FM Update

On the Satisfiability of Context-free
String Constraints with Subword-Ordering

C. Aiswarya Prakash Saivasan Soumodev Mal

CMI IMSc CMi

accepted at LICS 2022

What is a String Constraint?

What is a String Constraint?

Set of variables V/

What is a String Constraint?

Set of variables V/ Alphabet A

What is a String Constraint?

Set of variables V/ Alphabet A

 Membership Constraints

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

What is a String Constraint?

Set of variables Alphabet A REGULAR

« Membership Constraints r e L

What is a String Constraint?

Set of variables Alphabet A REGULAR

CONTEXT-FREE

« Membership Constraints r e L

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

L =a"b"

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

What is a String Constraint?

Set of variables V/ Alphabet A
 Membership Constraints r e [,

e Relational Constraints

What is a String Constraint?

Set of variables V/ Alphabet A
 Membership Constraints r e [,

e Relational Constraints r =Yz

What is a String Constraint?

Set of variables V/ Alphabet A
 Membership Constraints r e [,

« Relational Constraints r =Yz Len(r) = 3 X Len(y)

What is a String Constraint?

Set of variables V/ Alphabet A
 Membership Constraints T € [,
 Relational Constraints T =Yz Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

« Relational Constraints Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

« Relational Constraints Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V/ Alphabet A

« Membership Constraints r e L

« Relational Constraints Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V Alphabet A

« Membership Constraints xr e L

« Relational Constraints Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V Alphabet A

« Membership Constraints xr e L

/\

« Relational Constraints Len(z) = 3 X Len(y)

What is a String Constraint?

Set of variables V/ Alphabet A “Satisfiability”

« Membership Constraints xr e L

/\

« Relational Constraints Len(z) = 3 X Len(y)

Some known results

 Membership Constraints
r = Yz

e Relational Constraints Len(z) = 3 X Len(y)

Some known results

Some known results

Decidable! [Makanin 1977]

G S Makanin. The problem of solvability of equations in a free semigroup. Mathematics of the USSR-Sbornik, 32(2), 1977. doi: 10.1070/SM1977v032n02ABEH002376.

Some known results

T = Yz

Some known results

r € [, |<— Regular

Decidable [Schulz 1992]

Klaus U. Schulz. Makanin’s algorithm for word equations-two improvements and a gener- alization. In K. U. Schulz, editor, Word Equations and Related Topics, pages
85-150, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46737-3.

Some known results

Some known results

r =Yz Len(x) = 3 X Len(y)

Open!

Some known results

Some known results

Undecidable [Bjorner et. al. 2009}

Bjorner, N., Tillmann, N., Voronkoy, A. (2009). Path Feasibility Analysis for String-Manipulating Programs. In: Kowalewski, S., Philippou, A. (eds) Tools and Algorithms for the
Construction and Analysis of Systems. TACAS 2009. Lecture Notes in Computer Science, vol 5505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00768-2_27

Some known results

Our Setting

 Membership Constraints
r = Yz
(z) =y

e Relational Constraints Len(z) = 3 X Len(y)

Our Setting

 Membership Constraints

e Relational Constraints

x € L

Our Setting

 Membership Constraints

e Relational Constraints

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

Shuffle

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

u = abab

Shuffle

v = baabaa

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

u = abab

{
Shuffle

v = baabaa

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

u = abab

{ abbaababaa ,
Shuffle

v = baabaa

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

u = abab

{ abbaababaa ,

Shuffle baaabbabaa ,

v = baabaa

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

u = abab

{ abbaababaa ,

Shuffle baaabbabaa ,

v = baabaa

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

Subword

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

Subword =

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

abbaaababab

Subword =

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

abbaaababab

Subword =

bbabb

Our Setting

 Membership Constraints <+— Context-free

e Relational Constraints

r =< Shuffle(yy)

abbaaababab

s = VT

bbabb

Satisfiability is Undecidable!

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Alphabet A

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Alphabet A

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Alphabet A

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

Satisfiability is Undecidable!

Intersection non-emptiness of CFL

V ={z,y} Alphabet A

x € 1y y € Lo

r =

Undecidable!

Satisfiability is Undecidable!

Even for regular membership

Satisfiability is Undecidable!

Even for regular membership

Reduction from PCP

Satisfiability is Undecidable!

Even for regular membership

Reduction from PCP

Satisfiability is Undecidable!

Even for regular membership

Reduction from PCP

PCP instance over alphabet >.:

Satisfiability is Undecidable!

PCP instance over alphabet >_:

Satisfiability is Undecidable!

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having n elements:

Satisfiability is Undecidable!

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having n elements:

Satisfiability is Undecidable!

