
SAT-Reach : A Bounded Model Checker for
Affine Hybrid Systems

Atanu Kundu

Joint work with : Sarthak Das and Dr. Rajarshi Ray

Indian Association for the Cultivation of Science
Kolkata

July 4-5, 2022

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 1 / 27



Outline :
1 Introduction

2 Preliminaries

3 Motivating Example

4 Proposed Method
SAT-based path enumeration
Reachability Analysis over a path
Reachability Optimization
Searching for a CE
Path Pruning

5 Results
Comparison with dReach and XSpeed
Comparison with Flow*
Comparison with SpaceEx

6 Conclusion

7 References

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 2 / 27



Introduction

Hybrid systems consist of both
continuous and discrete
dynamics.

Ex: Autonomous car, Robots,
Aircraft flight control system,
etc.

Hybrid systems are safety-critical.

Traditional approach can’t
handle such systems.

Bounded Model Checking
(BMC) searches for a CE of
length at most k.

Figure: Safety-critical systems.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 3 / 27



Preliminaries

Definition

A hybrid automaton (H) is a six tuple (V, X , Inv , Init , Flow , Trans)
where:

V = {v0, ..., vℓ} is a finite set of locations or modes of the H.

X = {x1, ..., xn} is a finite set of real-valued variables of the H.

Inv(v) be a invariant function that maps a location to a subset of Rn.

Init(v) is a function called the initial set of the location v.

Flow(v , x ) defines the evolution of real-valued variables x in v.

Each transition δ ∈ Trans, is a 4-tuple (v,G,Asgn, v′) where:
▶ v and v′ is the source and target locations.
▶ G and Asgn be the guard and assignment of the transition δ.

Affine hybrid system is a class of hybrid system.
▶ Flow(v, x) = Av.x+ u, u ∈ Uv where Av ∈ Rn×n and Uv ⊆ Rn

▶ Uv, Init(v), Inv(v) and G(δ) are all convex sets and Asgn(δ) is a
linear transformation.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 4 / 27



Preliminaries...

A symbolic state of a hybrid automaton H is a pair of (v, x) ∈ V ×Rn

Reachability analysis can be performed using two operators:
▶ postc(v, x) denotes the set of reachable states from (v, x) by arbitrary

timed transitions.
▶ postd(vi, xi) denotes the set of reachable states from (vi, xi) by a

discrete transition δ.

A path π is an alternating sequence of locations and transitions:

π = v0, e1, v1, e2, . . . . ., vunsafe

A path π is said to be feasible if the forbidden state is reachable.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 5 / 27



Motivating Example

Let (v1, C1) is the initial symbolic state and (v17, C17) is the forbidden
symbolic state in the verification problem with bound of analysis 7.

BFS/DFS-based exploration computes 49 postc operations in
worst-case and 17 in the bast case.

Figure: Discrete structure of an HA model.

SAT-based path-guided
exploration computes only
13 postc operations in the
worst case and 9 in the best
case.

Our aim is to reduce the number of postc computations so that we
can deduce the safety of the given verification problem faster.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 6 / 27



Proposed Method

Input: Affine Hybrid automata H
and bound of analysis k.

Output: Terminates with one of
the followings:

▶ SAFE.
▶ UNSAFE + Concrete CE.
▶ UNKNOWN.

It combines -
▶ SAT-based path enumeration.
▶ Pathwise Reachability analysis.
▶ Search for CE.

We propose -
▶ Path pruning.
▶ Reachability optimization.

Figure: SAT-assisted BMC procedure.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 7 / 27



SAT-based path enumeration
Goal: Enumerate all paths from the AHA that satisfy the given
configurations.
Graph is encoded using two propositional logic formulas:

▶ φk
H for retrieving a sequence of locations L.

▶ Φk
H(L) for retrieving a path π.

