Static Race Detection for Periodic Programs

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

Joint work with Varsha Suresh (IlITB),
Rekha Pai (1ISc/Oxford), Sujit Chakrabarti (IITB) and
Meenakshi D'Souza (I1ITB)

-

05 July 2022 ?@)&:

Overview
®0

Overview

A way to report data-races in real-time periodic programs, in a
sound and precise manner.
Contributions

@ A way to estimate worst-case response time (WCRT) for
programs with non-nested locks

@ Disjoint-Block patterns that are useful in eliminating races.

-

Overview
oce

Outline

© Data Races

@ Periodic Programs
© Response Time
@ Disjoint-Blocks

© Experimental Evaluation

7N

Data Races
©000

Data Races

Statements in two different threads that are conflicting accesses
and can happen-in-parallel.

P
tl {2:
- X++,
- Xt
MOV EAX<—[x] _ — MOV EAX<-[x]
INC EAX e —— INC EAX
MOV [x]<-EAX| MOV [x]<-EAX|

J

A
One increment may get lost. [\I/ISC

Data Races
0e00

Data Race: Another example

Statements in two different threads that are conflicting accesses
and can happen-in-parallel.

P
tl 2:
- x=60000
x=100000; —)
MOV [xu]<-0001 — — MOV [xu]<-0000
MOV [x1]<—-85A0 MOV [x1]<-EA60

(125,536)

AL
FISC
x may get the value 125,536. \/*

Data Races
coeo

Data-Race Definition [Chopra, Pai, D. ESOP 2018]

Notion of may-happen-in-parallel (MHP): Statements s and t in
program P MHP if there is an execution of P’ in which the
notional blocks around s and t overlap in time.

P P’
tl 2
tl: 2: tl 2
- t; — skip; r
Si — skip t; —
— _ s skip;
skipi — L

Data-Race = Conflicting Access + MHP

Data Races
oooe

Disjoint blocks with locks

Disjoint blocks: blocks of code which cannot overla\p in time.

main:

| x:=0
main: jy =0
1. x := y := 0; | spawn (t1)
2. spawn(tl); ispawn(tz)
3. spawn(t2); lock(1)
assume (x<10)
tl: 2: X+
0. t :=0; 1. lock(l); s
1. lock(l); 2. if (x < 10) unlock (1)
2. if (x < 10) 3.0 xth; e mx
3.0 Xt 4. [yt Lock (1)
4. [y++; 5. unlock (1) ; ¢ B
5. unlock(1l);
"
l unlock (1) rw\II;c

Technique for static race detection: Eliminate CA p.airs if they are™
covered bv pairs of disioint blocks

Periodic Programs
[1e}

Periodic Program: Example

init:

1. obstacle := 0;
2. forward := 0;
3. sIn := 0;

4 start;

ObsDect: // Period = 100, Prio = 2
10. obstacle := 0;
11. if (sIn <= 10) {

12. obstacle := 1;
13. forward := -100;
14. %}

MoveForward: // Period = 200, Prio = 1
20. if (lobstacle)
21. forward := 100;

Periodic Programs
ce

Execution Semantics

@ Scheduler maintains a
priority-wise FIFO Ready Queue

@ Interrupted tasks are put back
at the head of the queue.

@ Tasks are moved from Delayed
Queue to Ready Queue at
multiples of their period.

Ready Queue
@ Program runs on a single

processor.

Response Time
©0000

Response Time

Time that a task instance takes to complete after being made
ready.

T3 et (Per=2)
1

T1 (Per=12)

£ N\ N\ N NN

73/, N N

T1
39 40 41 42 43 44 45 46 47 48 49 50 51 52 r—\

(I
Worst Case Response Time (WCRT) is the largest response time[
over all instances of the task.

(71

Response Time
0®000

Computing WCRT without locks

Ri=Ci+Y ([R/Tj]-G) (1)

J>i

Theorem (Joseph-Pandya-1982, Liu-Layland-1973)

The least solution to Eq (1), whenever it exists, is an upper bound
on the WCRT of task ;.

Simple iterative algo to compute WCRT.

Response Time
00®00

Response Time with Non-Nested Locks

lock(1l) unlock(1)
B3
T3 I— — —

1 05 05
lock(l) unlock(l)
B2

T2
0.5 1.5 1
lock(l) unlock(l)
Bl
1
1 1 1
73 L [
4

14 u \
—_— // | ‘ \~
1 (IISc
|\ -
39 40 41 42 43 44 45 v

46 47 48 49 50

Response Time

[elefe] le]

Computing WCRT with Non-Nested Locks

lock(1) unlock(l)
B3

’7'3 —— — —
1 05 05

lock(1l) unlock(l)
B2

T2
0.5 1.5 1

lock(l) unlock(1)
B!

1
1 1 1

Ry = C3 + max(U?, U}')

Ro= G+ Ul + [R/T3] - G
Ri=CG+[R/T3]| -G+ [Ri/T2| - G
Ui =GP+ TU}/T3]- G

U =G +[Ul/T3]- G+ U} /T2l - G

Response Time
ooo0e

Computing WCRT with Non-Nested Locks

Ri=GC—+> (N maxu,k+Z[R/T 1-G) @)

leL J>i

Ulk Clk+z Ulk/T~| G) (8)

J>i

The least solution to the system of Eqs (7,8), whenever it exists, is
an upper bound on the corresponding WCRT of tasks 7; and the

blocks B,’"k.

