Semantic Program Alignment for Equivalence Checking

Berkley Churchill, Oded Padon, Rahul Sharma, Alex Aiken

PLDI, 2019

40 July, 2022 :

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 1/30

glibc strlen example

size_t strlen(char * s){ size_t strlen(char str){
char x ptr;

ulong * longword_ptr;

char x p;
P ulong longword, himagic, lomagic;

for(p = s;#p;+ +p);
return (p — 5); for(ptr = str; ((ulong)ptr&7)! = 0;+ + ptr)
) if (xptr ==\0)
return ptr — str;
longword_ptr = (ulongx)ptr;
himagic = 0x8080808080808080L;
lomagic = 020101010101010101L;

for(:s)
longword = xlongword_ptr + +;
if((longword — lomagic) & ~ longword & himagic)
char x cp = (charx)(longword_ptr — 1);

if(cp[0] == 0) return (cp — str);

if(ep[l] == 0) return (cp — str +1);
if(cp[2] == 0) return (cp — str + 2);
if(ep[3] == 0) return (cp — str + 3);
if(cp[d] == 0) return (cp — str + 4);
if(eplb] == 0) return (cp — str + 5);
if(cpl6] == 0) return (cp — str + 6);
if(ep[7] == 0) return (cp — str+7);

Sudakshina Dutta Formal Methods Update Meeting

Equivalence Checking

Sudakshina Dutta Formal Methods Update Meeting 3/30

Checking optimization correctness

gee -00 — | Binary A \

Equivalence

C source Checker

\ o8 o,

\

Binary B

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022

Equivalence of two programs

Two programs are equivalent if running on the same input
@ Both terminate on the same output state OR

e Both fail (either loop forever or encounter hardware exception)

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 5/30

Past techniques - Summarizing loops

Fat ProductProgram(z){
while(x){A; } while(x){A; }
return a; while(x){B; }

} \ assert(a == b)

g9(x){
while(x){B; }

return b;

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 :

Past techniques - Syntactic composition

o) ProductProgram(z){
while(x){A; } while(x){
return a; Zs.sert(lnv);

} .

9@ issert(a ==1D);
while(x){B; } } 7

return b;

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 :

Limitations for syntactic composition

@ Different number of loop execution — failure
@ No 1-1 correspondence

@ Syntactic choices can make problems harder for SMT solvers

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 :

The proposed Method

@ A semantic-driven blackbox technique for equivalence checking is
proposed

@ Given two functions, a trace alignment is found over a set of concrete
executions of both the programs

@ A product program is constructed to check equivalence and invariants
are learned

@ Equivalence is established by solvers
@ The authors verified correctness of vector implementation of strlen
function that ships as part of GNU C library and vectorization

optimization for 56 benchmarks for Test Suite for Vectorizing
Compilers

Sudakshina Dutta Formal Methods Update Meeting y 2: 9/30

flaN
while(x){A; }
return a;

}

g9(x){
while(x){B; }

return b;

>>D>h>ﬁ>h>h>ﬁ>i
mtctububdtubui

Sudakshina Dutta Formal Methods Update Meeting

f@){
while(x){A; }

return a;

}

g(x){
while(x){B; }

return b;

h>ﬁ>h>h>ﬁ>b>b>|
U:JU:JtUb:JU:JtUb:Ji

Sudakshina Dutta Formal Methods Update Meeting

Running example

void f(int *x array,uint len){ void g(int x array,uint len){
for(uint i = 0;4 < len;i + +) if(len%2 == 1){

arraylil = 0z fffFF 1 F; sarray = 0cff1Ff11F;
} array + —+;

len — —;
while(len){

((longx)arrayf =0z ffffffFFFFFTSLS
array+ = 2;
len— = 2;

}

@ ldea : Instead of doing a syntactic composition, find a semantic way
to “align” concrete execution traces. Use concrete alignment to align
traces.

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 12 /30

Running example

o ldea : Find a semantic way to “align” concrete execution traces. Use
concrete alignment to align traces.
o An alignment predicate that helps us find corresponding paths and
build a product program
o Given product program, the author leverages existing techniques to
complete proof

ProductProgram(x) {
while(*) {
assert(Inv);
A
y B

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 13 /30

Other prior work

o (Barthe et al., PPoPP '13)

o Cannot handle loop peeling
o Cannot handle all forms of vectorization

o (Dahiya and Bansal, APLAS '17)

o Searching for predicate is inefficient
o Cannot handle some loop vectorization/unrolling benchmarks

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 14 /30

Algorithm

Test cases Success
Build /Test
Guess P:‘lc;gr{mf s Leal.‘n Check
Alignment — Align Traces — Alignment [Candidate | proof
I iant L.
Predicate Automaton fvariants Obligations