Four basic constraints are used to get L :
▶ Initial constraint :

φInit(VInit) :=
∨

vi∈VInit

(φInit(vi))

where φInit(v0) := v00 ∧ φExcl(v
0
0)

▶ Exclusivity constraint:

φExcl(v
j
i ) :=

(
vji =⇒

∧
vm∈V∧vm ̸=vi

(¬vjm)
)

▶ Transition constraint:

φTrans(v
j
i ) :=

(
vji =⇒

∨
(vi,vm)∈E

(vj+1
m )

)
IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 8 / 27



SAT-based path enumeration

▶ Destination constraint:

φDest(Vunsafe, j) :=
∨

vi∈Vunsafe

(vji )

Another constraint for retrieving a path π = v0, e1, v1, e2 . . . vk.
▶ Parallel constraint:

Φk
H(L) =

∧
0≤i<(len(L)−1),1≤j≤k

(ΦPara trans(vi, vi+1, j))

where ΦPara trans(vi, vi+1, j) =
∨

p∈Tid(vi,vi+1)
(ejp)

Negation constraint: ΦNeg(π) := (¬e11 ∨ ¬e22 ∨ . . . . . ∨ ¬ekk)

φNeg(L) := (¬v00 ∨ ¬v11 ∨ · · · ∨ ¬vkk)

we will discuss some constraints on path pruning section.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 9 / 27



Reachability Analysis over a path

Consider a path π = v0, e1, v1, e2 . . . vunsafe returned by the previous
routine.

Goal: The path π is feasible or not.

Definition

An execution σ of a hybrid automaton H is an alternating sequence of
timed and discrete transitions:

σ : (v0, x0)
τ0−→ (v0, y0)

δ0−→ (v1, x1)
τ1−→, . . . ,

δk−1−−−→ (vk, xk)
τk−→ (vk, yk)

such that (1) x0 ∈ Init(v0), (2) yi ∈ G(δi), xi+1 = Asgn(δi)(yi) for every
0 ≤ i < k.

A state (v, x) is reachable if there is an execution.

Reachable states are computed for a location vi by the union of
convex sets: Ω = Ω0,Ω1, ...,ΩN−1

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 10 / 27



Reachability Analysis over a path

We adopt the idea of computing reachable states from [1].

The convex set Ωj is computed by the following formula over
[j∆t, (j + 1)∆t]

Ωj = eA(j∆t)Ω0 ⊕Ψj

Ψj+1 = Ψj ⊕ eA(j∆t)Ψ∆t

(1)

Reachable states that take the transition (δi) must satisfy the

Ω′ = Ω ∩ G(δ) ∩ Inv(vi)

Ωnew = Asgn(δ)(Ω′) ∩ Inv(vi+1)
(2)

This Ωnew forms the initial set of the location vi+1.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 11 / 27



Reachability Analysis algorithm

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 12 / 27



Reachability Optimization

Figure: Demonstration of our
optimization idea.

Ωi is the union of Ci and
Fi.

(vi, Ci) is calculated
using equ. 3.

Fi = postc((vi, Ci))

(vi, Ci) = postd(postc((vi−1, Ci−1)), (vi−1, vi)) (3)

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 13 / 27



Optimization Rules

(v0, C0), C0 = Init(v0)

initial-to-flow
[
(vi, Ci)

]
= ∅

Fi = postc((vi, Ci)), initial-to-flow
[
(vi, Ci)

]
= Fi

initial-to-flow
[
(vi, Ci)

]
̸= ∅

Fi =initial-to-flow
[
(vi, Ci)

]
flow-trans-to-init

[
(Fi, δ)

]
= ∅, where δ = (vi,G,Asgn, vi+1)

(vi+1, Ci+1) = postd(Fi, (vi, vi+1))

flow-trans-to-init
[
(Fi, δ)

]
̸= ∅, where δ = (vi,G,Asgn, vi+1)

(vi+1, Ci+1) =flow-trans-to-init
[
(Fi, δ)

]
IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 14 / 27



Optimization Rules...

