
GenSys - A Scalable Fixed-Point Engine for
Maximal Controller Synthesis over Infinite

State Logical Games

Stanly Samuel1, Deepak D’Souza1, Raghavan Komondoor1

Accepted at ESEC/FSE 2021: Demonstrations Track

1Indian Institute of Science, Bangalore, India

Background: Synthesis

Alonzo Church

Background: Synthesis

Alonzo Church

1957 to early 2000’s:

- Largely of theoretical interest.
- Highly intractable due to the large

state space. Complexity can be
doubly exponential in nature.

- Undecidable due to infinite state
space.

21st century:

- Several tools broach the surface of
practicality and show empirically
efficient solutions.

Background: Reactive Synthesis

Synthesizer

Temporal Specification
(Declarative)

Controller
(Reactive entity)

Background: Reactive Synthesis

Synthesizer

Temporal Specification
(Declarative)

Controller
(Reactive entity)

Synthesizer

Controller
Logic ?r g

E.g.: A simple bus arbiter

Background: Reactive Synthesis

Synthesizer

Temporal Specification
(Declarative)

Controller
(Reactive entity)

Synthesizer

“Whenever r is true,
eventually g must be true”

Controller
Logic ?r g

E.g.: A simple bus arbiter

Background: Reactive Synthesis

Synthesizer

Temporal Specification
(Declarative)

Controller
(Reactive entity)

Synthesizer

“Whenever r is true,
eventually g must be true”

E.g.: A simple bus arbiter

Always output
g irrespective
of the inputr g

Practical Motivation: Reactive Synthesis
● Finite state systems:

○ AMBA Bus Arbiter
○ Cache Coherence Protocols

Practical Motivation: Reactive Synthesis
● Infinite state systems:

○ Robot Motion Planning
○ Minimum Backlog Problem in Wireless Sensor Networks

Practical Motivation: Reactive Synthesis
● Infinite state systems:

○ Robot Motion Planning
○ Minimum Backlog Problem in Wireless Sensor Networks

Undecidable
in general.

Minimum Backlog Problem in
Wireless Sensor Networks

Abstraction

GenSys - Synthesize a maximal
controller that adheres to a given

temporal specification over a system
with an infinite state space.

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment

State space: s

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment

State space: s Safe region: G(s)

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment
Con(s,s’) Env(s,s’)

State space: s Safe region: G(s)

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment
Con(s,s’) Env(s,s’)

State space: s Safe region: G(s)

Play of the game: s s’ s’’ s’’’ …

A Two Player Infinite Game over an Infinite State
Space

Game

Controller Environment
Con(s,s’) Env(s,s’)

State space: s Safe region: G(s)

Play of the game: s s’ s’’ s’’’ …

Winning Condition:
Safety

Synthesize
1. Winning region W(s).
2. Strategy for

Controller

Cinderella-Stepmother Game (Abstraction of the Minimum
Backlog Problem)

Game

Cinderella Stepmother

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}

b1

b2

b3

b5 b4

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}

“Empty any two
adjacent buckets”

b1

b2

b3

b5 b4

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}

“Empty any two
adjacent buckets”

“Arbitrarily distribute one unit
of water across the 5 buckets”

b1

b2

b3

b5 b4

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}
Safe region: G(s) = {b1 <= C and ... b5 <= C}

“Empty any two
adjacent buckets”

“Arbitrarily distribute one unit
of water across the 5 buckets”

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be 3.
 Can Cinderella ALWAYS win against any move of the Environment?

2

2

2

2 2

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be 3.
 Can Cinderella ALWAYS win against any move of the Environment?

2

2

2

2 2

2

0

0

2 2

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be 3.
 Can Cinderella ALWAYS win against any move of the Environment?

2

2

2

2 2

2

0

0

2 2

2

0

0

2 3

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be 3.
 Can Cinderella ALWAYS win against any move of the Environment?

2

2

2

2 2

2

0

0

2 2

0

0

2

2.5

For C =3, {2,2,2,2,2} will not be included in W(s) as there exists a strategy for
environment to win!

2.5

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be 3.
 Can Cinderella ALWAYS win against any move of the Environment?

0

0

0

0 0

For C =3, {0,0,0,0,0} will be included in W(s) as there exists NO strategy for
environment to win!

