

Static Race Detection for Periodic Programs

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

Joint work with Varsha Suresh (IIITB), Rekha Pai (IISc/Oxford), Sujit Chakrabarti (IIITB) and Meenakshi D'Souza (IIITB)

05 July 2022

(日)

Overview	Data Races	Periodic Programs	Response Time	Disjoint-Blocks	Experimental Evaluation
●0	0000	00	00000	000000	
Overvi	ew				

A way to report data-races in real-time periodic programs, in a sound and precise manner.

Contributions

- A way to estimate worst-case response time (WCRT) for programs with non-nested locks
- Disjoint-Block patterns that are useful in eliminating races.

Overview ○●	Data Races 0000	Periodic Programs	Response Time 00000	Disjoint-Blocks 000000	Experimental Evaluation
Outlin	е				

- 2 Periodic Programs
- 3 Response Time
- 4 Disjoint-Blocks
- 5 Experimental Evaluation

Overview 00	Data Races ●000	Periodic Programs 00	Response Time 00000	Disjoint-Blocks 000000	Experimental Evaluation
Data F	Races				

Statements in two different threads that are conflicting accesses and can happen-in-parallel.

One increment may get lost.

・ロト ・ 日 ト ・ 日 ト ・ 日 ・

Statements in two different threads that are conflicting accesses and can happen-in-parallel.

イロト イポト イヨト イヨト

x may get the value 125,536.

 Overview
 Data Races
 Periodic Programs
 Response Time
 Disjoint-Blocks
 Experimental Evaluation

 00
 0000
 00
 00000
 00000
 00000

Data-Race Definition [Chopra, Pai, D. ESOP 2018]

Notion of may-happen-in-parallel (MHP): Statements s and t in program P MHP if there is an execution of P' in which the notional blocks around s and t overlap in time.

Disjoint blocks with locks

Disjoint blocks: blocks of code which cannot overlap in time.

Overview	Data Races	Periodic Programs	Response Time	Disjoint-Blocks	Experimental Evaluation
		•0			

Periodic Program: Example

```
init:

    obstacle := 0;

2. forward := 0;
3. sIn := 0;
4. start;
ObsDect: // Period = 100, Prio = 2
10. obstacle := 0;
11. if (sIn <= 10) {
12. obstacle := 1;
13. forward := -100;
14. }
MoveForward: // Period = 200, Prio = 1
20. if (!obstacle)
21.
      forward := 100;
```


Overview 00	Data Races 0000	Periodic Programs ⊙●	Response Time	Disjoint-Blocks 000000	Experimental Evaluation
Execu	tion Serr	nantics			

- Scheduler maintains a priority-wise FIFO Ready Queue
- Interrupted tasks are put back at the head of the queue.
- Tasks are moved from Delayed Queue to Ready Queue at multiples of their period.
- Program runs on a single processor.

Ready Queue

Time that a task instance takes to complete after being made ready.

 Overview
 Data Races
 Periodic Programs
 Response Time
 Disjoint-Blocks
 Experimental Evaluation

 00
 0000
 0000
 00000
 0000
 0000

Computing WCRT without locks

$$R_i = C_i + \sum_{j>i} (\lceil R_i/T_j \rceil \cdot C_j).$$
(1)

Theorem (Joseph-Pandya-1982, Liu-Layland-1973)

The least solution to Eq (1), whenever it exists, is an upper bound on the WCRT of task τ_i .

Simple iterative algo to compute WCRT.

・ロト ・ 日 ト ・ 日 ト ・ 日 ・

Response Time with Non-Nested Locks

Overview	Data Races	Periodic Programs	Response Time	Disjoint-Blocks	Experimental Evaluation
	0000		00000	000000	0000

Computing WCRT with Non-Nested Locks

$$R_{3} = C_{3} + \max(U_{l}^{2}, U_{l}^{1})$$
(2)

$$R_{2} = C_{2} + U_{l}^{1} + \lceil R_{2}/T_{3} \rceil \cdot C_{3}$$
(3)

$$R_{1} = C_{1} + \lceil R_{1}/T_{3} \rceil \cdot C_{3} + \lceil R_{1}/T_{2} \rceil \cdot C_{2}$$
(4)

$$U_{l}^{2} = C_{l}^{2} + \lceil U_{l}^{2}/T_{3} \rceil \cdot C_{3}$$
(5)

$$U_{l}^{1} = C_{l}^{1} + \lceil U_{l}^{1}/T_{3} \rceil \cdot C_{3} + \lceil U_{l}^{1}/T_{2} \rceil \cdot C_{2}$$
(6)

$$U_{l}^{1} = C_{l}^{1} + [U_{l}^{1}/T_{3} \rceil \cdot C_{3} + \lceil U_{l}^{1}/T_{2} \rceil \cdot C_{2}$$
(7)

 Overview
 Data Races
 Periodic Programs
 Response Time
 Disjoint-Blocks
 Experimental Evaluation

 00
 0000
 00
 0000●
 000000
 00000

Computing WCRT with Non-Nested Locks

$$R_{i} = C_{i} + \sum_{l \in L} (N_{l}^{i} \cdot \max_{j < i} U_{l,k}^{j}) + \sum_{j > i} (\lceil R_{i} / T_{j} \rceil \cdot C_{j})$$
(7)
$$U_{l,k}^{i} = C_{l,k}^{i} + \sum_{j > i} (\lceil U_{l,k}^{i} / T_{j} \rceil \cdot C_{j})$$
(8)

Theorem

The least solution to the system of Eqs (7,8), whenever it exists, is an upper bound on the corresponding WCRT of tasks τ_i and the blocks $B_{l,k}^i$.