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having n elements:

1 2 n 1 .
— 11,12, ...,7k
U U1 U2 Un
\% U1 v2 Un sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet >_:

Given two vector of strings U and V', each
having 1 elements:

U
v

11509, ..., 0Lk

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet >_:

Given two vector of strings U and V', each
having 1 elements:

U
v

11509, ..., 0Lk

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

U
v

11509, ..., 0Lk

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each

. Variable set: {x;, Xs, Ty, Ty }
having 1 elements:

U
v

11509, ..., 0Lk

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

Variable set: {5177;, Ly Ly il?fu}

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

Variable set: {5177;, Ly Ly il?fu}

r, € (1+2+3+4)"

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

Variable set: {5177;, Ly Ly il?fu}

r, € (1+2+3+4)"
Te € 27

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

Variable set: {5177;, Ly Ly 517v}

r, € (1+2+3+4)"
Te € 27
x, € (1.baab + 2.ab + 3.bab + 4.ba)*

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

Variable set: {5177;, Ly Ly 517v}

r, € (1+2+3+4)"
Te € 27
x, € (1.baab + 2.ab + 3.bab + 4.ba)*

T, € (1.0 + 2.aa + 3.babb + 4.aba)*

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each

. Variable set: {x;, Xs, Ty, Ty }
having 1 elements:

U
v

11509, ..., 0Lk

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (y j)
U j€n]
v

Variable set: {5177;, Ly Ly 517v}

j€[n]

11522y«

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (y j)
U j€n]
v

Variable set: {5177;, Ly Ly 517v}

j€[n]

1,09, .. v <

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (y j)
U j€n]
v

Variable set: {5177;, Ly Ly 517v}

j€[n]

11522y«

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (O
U j€n]
v

Variable set:

Ly =— < U j.”l]j)
j€[n]

11,22, -+, Uk - T, = Shuffle(x;,)

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (O
U j€n]
v

Variable set:

Ly =— < U j.”l]j)
j€[n]

11,22, -+, Uk - T, = Shuffle(x;,)

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each
having 1 elements:

. (O
U j€n]
v

Variable set:

Ly =— < U j.”l]j)
j€[n]

11,22, -+, Uk - T, = Shuffle(x;,)

sequence of indices

Satisfiability is Undecidable!

Reduction from PCP

PCP instance over alphabet 2_: Regular String Constraint:

Given two vector of strings U and V', each

. Variable set: {x;, Xs, Ty, Ty }
having 1 elements:

j€n]

U
v

Ly — < U j.”l]j)
j€n]

11,22, -+, Uk - T, = Shuffle(x;,)

sequence of indices - T, = Shuffle(x;, zs)

Outline

Outline

String constraints

Outline

String constraints

Outline

Satisfiability is Undecidable!

Our Setting

String constraints

Outline

Satisfiability is Undecidable!

Our Setting

String constraints Acyclic Fragment

Acyclic Fragment

Acyclic Fragment

Acyclic Fragment

r < Shuffle(yz)

Acyclic Fragment

r < Shuffle(yz)

Acyclic Fragment

r < Shuffle(yz)

Yy Xz

Acyclic Fragment

r = Shuffle(yz) /,x\
Y- Z

Yy Xz

Acyclic!

Acyclic Fragment

r = Shuffle(yz) /,x\
Y- Z

Yy Xz

/ Acyclic!

Acyclic Fragment

r = Shuffle(yz) /,x\
Y- Z

Yy Xz

/ Acyclic!

Acyclic Fragment

r < Shuffle(yz) /,x\ r < Shuffle(yz)
Y- Z

Yy Xz

/ Acyclic!

Acyclic Fragment

r < Shuffle(yz) /,x\ r < Shuffle(yz)
Y- Z

Yy Xz

/ Acyclic!

Acyclic Fragment

r < Shuffle(yz) /,x\ r < Shuffle(yz)
Y- Z

Yy Xz

/ Acyclic!

2 <X

Acyclic Fragment

r < Shuffle(yz) /,x\ r < Shuffle(yz)
Y- Z

Yy Xz

/ Acyclic!

2 <X

Acyclic Fragment

r < Shuffle(yz) /x\ r < Shuffle(yz)
Y- Z

Yy Xz

/ Acyclic!

2 <X

Main Result

Main Result

Satisfiability of Acyclic Fragment is
NEXPTIME Complete!

NEXPTIME Upper bound

NEXPTIME Upper bound

small model property.

r < Shuffle(yz

) T
NEXPTIME Upper bound | »=- O\

Acyclic!

small model property.

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

Grammar in CNF form

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

Grammar in CNF form

Parse tree

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

Grammar in CNF form

Parse tree

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

Grammar in CNF form

NT]

Parse tree

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Y ~

Acyclic!

small model property.

Grammar in CNF form

NT) size of x= O(2IV7T1)

Parse tree

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.

Will x still be embedded in y?

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.