T

Sudakshina Dutta Formal Methods Update Meeting

Alignment Predicate

; array
wvoid f(int = array,wint len){ A ! len v
Sfor(uint i = 0;i < len;i+ +) a
- 3 — — 5 100000
arraylif = 0z, ;
} ylif SIFFFIfT: b A |len’ | array
¢ a |0 5 | 100000 - | 100000
void g(int x array,wint len
. q< Y i b 1 5 100000 a 4 100004
if(len%2 == 1){
sarray =0z ffffff1f; Q
array + +; b 2 5 100000 c 2 100012
len — —; 2 b
while(len){ b | 3 | 5 | 100000 ¢ | o | 100020
#((longx)arrayy = 0xfffffFFFSFISSSS
array+ = 2; <
len— = 2; b 4 5 100000 & 0 100020
}
} b 4 5 | 100000
c 5 5 100000

Sudakshina Dutta Formal Methods Update Meeting

Alignment Predicate

i rra
void f(int * array,wint len){ A ! len | @ray
for(uint i = 0@ < len;i+ +) a
; - - 5 100000
arraylif = Oz, H s s
\ ylil FIFIFLLS: b A’ |len’ | array’
Qarray + 41 . W | o | 5 | 100000 ~ 1 s 1 100000
void g(int * array,uint len){ b 1 5 100000 p 1 100004
if(len%2 == 1){
rarray = 0xfffffF1f; Q
array + —+; b 2 5 100000 d 2 100012
len — —; &
while(len){ b | 3 | 5 | 100000 ¢ | o | 100020
“((longx)arrayy = 0xf ffffFIFIFIFISLS:
array+ = 2; ¢’
len—=2; b | 4 | 5 | 100000 7 | o | 10002
}
/
@array b | 4 | 5 | 100000
c 5 5 100000

Sudakshina Dutta Formal Methods Update Meeting

Alignment Predicate

@ The authors pick alignment predicates by guess and check
o v —ow =k
e k is an integer mined from execution data
@ (1,0 € {1, 2,4,8, 16}
@ vy, \» are registers or stack-allocated values

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 18 /30

Building the PAA

0

e

8

e (ab,ad’),(bb,c'),(c,d")

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 19 /30

Building the PAA

0

8

cd

r—
O

e (a,b),(bb,c),(c,d)

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 20 /30

Learning invariants

@ A data-driven approach is taken

@ The test cases are used to guess a conjunction of predicates for each
node

o Later the conjuncts that cannot be proven are discarded
e This is done by a fixed-point method

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 21 /30

Candidate invariants

array = array’ Alen = len’ A\ heap = heap’

array + 4 xi = array’
aba’ y len —i = len’
a i<len
heap = heap’
j@ len’ =0 (mod 2)

bbc!

cd

heap = heap’

Sudakshina Dutta Formal Methods Update Meeting

Proof obligations

@ Invariants hold

@ There are no missing edge/transitions in PAA (PAA is sound
over-approximation of both the programs)

@ The invariants at the final state implies equality of outputs (memory
+ registers)

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 23 /30

Soundness

@ Theorem : If the proof obligations hold for a PAA, then the two
procedures are equivalent

e By induction on the length of computations of f and g

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 24 /30

Evaluation

“Test Suite for Vectorizing Compilers”

Ran on 28 C functions
e gcc -03 with geec -01
e clang -0O3 with gcc -01
Total of 56 benchmarks

Used Z3 and CVC4 and 30-minute timeout per query

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 25 /30

Evaluations

These 56 benchmarks are from :
@ Vectorization (50 benchmarks)

@ Loop unrolling (47 benchmarks)

Loop peeling (9 benchmarks)
o Floating point (2 benchmarks)
@ Doubly nested (2 benchmarks)
o Different loop traversal (e.g., strides, forward, backward)
o Other optimizations (e.g., transformed branch conditions)
They have verified 55/56 benchmarks

Sudakshina Dutta Formal Methods Update Meeting

@ The method cannot reason about transformations that reorder an
unbounded number of memory writes
o Loop splitting
o Loop fusion
o Loop interchange
e Loop tiling

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 27 /30

o Alingment predicates
o Can be generalized where three or more registers are involved
o Different alignment predicates for different loops

o Loop invariant

o Learning and proving different invariants over unbounded heap
locations

Sudakshina Dutta Formal Methods Update Meeting 4t July, 2022 : 28 /30

Conclusion

o Key idea : use a weak invariant, the alignment predicate, to
bootstrap the construction of the product program

@ Use product program to learn the remaining invariants

@ The method handles real optimizations performed by the modern
compilers

Sudakshina Dutta Formal Methods Update Meeting 4th July, 2022 : 29 /30

Thank you !

Sudakshina Dutta Formal Methods Update Meeting ,2022 :30/30

