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Background: Synthesis

Church’s problem

» Stated by Alonzo Church in 1957:

Given a requirement which a circuit is to satisfy, we may suppose
the requirement expressed in some suitable logistic system which is
an extension of restricted recursive arithmetic. The synthesis
problem is then to find recursion equivalences representing a circuit
that satisfies the given requirement (or alternatively, to determine
that there is no such circuit)
* The requirement taken as transformation from one

infinite bit string to another
— Transforming every a to B such that o(, B) holds

— Transformations expected to be nonaticipatory and
computable with finite memory

— Finite state automata replaces logical circuits

Alonzo Church

APPLICATION OF RECURSIVE ARITHMETIC TO THE
FROBLEM OF CIRCUIT SYNTHESIS

by Alonzo Church

A paper presented at the Summer Institute of Symbolic Logic
at Ithaca, N. Y. , in July, 1957 - with revisions made in
August , 1957.




Background: Synthesis

1957 to early 2000’s:

- Largely of theoretical interest.

- Highly intractable due to the large
state space. Complexity can be
doubly exponential in nature.

- Undecidable due to infinite state
space.

21st century:

- Several tools broach the surface of
practicality and show empirically
efficient solutions.

Alonzo Church

APPLICATION OF RECURSIVE ARITHMETIC TO THE
FROBLEM OF CIRCUIT SYNTHESIS

by Alonzo Church

A paper presented at the Summer Institute of Symbolic Logic
at Ithaca, N. Y. , in July, 1957 - with revisions made in
August , 1957.
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Background: Reactive Synthesis

Temporal Specification
(Declarative)

Synthesizer

|

Controller
(Reactive entity)

E.g.: A simple bus arbiter

“Whenever r is true,
eventually g must be true”

|

Synthesizer

|

Always output
g irrespective
of the input




Practical Motivation: Reactive Synthesis

e Finite state systems:

o AMBA Bus Arbiter
o Cache Coherence Protocols
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Practical Motivation: Reactive Synthesis

Infinite state systems:
o Robot Motion Planning

o Minimum Backlog Problem in Wireless Sensor Networks

R-0.B-0.T. Comics
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SUB-OPTIMAL, BUT IT'S 60T FLAIR."
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Practical Motivation: Reactive Synthesis

e Infinite state systems:
o Robot Motion Planning
o Minimum Backlog Problem in Wireless Sensor Networks

R-0.B-0.T. Comics

Wireless Sensor Network

Undecidable
in general.

Sensor
Node

Vibration

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."



Minimum Backlog Problem in
Wireless Sensor Networks

Wireless Sensor Network

Target

Sensor

Node Vibration

Abstraction

Cinderella-Stepmother Game

Cinderella 7 ‘ . C Y Stepmother

Con(s,s’) Env(s,s’)

“Empty any two M “Arbitrarily distribute one unit
adjacent buckets” of water across the 5 buckets”
Wins for C >= 2.0 Wins for 0.0 <=C < 2.0

Game

State space: s = {b1, b2, b3, b4, b5}
Safe region: G(s) = {b1 <=C and ... b5 <= C}

Challenging range: 1.5<C < 2.0




GenSys - Synthesize a maximal
controller that adheres to a given
temporal specification over a system
with an infinite state space.
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A Two Player Infinite Game over an Infinite State

Space

Controller 7 )‘

Con(s,s’)

- (

Game
State space: s Safe region: G(s)
® & *

Play of the game: s YS A s"m s L.

. é‘ Y Environment

Env(s,s’)

Winning Condition:
Safety

Synthesize

1. Winning region W(s).

2. Strategy for
Controller
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Cinderella-Stepmother Game

* & *
Play of the game: S A AN s s L

Example: Let bucket overflow limit C be 3.
Can Cinderella ALWAYS win against any move of the Environment?
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Cinderella-Stepmother Game

* & *
Play of the game: S A AN s ST L

Example: Let bucket overflow limit C be 3.
Can Cinderella ALWAYS win against any move of the Environment?

O,
oJo OO O

For C =3, {2,2,2,2,2} will not be included in W(s) as there exists a strategy for
environment to win!



Cinderella-Stepmother Game

* & *
Play of the game: S A AN s ST L

Example: Let bucket overflow limit C be 3.
Can Cinderella ALWAYS win against any move of the Environment?

s O o O

ORO O O O O

For C =3, {0,0,0,0,0} will be included in W(s) as there exists NO strategy for
environment to win!