Simple iterative algo to compute WCRT.

イロト イヨト イヨト イヨ

Let τ and τ' be two distinct tasks in \mathcal{T} such that:

- au and au' have the same priority (i.e. $p_{ au} = p_{ au'}$); and
- Neither τ nor τ' shares a lock with a lower priority task. Then τ and τ' are disjoint.

イロト イヨト イヨト イヨ

Let τ and τ' be two distinct tasks in \mathcal{T} such that:

- au and au' have the same period (i.e. $T_{ au} = T_{ au'}$); and
- Neither τ nor τ' shares a lock with a lower priority task. Then τ and τ' are disjoint.

◆□▶ ◆問▶ ◆臣▶ ◆臣)

Disjoint-Block Rules: Rule 3 (Low-Multiple-of-High)

Let τ_I and τ_h be two tasks in \mathcal{T} such that:

- τ_I has a lower priority than τ_h ;
- The period of τ_I is a multiple of the period of τ_h ;
- τ_h does not share a lock with a task of lower priority than τ_l ; and
- The WCRT estimate R_{τ_l} of τ_l is at most the period of τ_h (i.e. $R_{\tau_l} \leq T_{\tau_h}$).

Then τ_l and τ_h are disjoint.

Disjoint-Block Rules: Rule 4 (High-Multiple-of-Low)

Let τ_l and τ_h be two tasks in \mathcal{T} such that:

- τ_I has a lower priority than τ_h ;
- The period of τ_h is a multiple of the period of τ_l ; and

• τ_h does not share a lock with a task of lower priority than τ_l . Then τ_l and τ_h are disjoint.

Disjoint-Block Rules: Rule 5 (Low-WCRT)

Let τ_l and τ_h be two tasks in \mathcal{T} such that:

- τ_I has a lower priority than τ_h ;
- Periods of τ_l and τ_h are not multiples of the other.
- τ_h does not share a lock with a task of lower priority than τ_l .
- Let *m* be the minimum *strictly positive* value in the set

$$\{(k \cdot T_{\tau_h}) \mod T_{\tau_l} \mid k \in \mathbb{N}\}.$$

The WCRT estimate R_{τ_l} of τ_l is at most m (i.e. $R_{\tau_l} \leq m$). Then τ_l and τ_h are disjoint.

Overview 00	Data Races 0000	Periodic Programs 00	Response Time	Disjoint-Blocks 00000●	Experimental Evaluation
Race-	Detectio	n Algorithm			

Given a periodic program *P*:

- Compute list of conflicting accesses CA in P.
- 2 Set potential races PR := CA.
- For each CA pair (s₁, s₂) in PR, if (s₁, s₂) is covered by a pair of disjoint blocks according to Rules 1–5, or the Lock-Rule; Remove (s₁, s₂) from PR.

イロト イポト イヨト イヨト

Report PR as list of potential races in P.

Overview 00	Data Races 0000	Periodic Programs 00	Response Time 00000	Disjoint-Blocks 000000	Experimental Evaluation

Overview	Data Races	Periodic Programs	Response Time	Disjoint-Blocks	Experimental Evaluation
00	0000	00	00000	000000	
Evneri	monte				

Drogram		Tacks	Schod	CA	DD	%	Time]
Frogram	LOC	Tasks	Scheu.			Elim.	(sec)	
fse_obstacle.c	24	2	Y	3	0	100	0.12	1
avionics.c	588	15	N	51	42	18	0.13	1
biped_robot.c	340	3	Y	1	0	100	0.22	1
sumo.c	5287	4	Y	146	0	100	0.32	1
nxtgt.c	209	4	Y	3	0	100	0.21	1
lego_osek.c	2036	2	Y	1320	0	100	0.12]
objectfollower.c	1878	3	Y	14	0	100	0.31]
nxtway_gs.c	2263	3	Y	4	0	100	0.37]
car.c	1329	4	Y	670	0	100	0.28]
ardupilot.c	1392	4	Y	17	0	100	0.24]
follower.c	2769	7	Y	1179	0	100	0.30]
sumoR.c	5287	4	Y	146	77	47	0.31	N -
carR.c	1329	4	Y	670	125	81	0.28	IISc

・ロト・(四)・(日)・(日)・(日)・

Overview 00	Data Races 0000	Periodic Programs 00	Response Time 00000	Disjoint-Blocks 000000	Experimental Evaluation
Conclu	usion				

- Given a way to compute WCRT for periodic programs with non-nested locks.
- Disjoint-Block (Not-MHP) patterns for periodic programs.
- Effective race-detection technique for these programs.

Future work:

- Handle immediate ceiling priority locks used in OSEK and other RTOSs.
- Data-Flow analysis for periodic programs.

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ <

Overview 00	Data Races 0000	Periodic Programs	Response Time 00000	Disjoint-Blocks 000000	Experimental Evaluation

Thanks for listening!