Will x still be embedded in y?

Lemma:

r =X Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.

Will x still be embedded in y?

Lemma: if w1 = w2 and w2 € L

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.

Will x still be embedded in y?

Lemma: if w1 = w2 and w2 € L

then 4 ws: w1 = w3, w3 € [, and ws has bounded size.

Skeleton

S
Prime nodes
Skeleton \‘
B
B
a a b a

S :
Prime nodes
\‘
. '
a a b a

at most 2x len(w1)-1 prime nodes

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

subtree of size atmost 2/V7

Total number of nodes in the skeleton at most 2x len(w1)-1 prime nodes

=2x len(W1)-1 x [NT]|

Size of the parse tree

O(Len(wy) x |[NT'| X 2|NT|) subtree of size atmost 2/V7

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.
Size of the parse tree

O(Len(z) x |[NT| x 2INT1)

r < Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.
Size of the parse tree

O(Len(z) x |[NT| x 2INT1)

(

I NT

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.
Size of the parse tree

O(Len(x) x |[NT| X 2|NT|)

(

I NT

y is bounded by O(22%INT| |INT|)

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.
Size of the parse tree

O(Len(y) x |[NT| x 2/NTH

y is bounded by O(22%INT| |INT|)

r =< Shuffle(yz)

NEXPTIME Upper bound y <2

Acyclic!

small model property.
Size of the parse tree

O(Len(y) x |[NT| x 2/NTH

y is bounded by O(22%INT| |INT|)

z is bounded by O(2 x 23%INT| x |INT|?)

Outline

Satisfiability is Undecidable!

Our Setting

String constraints Acyclic Fragment

Satisfiability has
NEXPTIME Upper bound

Outline

Satisfiability is Undecidable!

Acyclic Lossy Channel Pushdown

Our Setting Systems

String constraints Acyclic Fragment

Satisfiability has
NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown
Systems

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems Lossy FIFO channels

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems Lossy FIFO channels

Reader(ci) = po

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems Lossy FIFO channels

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems Lossy FIFO channels

Writer(c1) = p1

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems atig et. al. 2008]

Processes - Pushdown Systems Lossy FIFO channels

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems

Acyclic Lossy Channel Pushdown
Systems

Control State Reachability Problem

Acyclic Lossy Channel Pushdown
Systems

[Atig et. al. 2008]

Control State Reachability Problem

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Acyclic Lossy Channel Pushdown
Systems

[Atig et. al. 2008]

Control State Reachability Problem

NEXPTIME Upper bound

Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. 2008. On the Reachability Analysis of Acyclic Networks of Pushdown Systems. In Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 5201), Franck van Breugel and Marsha Chechik (Eds.). Springer. https://doi.org/10.1007/978-3-540- 85361- 9_29

Outline

Satisfiability is Undecidable!

Acyclic Lossy Channel Pushdown

Our Setting Systems

String constraints Acyclic Fragment

Satisfiability has
NEXPTIME Upper bound

Outline

Satisfiability is Undecidable!

Acyclic Lossy Channel Pushdown

Our Setting Systems

Reduction from Acyclic Lossy

String constraints Acyclic Fragment Channel Pushdown Systems

Satisfiability has Reachability has
NEXPTIME Upper bound NEXPTIME Upper bound

NEXPTIME Upper bound

NEXPTIME Upper bound

From
Reachability problem of acyclic LCS
to

Satisfiability problem of acyclic String Constraints

NEXPTIME Upper bound

An Acyclic LCS

NEXPTIME Upper bound

C1 C2
C3

An Acyclic LCS

NEXPTIME Upper bound

Equivalent Acyclic String constraints @

C1 C2

C3

An Acyclic LCS

NEXPTIME Upper bound

Equivalent Acyclic String constraints

Variable set V = {one variable for each process}

An Acyclic LCS

NEXPTIME Upper bound

Am
Pushdown Ca @
Transition Sysy

NEXPTIME Upper bound

Bpg APQ

Pushdown c3

Pushdown Automata Transition System

NEXPTIME Upper bound

NEXPTIME Upper bound

C1 C2
C3

An Acyclic LCS

NEXPTIME Upper bound

C1 C9

C3

Subword ordered Constraints:

An Acyclic LCS

NEXPTIME Upper bound

Subword ordered Constraints:

For each channel ¢, Reader(c) =p Writer(c) = ¢

An Acyclic LCS

NEXPTIME Upper bound

Subword ordered Constraints:

For each channel ¢, Reader(c) =p Writer(c) = ¢

Xp ja;‘q

An Acyclic LCS

NEXPTIME Upper bound

Equivalent Acyclic String constraints

Variable set V = {one variable for each process}

Membership constraints :

Lp = £(Bp)
Subword ordered Constraints:

For each channel ¢, Reader(c) =p Writer(c) =gq

Ty jxq

NEXPTIME Upper bound

Equivalent Acyclic String constraints

Variable set V = {one variable for each process}

Membership constraints :

xp = L(Bp)

An Acyclic LCS

Subword ordered Constraints:

For each channel ¢, Reader(c) =p Writer(c) =gq

Ty jxq

Outline

Satisfiability is Undecidable!