Cinderella-Stepmother Game

* & *
Play of the game: S A AN s ST L

Example: Let bucket overflow limit C be <2.
Can Cinderella ALWAYS win against any move of the Environment?

s O o O

ORO O O O O

For C<2, Cinderella can never win! For any starting state!
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Cinderella-Stepmother Game

Cinderella 7 5‘

. é’ Y Stepmother

Con(s,s’) Env(s,s’)
“Empty any two “Arbitrarily distribute one unit
adjacent buckets” of water across the 5 buckets”
Wins for C >= 2.0 | ( | Wins for 0.0 <= C < 2.0

Game

State space: s = {b1, b2, b3, b4, b5}
Safe region: G(s) ={b1 <=C and ... b5 <=C}

| Challenging range: 1.5<C < 2.0 |




GenSys: Tool Architecture
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Figure 1: GenSys Tool Architecture



GenSys: Cinderella Game Specification
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Figure 1: GenSys Tool Architecture

1 from gensys.helper import «

2 from gensys. fixpo
3 from z3 import «
4

ints import =

5 #1. Environment moves

6 def environment (bl
7 return And(bl_ +

. b2y b3y by b2, B3_):

b2_ + b3_ == bl + b2 + b3 + 1,

bl_>=bl, b2_>=b2, b3_>=b3)

8

9#2. Controller moves

10 def movel (b1, b2,

b3, bl_, b2_, b3_):

1 return And(bl_ == 0, b2_ == 0, b3_ == b3)

12
13 def move2(b1l, b2,

14 return And( b2_ ==

16 def move3 (b1, b2,
17 return And( b3

19 controller_moves =
20

21 #3. Safe set

2C = sys.argv[1]

23

24 def guarantee(bl,
25 return And(b1
g= 10, b3 =

27 safety _fixedpoint(
guarantee)

Figure 2: Cinderella Game Specification in GenSys

b3, bl , B2 . b3
0,

b3, bl_, b2_, b3_):

== 0, bl_ == 0, b2_ == b2)

[movel, move2, move3]

b2, b3):

<= i@y b2’ <= €. B3 <= € bl 5= 05

0)

controller_moves , environment ,

b2



GenSys: Core Computation Engine

a N
Game Specification
_ >,
( h GenSys
Game Formulation -
9 J
Two player game
v
' ™\
Fixed-Point Engine | Z3 -
% “ Realizable +
Winning Region
A4
[Strategy Extraction |Z3
v A l
Unknown Unrealizable Strategy

Figure 1: GenSys Tool Architecture

3.2 Game Formulation

From the given game specification, this module of our tool formu-
lates one step of the game. The formulation is as follows:

WP(X) = 3s’.(Con(s,s’") AG(s") A
Vs (Env(s’,s"”) = (G(s”") A X(5"))))

A step consists of a move of the controller followed by a move of
the environment. The formula above has the state variable s as the
free variable. The solution to this formula is the set of states starting
from which the controller has a move such that if the environment
subsequently makes a move, both moves end in a state that satisfies
the given winning condition G, and the environment’s move ends
in a state that is in a given set of states X. The formula above
resembles the weakest pre-condition computation in programming
languages. Note that the controller makes the first move *.

3.3 Fixed-Point Engine

The winning region of the game is the solution to the following
greatest fixed-point equation:

vX. WP(X)



GenSys: Winning Region
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Figure 1: GenSys Tool Architecture

0<b1,bp<3A0<bs

0 < by, b3 <3 A0 < by,

0<b3,by <3 AN0ZLDbs

0 < bg,bs <3 A0Z<by,

0<bs,by <3 AN0< by

, by
bs
by
b,
b3

Jbs <2 Abs+bs<3
b1 <2 ANbg+b <3
by <2 Abs+by<3
b3 <2 Aby+b3L3
by <2 ANby+bs <3

i ol g <



GenSys: Extracted Controller

( ) ) ) Table 1: Strategy Synthesized by GenSys for the Cindrella
L Game Specification game with bucket size 3
)
- N | Condition Move
Game Formulation 1 0<bi,b2<3AN0<Zb3by,bs<2Abs+bs<3 by_b_ =0
- J ! 0<by,b3 <3 A0<Lby,b5,b1 <2ANbyg+b;<3 by b3 =0
Two player game ‘ 0<b3,by <3AN0ZLbs,by1.by <2Abs+by<3 b3 by =0
- Y 5 x 0<bybs <3A0Lbbybs<2Abi+b3<3 by bs =0
Fixed-Point Engine Z3 ‘ 0<bs,by £3AN0ZLby,b3,bg £2Aby+bs<3 bs by _=0
N J ‘

Realizable +

Winning Region !
A4 I

[Strategy Extraction |Z3 ] _
v v l

Unknown Unrealizable Strategy

Figure 1: GenSys Tool Architecture



GenSys: Extracted Strategy
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Table 1: Strategy Synthesized by GenSys for the Cindrella
game with bucket size 3

Condition

0 < by
0<by
0 < bs
0<bs

Jba <3 A 0L b3
.b}S?)/\OSb4
,bs <3 A0ZL Dby
b5 <3 A0 by
b1 3 A0 by

,bg, bs
, bs, by
’ bl a bz
N bz. [)3
o 1)3. [Jq

<2Ab3s+bs<3
S2/\b4+b153
<2Abs+by<3
SZAb1+1)3S3
<2Aby+bs <3

Move
b]_, 172_ =0
bz_. b3_ =0
bs ,by =0
by ,bs =0
bs ,by_=0

Theorem: GenSys is guaranteed to synthesize a
sound and maximal controller, if it terminates.

