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Decidable! [Makanin 1977]

G S Makanin. The problem of solvability of equations in a free semigroup. Mathematics of the USSR-Sbornik, 32(2), 1977. doi: 10.1070/SM1977v032n02ABEH002376.
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r € [, |<— Regular

Decidable [Schulz 1992]

Klaus U. Schulz. Makanin’s algorithm for word equations-two improvements and a gener- alization. In K. U. Schulz, editor, Word Equations and Related Topics, pages
85-150, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46737-3.
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Undecidable [Bjorner et. al. 2009}

Bjorner, N., Tillmann, N., Voronkoy, A. (2009). Path Feasibility Analysis for String-Manipulating Programs. In: Kowalewski, S., Philippou, A. (eds) Tools and Algorithms for the
Construction and Analysis of Systems. TACAS 2009. Lecture Notes in Computer Science, vol 5505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00768-2_27
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Satisfiability is Undecidable!

Intersection non-emptiness of CFL

V ={z,y} Alphabet A

x € 1y y € Lo

r =

Undecidable!
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Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each

. Variable set: {x;, Xs, Ty, Ty }
having 1 elements:

j€n]

U
v

Ly — < U j.”l]j)
j€n]

11,22, -+, Uk - T, = Shuffle(x;, )

sequence of indices - T, = Shuffle(x;, zs)
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Acyclic!

small model property.

Will x still be embedded in y?

Lemma: if w1 = w2 and w2 € L

then 4 ws: w1 = w3, w3 € [, and ws has bounded size.
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Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Size of the parse tree

O(Len(wy) x |[NT'| X 2|NT|) subtree of size atmost 2/V7
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O(Len(y) x |[NT| x 2/NTH

y is bounded by O(22%INT|  |INT|)

z is bounded by O(2 x 23%INT| x |INT|?)
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[Atig et. al. 2008]

Control State Reachability Problem

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29
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Control State Reachability Problem

NEXPTIME Upper bound

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29
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Given two equi-dimensional vector
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1 2 n
U (V5] U Unp,
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and an integer 7 given in binary
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PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

counts |u] = 2°

< 9¢ < 9f
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Topology for the PCP simulation

uivi
<2€>

counts |v| = 2°
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Summary

String constraints

Context-free String Constraints

] Satisfiability is Undecidable!
with Subword Order

_ Satisfiability has
Acyclic Fragment NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown

Systems
From Acyclic Lossy Channel Pushdown Reachability has
Systems to Acyclic String constraints NEXPTIME Upper bound
From Bounded PCP to Acyclic Lossy —> Both Reachability for Acyclic LCS and

Satisfiability for Acyclic String constraints are

Channel Pushdown Systems NEXPTIME complete!






Thank You!




