge t_1 \wedge \cdots \wedge \neg t_n \wedge \neg post_{t_0} \wedge post_{t_1} \wedge \cdots \wedge \neg post_{t_n}) \lor \cdots \lor (\neg t_0 \wedge \neg t_1 \wedge \cdots \wedge t_n \wedge \neg post_{t_0} \wedge \neg post_{t_1} \wedge \cdots \wedge post_{t_n});$$

► the formula *T_{firability}* relates the pre condition of a transition with its distinct postcondition and is given as

 $\mathcal{T}_{firability} = (post_{t_0} \rightarrow pre_{t_0}) \land (post_{t_1} \rightarrow pre_{t_1}) \land \dots \land (post_{t_n} \rightarrow pre_{t_n});$

where for each t_i , pre_{ti} is a propositional formula defined over place variables encoding that the precondition of firing t_i is satisfied and $post_{ti}$ is a formula defined over place variables encoding the update in tokens after firing t_i is satisfied.

We denote the encoding of Petri Net system $\mathcal{M} = (N, M_0)$ by $[\mathcal{M}] = (\mathcal{T}, M_0)$ where M_0 is the initial assignment of the marking vector M.