Simple iterative algo to compute WCRT.

Disjoint-Blocks
[Jelelolole}

Disjoint-Block Rules: Rule 1 (Same Priority)

Let 7 and 7’ be two distinct tasks in 7 such that:
e 7 and 7’ have the same priority (i.e. p; = p,v); and
@ Neither 7 nor 7’ shares a lock with a lower priority task.

Then 7 and 7’ are disjoint.

N N NN
vv

Rule 1

T’

-

Disjoint-Blocks
0®0000

Disjoint-Block Rules: Rule 2 (Same Period)

Let 7 and 7’ be two distinct tasks in 7 such that:
e 7 and 7’ have the same period (i.e. T, = T,/); and
@ Neither 7 nor 7’ shares a lock with a lower priority task.

Then 7 and 7’ are disjoint.

T

S Vi NV
A A U

T Rule 2

-

Disjoint-Blocks
[e]eX Yolole}

Disjoint-Block Rules: Rule 3 (Low-Multiple-of-High)

Let 77 and 75, be two tasks in 7 such that:
@ 7/ has a lower priority than 7p;
@ The period of 77 is a multiple of the period of 7y;

@ 7, does not share a lock with a task of lower priority than 7y;
and

@ The WCRT estimate Ry, of 7/ is at most the period of 74, (i.e.
RT/ g TTh)'

Then 77 and 74 are disjoint.

A
R (WCRT est. of 1) Ti [\I/ISC

Rule 3

Disjoint-Blocks
000®00

Disjoint-Block Rules: Rule 4 (High-Multiple-of-Low)

Let 77 and 7, be two tasks in 7 such that:
@ 7/ has a lower priority than 7p;
@ The period of 74 is a multiple of the period of 7; and
@ 7, does not share a lock with a task of lower priority than 7;.

Then 77 and 74 are disjoint.

W\//_\/\

T

Rule 4

Disjoint-Blocks
00000

Disjoint-Block Rules: Rule 5 (Low-WCRT)

Let 77 and 75, be two tasks in 7 such that:
@ 7/ has a lower priority than 7p;
@ Periods of 7; and 7, are not multiples of the other.
@ 75, does not share a lock with a task of lower priority than 7;.
@ Let m be the minimum strictly positive value in the set

{(k-T;) mod T, | ke N}.

The WCRT estimate Ry, of 7/ is at most m (i.e. R, < m).
Then 75 and 74 are disjoint.

e Vv Va\
_’/\

R (WCRT est. of /) [\I/ISC

Rule 5

Disjoint-Blocks
oooooe

Race-Detection Algorithm

Given a periodic program P:
@ Compute list of conflicting accesses CA in P.
@ Set potential races PR := CA.

@ For each CA pair (s1,s2) in PR, if (s1,s2) is covered by a pair
of disjoint blocks according to Rules 1-5, or the Lock-Rule;
Remove (s1,s2) from PR.

@ Report PR as list of potential races in P.

-

Implementation

Experimental Evaluation
®000

Program

Inliner

WCET
Analyzer

Exec.

WCRT
Analyzer

Inlined
Program Checker
|
CA PR’ List
CA List
Generator
Lockset
Analyzer
;y
\
o\
PR List {IISc

Experimental Evaluation
0®00

Experiments

Program LoC | Tasks | Sched. CA | PR %. Time

Elim. | (sec)
fse_obstacle.c 24 2 Y 3 0 100 | 0.12
avionics.c 588 15 N 51 | 42 18 | 0.13
biped_robot.c 340 3 Y 1 0 100 | 0.22
sumo.c 5287 4 Y 146 0 100 | 0.32
nxtgt.c 209 4 Y 3 0 100 | 0.21
lego_osek.c 2036 2 Y 1320 0 100 | 0.12
objectfollower.c | 1878 3 Y 14 0 100 | 0.31
nxtway_gs.c 2263 3 Y 4 0 100 | 0.37
car.c 1329 4 Y 670 0 100 | 0.28
ardupilot.c 1392 4 Y 17 0 100 | 0.24
follower.c 2769 7 Y 1179 0 100 | 0.30
sumoR.c 5287 4 Y 146 | 77 47 | 0310\
carR.c 1329 4 Y 670 | 125 81 | 0.27(|1ISc

Experimental Evaluation
feeX Yol

Conclusion

o Given a way to compute WCRT for periodic programs with
non-nested locks.

e Disjoint-Block (Not-MHP) patterns for periodic programs.
o Effective race-detection technique for these programs.
Future work:

@ Handle immediate ceiling priority locks used in OSEK and
other RTOSs.

e Data-Flow analysis for periodic programs.

-

Experimental Evaluation
oooe

Thanks for listening!

	Overview
	Data Races
	Periodic Programs
	Response Time
	Disjoint-Blocks
	Experimental Evaluation