Cinderella-Stepmother Game

Play of the game: s s’ s’’ s’’’ …

Example: Let bucket overflow limit C be <2.
 Can Cinderella ALWAYS win against any move of the Environment?

0

0

0

0 0

For C<2, Cinderella can never win! For any starting state!

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}
Safe region: G(s) = {b1 <= C and ... b5 <= C}

“Empty any two
adjacent buckets”

“Arbitrarily distribute one unit
of water across the 5 buckets”

Wins for C >= 2.0 Wins for 0.0 <= C < 2.0

Cinderella-Stepmother Game

Game

Cinderella Stepmother
Con(s,s’) Env(s,s’)

State space: s = {b1, b2, b3, b4, b5}
Safe region: G(s) = {b1 <= C and ... b5 <= C}

“Empty any two
adjacent buckets”

“Arbitrarily distribute one unit
of water across the 5 buckets”

Wins for C >= 2.0 Wins for 0.0 <= C < 2.0

Challenging range: 1.5 < C < 2.0

GenSys: Tool Architecture

GenSys: Cinderella Game Specification

GenSys: Core Computation Engine

GenSys: Winning Region

GenSys: Extracted Controller

GenSys: Extracted Strategy

Theorem: GenSys is guaranteed to synthesize a
sound and maximal controller, if it terminates.

Soundness: Controller can never lose starting
from the states in the strategy.

Maximality: No states from where the controller
can win upon initiation, is missed.

GenSys: Maximality guarantee

Experimental Evaluation

Experimental Evaluation

Work in Progress: GenSys - ω (GenSys for ω-regular specifications,
including LTL)

Work in Progress: GenSys - ω (GenSys for ω-regular specifications,
including LTL)

Includes extension for Linear Temporal Logic or
Universal Co-Buchi Automaton specifications.
E.g. “buckets do not overflow infinitely often”

Work in Progress: GenSys - ω (GenSys for ω-regular specifications,
including LTL)

Includes extension for Linear Temporal Logic or
Universal Co-Buchi Automaton specifications.
E.g. “buckets do not overflow infinitely often”

Extends WP(X) with a novel On The Fly (OTF)
Determinization Technique baked into the
Fixed-Point computation process.

Work in Progress: GenSys - ω (GenSys for ω-regular specifications,
including LTL)

Includes extension for Linear Temporal Logic or
Universal Co-Buchi Automaton specifications.
E.g. “buckets do not overflow infinitely often”

Extends WP(X) with a novel On The Fly (OTF)
Determinization Technique baked into the
Fixed-Point computation process.

Generates a memory-full strategy in terms of the
game states which is k-maximal. Procedure is
sound and incomplete, as before.

Work in Progress: GenSys - ω (GenSys for ω-regular specifications,
including LTL)

Includes extension for Linear Temporal Logic or
Universal Co-Buchi Automaton specifications.
E.g. “buckets do not overflow infinitely often”

Extends WP(X) with a novel On The Fly (OTF)
Determinization Technique baked into the
Fixed-Point computation process.

Generates a memory-full strategy in terms of the
game states which is k-maximal. Procedure is
sound and incomplete, as before.

Current Challenge: Scalability due to the
inherent dependency on Z3’s projection operator.

Why do we care about Maximality?

Zhu et. al., PLDI 2019

Use Case 1: As a run-time shield for Neural Network based controllers that may be efficient but not sound.

Use Case 2: For verification of controllers designed by humans, by checking for containment.

Use Case 3: In the case of multiple controllers where there exists a supervisory controller that decides which
controller’s “advice” to take. Maximality allows the most permissive controller allowing room for more
behaviours

Summary: GenSys - A Scalable Fixed-Point Engine for Maximal
Controller Synthesis over Infinite State Spaces

● System Model: Logical constraints
● Specifications: Safety, ω-regular
● State Space: Infinite
● No external templates required, unlike

ConSynth.
● Elegant fixed-point procedure
● No dedicated solver required, unlike

SimSynth, JSyn-VG and ConSynth
● Scalable, unlike other tools [Safety].
● Controller size is smaller as compared to

other tools [Safety].
● Future Work: Scalability for ω-regular

specs, Specification Language.
● RQ) Games over uncountable graphs?
● GenSys tool link: https://github.com/stanlysamuel/gensys.git

https://github.com/stanlysamuel/gensys.git