Soundness: Controller can never lose starting
from the states in the strategy.

Maximality: No states from where the controller
can win upon initiation, is missed.



GenSys: Maximality guarantee

3.2 Game Formulation

From the given game specification, this module of our tool formu-
lates one step of the game. The formulation is as follows:

WP(X) = 3s’.(Con(s,s’) AG(s") A
Vs"” (Env(s’,s"”) = (G(s”") A X(5"))))

A step consists of a move of the controller followed by a move of
the environment. The formula above has the state variable s as the
free variable. The solution to this formula is the set of states starting
from which the controller has a move such that if the environment
subsequently makes a move, both moves end in a state that satisfies
the given winning condition G, and the environment’s move ends
in a state that is in a given set of states X. The formula above
resembles the weakest pre-condition computation in programming
languages. Note that the controller makes the first move *.

3.3 Fixed-Point Engine

The winning region of the game is the solution to the following
greatest fixed-point equation:

vX. WP(X)

8 APPENDIX
8.1 Safety Algorithm

Algorithm 2 computes the greatest solution to the equation in
Section 3.2.

Algorithm 1: Safety fixed-point
Input :Game formulation WP, which includes the safe
region G
Output: Winning region X, if algorithm terminates
X :=True ;
W := Proj(WP(X)) ;
while (X AG) = (W AG) do

X =W;
W := Proj(WP(X))
end

return (X A G);




Experimental Evaluation

Table 2: Running times for the Cinderella game for various
values of bucket size C. "-" indicates unavailability of data,
while ">xm" denotes a timeout after x minutes. R denotes
Realizable and U denotes Unrealizable.

¢ Out SimSynth ConSynth JSyn-VG GenSys
Time Iter
3.0 R 2.2s 12m45s 1m26s 0.6s 3
25 R 53.8s >15m 1m19s 0.7s 3
2.0 R 68.9s - Imé6s 0.6s 3
1.920) U - . >16m 31.0s 69
1.8 U >10m - >16m 0.6s 5
1.6 U 1.5s - >16m 0.4s 4
1.5 U 1.4s - 14m34s 0.3s 4
1.4 U 0.2s - 175 0.2s 3




Experimental Evaluation

Table 3: Results on remaining benchmarks. Times are in sec-
onds. >15m denotes a timeout after 15 minutes. Tool name
abbreviations: C for ConSynth, J for JSyn-VG, D for DT-
Synth, S for SAT-Synth, R for RPI-Synth, G for GenSys.

Benchmark (& J D S R G
Repair-Lock 25 A5 05 06 02 03
Box 37 06 03 03 0.1 03
Box Limited 04 17 01 04 0.5 0.2
Diagonal 1.9 40 24 134 0.5 0.2
Evasion 1.5 95 02 81 0.1 0.7
Follow >15m 12 03 889 >15m 0.7

Solitary Box 04 09 01 03 0.1 03
Square 5x5 >15m 65 25 0.6 0.Z 03




Work in Progress: GenSys - w (GenSys for w-regular specifications,
including LTL )
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Current Challenge: Scalability due to the
inherent dependency on Z3’s projection operator.



Why do we care about Maximality?

Tw
Neural Policy Deterministic
Program P
Environment Neural Action
State Inductive Zhu et. al., PLDI 2019
) Invariant
Shield —

Safe Action

The Framework of Neural Network Shielding.

Use Case 1: As a run-time shield for Neural Network based controllers that may be efficient but not sound.
Use Case 2: For verification of controllers designed by humans, by checking for containment.

Use Case 3: In the case of multiple controllers where there exists a supervisory controller that decides which

controller’s “advice” to take. Maximality allows the most permissive controller allowing room for more
behaviours



Summary: GenSys - A Scalable Fixed-Point Engine for Maximal
Controller Synthesis over Infinite State Spaces

System Model: Logical constraints

Specifications: Safety, w-regular

[ Game Specification ]

State Space: Infinite

No external templates required, unlike o (
ConSynth. -

~N

Game Formulation
/

Elegant fixed-point procedure

Two player game
v

-

No dedicated solver required, unlike

Fixed-Point Engine | Z3

~N

Scalable, unlike other tools [Safety].
Controller size is smaller as compared to
other tools [Safety].

Future Work: Scalability for w-regular
specs, Specification Language.

RQ) Games over uncountable graphs?

SimSynth, JSyn-VG and ConSynth %

GenSys tool link: https://github.com/stanlysamuel/gensys.qit

v

< Realizable +
Winning Region

[Strategy Extraction

3]

ol

Unknown Unrealizable Strategy


https://github.com/stanlysamuel/gensys.git

