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Deep Neural Networks

• Deep Neural Networks (DNNs) are everywhere

• they are artifacts produced by Machine Learning (ML)

• an ML algorithm generalizes a set of examples into a DNN
• behave correctly for previously-unseen inputs

• image/speech recognition, game playing, NLP, etc.

• can be easier to create than handcrafted software

• effective means to implement complex software systems

2 / 24



Airborne Collision Avoidance System

• in response to midair collisions between commercial aircrafts

• used to be a lookup table (of size 2GB), mapping sensor measurements to advisories

• replaced by DNNs (less than 3MB of memory)

• continuous in nature, better than (discrete)
lookup tables

• necessitates formal verification
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Neural Network Verification

• small changes to correctly handled inputs may lead to unexpected (and erroneous)
behaviors

• testing cannot prove inexistence of faulty behaviors

• there are techniques that can automatically prove that a DNN satisfies a prescribed
property

• hard problem; becomes exponentially more difficult as network size increases

• paper’s contribution: an abstraction-refinement technique
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A well-known story in formal verification

• replace the DNN N by a ”smaller” (abstract) network N

• verify N; by construction, if N meets the spec, so does N

• if N fails to meet the spec, there must be counterexample x

• if x is actual, N violates the spec

• else refine N (little more accurate, and ”larger”)

• done using the spurious counterexample x
(Counterexample-Guided Abstraction Refinement, or CEGAR)
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Background: Neural Networks

• feedforward network

• edges have weights, neurons have activation function

• evaluate a neuron: compute weighted sum, and apply activation function

• ReLU(x) = max(0,x), called Rectified Linear Unit

6 / 24



Verification

• precondition P, postcondition Q, network N

• is there an input x that satisfies P(x) and Q(y), where y = N(x)
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Verification

• is the output (v31) always equal to the input (v11)?

• is it possible that v11 ∈ [0,1] and v31 ∈ [0.5, 1]

• is v11 always equal to v31 for non-negative inputs?
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Verification

• precondition P, postcondition Q, network N

• is there an input x that satisfies P(x) and Q(y), where y = N(x)

• assumptions made in this paper:

• (on N) - only ReLU activation functions; single output node

• (on P) - conjunctions of linear constraints on input values

• (on Q) - y > c , for a given constant c

• not as limiting as it may seem (let us come back to this in the end)
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Abstraction

• transform the neural network N into N, such that N(x) ≤ N(x), for every input x

• if abstract is safe (N(x) ≤ c), then so is the concrete (N(x) ≤ c)

• abstraction-refinement: merging neurons (and then splitting back)

• but not on N (on an equivalent network N′′)
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N→ N′ → N′′ (all equivalent)

• every hidden neuron should either be pos or neg

• based on weights of outgoing edges; split if needed (N′)

• also, every neuron must be inc or dec; split if needed

• depending on whether increasing (or decreasing) its value results in an increased output
(traversing backwards)
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The abstract operator

• merges a pair of neurons; can be done multiple times

• merge only if the pos/neg and inc/dec attributes are same

• for the (pos, inc) and (neg, inc) case
• take max of incoming, and sum of outgoing

• for the (pos, dec) and (neg, dec) case
• take min of incoming, and sum of outgoing

• intuitively, the new node contributes more to the output (than the two original nodes)
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An example

• abstraction is independent of the order in which it was done
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The need to refine

• of course, if the abstraction is too coarse

• suppose N(x0) = 3, N(x0) = 8, and the property is N(x) > 6

• need to refine N into N
′
, such that for every x , N(x) ≤ N

′
(x) ≤ N(x)

• refine picks a concrete neuron from an abstract neuron, and puts it back in the network
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More about the abstraction

• apply abstraction to saturation (to at most 4 neurons in every hidden layer)

• can be controlled based on certain heuristics

• inaccuracies by caused by the max and min operators

• merge neurons that approximate least; split one that restores the most
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Merging heuristics

• merge: maximal value of |a− b| (over all incoming edges with weights a and b) is
minimal

• the new edge is ”closest” to the replaced ones (reducing a neuron anyway!)
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• merging (v1, v2), the (a, b) pairs are: (1,4), (-2, -1)
• max( |1− 4| ,

∣∣−2− (−1)
∣∣ ) = 3

• merging (v1, v3), the (a, b) pairs are: (1,2), (-2, -3)
• max( |1− 2| ,

∣∣−2− (−3)
∣∣ ) = 1

• merging (v2, v3), the (a, b) pairs are: (4,2), (-1, -3)
• max( |1− 2| ,

∣∣−2− (−3)
∣∣ ) = 2

• merge (v1, v3) first
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Splitting heuristics

• split: v from v , by considering

• edge-weight difference between v and v

• difference between v(x) and v(x), for the counterexample x
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• consider the counterexample (x1 = 1, x2 = 0)

• original neurons’ evaluation: (v1 = 1, v2 = 4, v3 = 2)
• abstract neuron’s evaluation: (v = 4)

• wt. diff. (between v1 and v) for in-edge from x1, x2: 3, 1
• wt. diff. (between v2 and v) for in-edge from x1, x2: 0, 0
• wt. diff. (between v3 and v) for in-edge from x1, x2: 2, 2

• remove v1, (wt. diff ∗ val. diff.) is largest: (9, 0, 4)
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Reducing a complex property (in the desired form)

• consider the property (y2 > y1) ∨ (y2 > y3)

• encoded by adding neurons t1, t2, and z1

• t1 = max(0, y2 − y1)
• t2 = max(0, y2 − y3)
• z1 = t1 + t2
• property: z1 > 0 (iff t1 > 0 ∨ t2 > 0)
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Experiments

• 45 DNNs from ACAS

• input is a set of sensor readings (speed, direction, location, etc.)

• five output neurons - possible turning advisories (left, right, clear-of-conflict, etc.)

• each DNN has 300 hidden neurons, across 6 hidden layers (leading to 1200 neurons after
the transformation)

21 / 24



Findings

• abstraction to saturation outperforms indicator-guided abstraction

• avg. 269 nodes were needed to prove (the original has 310)

• “simpler” queries may sometimes be better than smaller networks

• reconfirmed in another set of experiments: even though network size increased (to avg.
385, from 310), abstracted versions were easier to verify that the original

• even further reduction on adversarial robustness properties
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Summary

• pre-processing DNNs can be very helpful

• merging based on semantic similarity has also been explored

• should be possible to do both

• would be good to identify not just the behavior, but also which neurons are important
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Thank you!
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