Acyclic Lossy Channel Pushdown

Our Setting Systems

Reduction from Acyclic Lossy

String constraints Acyclic Fragment Channel Pushdown Systems

Satisfiability has Reachability has
NEXPTIME Upper bound NEXPTIME Upper bound

Outline

Satisfiability is Undecidable!

Our Setting

String constraints

Acyclic Fragment

Satisfiability has
NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown

Systems

Reachability has
NEXPTIME Lower bound

Reduction from a
Bounded PCP

Reduction from Acyclic Lossy
Channel Pushdown Systems

Reachability has
NEXPTIME Upper bound

NEXPTIME Lower bound

NEXPTIME Lower bound

Bounded variant of PCP problem - NEXPTIME complete.

NEXPTIME Lower bound

Bounded variant of PCP problem - NEXPTIME complete.

Reduction from it to the Reachability problem for acyclic LCS

NEXPTIME Lower bound

NEXPTIME Lower bound

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

Given two equi-dimensional vector
of strings U and V':

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

Given two equi-dimensional vector
of strings U and V':

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

Given two equi-dimensional vector
of strings U and V':

1 2 n
U (V5] U Unp,
V U1 U2 Un

and an integer 7 given in binary

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

Given two equi-dimensional vector
of strings U and V':

1 2 n
U (V5] U Unp,
V U1 U2 Un

and an integer 7 given in binary

sequence of indices

11,22, ..., Uk

NEXPTIME Lower bound

Bounded PCP instance over alphabet >_:

Given two equi-dimensional vector
of strings U and V':

1 2 n
U (V5] U Unp,
V U1 U2 Un

and an integer 7 given in binary

sequence of indices Wi -

— 1t1,%2,...,1F —

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a a

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a a a

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a a a a

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
&23

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a2£—1

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
CLQE

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

generates at most 2¢ a’s

Gadget to count at most 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
aa a...da

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a...a

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
a a...a

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
ai

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
/2

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
i/4

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
qi/2°77

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:
qi/27"

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

\

reads exactly 2 a’s

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

i > 2¢

\

reads exactly 2 a’s

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

;> 2
q /261
0
reads exactly 2 a’s must generate at least 2¢ a’s

Gadget to count at least 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count exactly 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

(e f—

Gadget to count exactly 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Gadget to count exactly 2°

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Topology for the PCP simulation

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

G- ._.._>

Topology for the PCP simulation

NEXPTIME lower bound

To give a reduction, we look at the following gadgets:

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each gen
having 7! elements:
1 2 n
U (051 U2 “uu Up
V | Un U2 Un

sequence of indices ;.

11,12, ...,1k —

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

gen

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

< 9¢ < 9f

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

< 9¢ < 9f

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

< 9¢ < 9f

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

Topology for the PCP simulation

NEXPTIME lower bound

PCP instance over alphabet >_:

Given two vector of strings U and V, each
having 7! elements:

U
v

counts |u] = 2°

< 9¢ < 9f

2€

Topology for the PCP simulation

uivi
<2€>

counts |v| = 2°

Summary

Summary

String constraints

Summary

String constraints

Context-free String Constraints

] Satisfiability is Undecidable!
with Subword Order

Summary

String constraints

Context-free String Constraints
with Subword Order

Acyclic Fragment

Satisfiability is Undecidable!

Satisfiability has
NEXPTIME Upper bound

Summary

String constraints

Context-free String Constraints

] Satisfiability is Undecidable!
with Subword Order

_ Satisfiability has
Acyclic Fragment NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown
Systems

Summary

String constraints

Context-free String Constraints

] Satisfiability is Undecidable!
with Subword Order

_ Satisfiability has
Acyclic Fragment NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown
Systems

From Acyclic Lossy Channel Pushdown Reachability has
Systems to Acyclic String constraints NEXPTIME Upper bound

Summary

String constraints

Context-free String Constraints

] Satisfiability is Undecidable!
with Subword Order

_ Satisfiability has
Acyclic Fragment NEXPTIME Upper bound

Acyclic Lossy Channel Pushdown

Systems
From Acyclic Lossy Channel Pushdown Reachability has
Systems to Acyclic String constraints NEXPTIME Upper bound
From Bounded PCP to Acyclic Lossy —> Both Reachability for Acyclic LCS and

Satisfiability for Acyclic String constraints are

Channel Pushdown Systems NEXPTIME complete!

Thank You!

