An Abstraction-Based Framework

for Neural Network Verification
Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz, CAV 2020

Kumar Madhukar

Formal Methods Update Meeting 2022

Indian Institute of Technology Delhi

5 July 2022

Deep Neural Networks

Deep Neural Networks (DNNs) are everywhere

they are artifacts produced by Machine Learning (ML)

® an ML algorithm generalizes a set of examples into a DNN
® behave correctly for previously-unseen inputs

® image/speech recognition, game playing, NLP, etc.

® can be easier to create than handcrafted software

effective means to implement complex software systems

Airborne Collision Avoidance System

® in response to midair collisions between commercial aircrafts

® used to be a lookup table (of size 2GB), mapping sensor measurements to advisories

. z e replaced by DNNs (less than 3MB of memory)
e \?‘ﬁ ® continuous in nature, better than (discrete)
- . ntruder
£ lookup tables

L

Il

" Qnship,* ® necessitates formal verification

a

Neural Network Verification

® small changes to correctly handled inputs may lead to unexpected (and erroneous)
behaviors

® testing cannot prove inexistence of faulty behaviors

® there are techniques that can automatically prove that a DNN satisfies a prescribed
property

® hard problem; becomes exponentially more difficult as network size increases

® paper's contribution: an abstraction-refinement technique

A well-known story in formal verification

® replace the DNN N by a "smaller” (abstract) network N

® verify N: by construction, if N meets the spec, so does N

e if N fails to meet the spec, there must be counterexample x
® if x is actual, N violates the spec

e else refine N (little more accurate, and "larger”)

® done using the spurious counterexample x
(Counterexample-Guided Abstraction Refinement, or CEGAR)

Background: Neural Networks

Input #1 Output #1

Input #2 Qutput #2
Input #3 Output #3
Input #4 Output #4

Input #5 Output #5

e feedforward network

® edges have weights, neurons have activation function
® evaluate a neuron: compute weighted sum, and apply activation function

® RelLU(x) = max(0,x), called Rectified Linear Unit

® precondition P, postcondition Q, network N

® is there an input x that satisfies P(x) and Q(y), where y = N(x)

Input Hidden Output
layer layer layer

Input Hidden Output
layer layer layer

® is the output (v31) always equal to the input (v11)?
® is it possible that v11 € [0,1] and v31 € [0.5, 1]

® is v11 always equal to v31 for non-negative inputs?

precondition P, postcondition Q, network N

is there an input x that satisfies P(x) and Q(y), where y = N(x)
® assumptions made in this paper:

® (on N) - only ReLU activation functions; single output node
® (on P) - conjunctions of linear constraints on input values

® (on Q) - y > c, for a given constant ¢

® not as limiting as it may seem (let us come back to this in the end)

Abstraction

e transform the neural network N into N, such that N(x) < N(x), for every input x

if abstract is safe (N(x) < ¢), then so is the concrete (N(x) < ¢)

abstraction-refinement: merging neurons (and then splitting back)

but not on N (on an equivalent network N")

N — N — N" (all equivalent)

every hidden neuron should either be pos or neg
® based on weights of outgoing edges; split if needed (N)

® also, every neuron must be inc or dec; split if needed

depending on whether increasing (or decreasing) its value results in an increased output
(traversing backwards)

The abstract operator

® merges a pair of neurons; can be done multiple times

® merge only if the pos/neg and inc/dec attributes are same

for the (pos, inc) and (neg, inc) case
® take max of incoming, and sum of outgoing

for the (pos, dec) and (neg, dec) case
® take min of incoming, and sum of outgoing

intuitively, the new node contributes more to the output (than the two original nodes)

An example

y = 5R(zx1 — 2m2) +
3R(4zy — x9) + 4R(2x1 — 3x9)

y = 8R(4z1 — xa) + 4R(2z1 — 3x2) y = 12R(4z1 — m0)

® abstraction is independent of the order in which it was done

The need to refine

® of course, if the abstraction is too coarse
e suppose N(xp) = 3, N(x0) = 8, and the property is N(x) > 6
e need to refine N into N, such that for every x, N(x) < N (x) < N(x)

® refine picks a concrete neuron from an abstract neuron, and puts it back in the network

More about the abstraction

® apply abstraction to saturation (to at most 4 neurons in every hidden layer)
® can be controlled based on certain heuristics
® inaccuracies by caused by the max and min operators

® merge neurons that approximate least; split one that restores the most

Merging heuristics

y = 5R(r1 — 2ra) +
3R(4z1 — z2) + 4R(211 — 312) y = 8R(4z1 — x2) + 4R(221 — 3z2) y = 12R(4x1 — z9)

® merge: maximal value of |a — b| (over all incoming edges with weights a and b) is
minimal

® the new edge is "closest” to the replaced ones (reducing a neuron anyway!)

® merging (v1, v2), the (a, b) pairs are: (1,4), (-2, -1)
* max([|1—4],[-2—(-1)|)=3

® merging (v1, v3), the (a, b) pairs are: (1,2), (-2, -3)

* max([1-2|,|-2—(-3)]) =1

® merging (v, v3), the (a, b) pairs are: (4,2), (-1, -3)

® max(|1-2|,[-2—(-3)]) =2

merge (vi, v3) first

Splitting heuristics

y = 5R(z1 — 2m) +
3R(4z1 — za) + 4R(2x1 — 3x9) y = 8R(4z1 — x2) + 4R(211 — 312) y = 12R(4z1 — m2)

® split: v from Vv, by considering
® edge-weight difference between v and v

e difference between v(x) and V(x), for the counterexample x

N
12
L4 — ¥
E)
/ o
y = 5R(z1 — 2m) +
3R(dz1 — z2) + 4R(201 — 3za) y = 8R(4z1 — x3) + 4R(2z1 — 3x2) y = 12R(dx1 —)

consider the counterexample (x; = 1,x; = 0)

original neurons’ evaluation: (vi = 1,vo =4, v3 = 2)
abstract neuron’s evaluation: (v = 4)
e wt. diff. (between v; and V) for in-edge from xy,xp: 3, 1

e wt. diff. (between v, and V) for in-edge from xy,x2: 0, 0
e wt. diff. (between v3 and V) for in-edge from xi, xp: 2, 2

remove vy, (wt. diff x val. diff.) is largest: (9, 0, 4)

e @ e @

\igi "o

CE o e

consider the property (y2 > y1) V (y2 > y3)

encoded by adding neurons ty, tp, and z;

t1 = max(0,y2 — y1)

th = max(O,yz — y3)

z21=14H + b

property: z; > 0 (ifft; >0V t, > 0)

Reducing a complex property (in the desired form)

/.\1‘

zZ1

45 DNNs from ACAS

® input is a set of sensor readings (speed, direction, location, etc.)

e five output neurons - possible turning advisories (left, right, clear-of-conflict, etc.)

each DNN has 300 hidden neurons, across 6 hidden layers (leading to 1200 neurons after
the transformation)

® abstraction to saturation outperforms indicator-guided abstraction
® avg. 269 nodes were needed to prove (the original has 310)
® “simpler” queries may sometimes be better than smaller networks

® reconfirmed in another set of experiments: even though network size increased (to avg.
385, from 310), abstracted versions were easier to verify that the original

® even further reduction on adversarial robustness properties

® pre-processing DNNs can be very helpful

® merging based on semantic similarity has also been explored

should be possible to do both

would be good to identify not just the behavior, but also which neurons are important

Thank you!