∃(vi+1, C′
i+1)

[(
initial-to-flow [(vi+1, C′

i+1)] ̸= ∅ ∧ (Ci+1 ⊆ C′
i+1)

) ∧
∀(vi+1, C∗

i+1)
(
(initial-to-flow[(vi+1, C∗

i+1)] ̸= ∅) =⇒{{
(C′

i+1 ̸⊆ C∗
i+1) ∧ (C′

i+1 ̸⊇ C∗
i+1)

}
∨
{
(Ci+1 ⊆ C∗

i+1) =⇒ (C′
i+1 ⊆ C∗

i+1)
}})]

Ci+1 = C′
i+1, flow-trans-to-init [(Fi, δ)] = (vi+1, Ci+1)

∀(vi+1, C′
i+1)

[(
initial-to-flow[(vi+1, C′

i+1)] ̸= ∅ ∧ (Ci+1 ̸⊆ C′
i+1)

)]
flow-trans-to-init

[
(Fi, δ)

]
= (vi+1, Ci+1)

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 15 / 27



Searching for a CE
Goal: Splicing trajectory segments to get a concrete CE.

Figure: An example of a segmented
trajectory having three trajectory
segments.

We used trajectory splicing [2]
algorithm to find a concrete
counterexample.

Definition (Segmented
Trajectory)

A segmented trajectory (Γ) of an
automaton is a finite sequence of
trajectory segments γi given as:

Γ =


γ0 : (v0, x0)

τ0−→ (v0, y0)

γ1 : (v1, x1)
τ1−→ (v1, y1)

... . . .

γk : (vk, xk)
τk−→ (vk, yk)


(4)

where (vi, xi)
τi−→ (vi, yi) is a timed

transition in the location vi ∈ V, for
all 0 ≤ i ≤ k.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 16 / 27



Searching for a CE
Splicing these trajectory segments using a nonlinear optimization
problem.

x0,...,xk,τ0,...,τk

k−1∑
i=0

COST(γi, γi+1) (5)

subject to:

COST(γi, γi+1) = dist(Asgn(δi)(yi), xi+1) (6)

x0 ∈ Init(v0) (7)

xi ∈ C′
i, ∀i : 1 ≤ i ≤ k (8)

yi ∈ G(δi) ∩ Ci, ∀i : 0 ≤ i ≤ k − 1 (9)

yk ∈ Ck ∩ Cunsafe (10)

0 ≤ τi ≤ T, ∀i : 0 ≤ i ≤ k (11)

dist() is the euclidean distance between end point of γi and starting
point of γi+1.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 17 / 27



Path Pruning

We prune the number of candidate paths using two overall negation
constraints:

▶ overall negation constraint for the set of paths.

ΦΠ
Neg :=

∧
π∈Π

(
ΦNeg(π)

)
- Π is a set of infeasible paths π that are not to be further enumerated.

▶ overall negation constraint for the set of sequences of locations.

φSL
Neg :=

∧
L∈SL

(
φNeg(L)

)
- SL is a set of sequence of locations L that are not to be further

enumerated.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 18 / 27



Results for the unsafe instances

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 19 / 27



Generated Counterexample

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

x
2

x1

trajectory
bad
init

 16

 18

 20

 22

 24

 26

 4  9  14  19

x
2

x1

trajectory
bad
init

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.5  0  0.5

q

p

trajectory
bad
init

-2

-1

 0

 1

 2

-1  0  1  2  3

x
2

x1

trajectory
bad
init

Figure: Counterexamples generated by SAT-Reach on different instances.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 20 / 27



Results for the safe instances

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 21 / 27



Explored Reachable States

 16

 18

 20

 22

 24

 26

 4  9  14  19

x
2

x1

trajectory
bad
init

 10

 15

 20

 25

 30

 4  9  14  19

x
2

x1

trajectory
bad
init

 16

 18

 20

 22

 24

 26

 4  9  14

x
2

x1

trajectory
bad
init

Figure: Reachable region and CE for different instances in different tools.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 22 / 27



Comparison with Flow*

Benchmarks #Locs #Dims BMC Bound

Safety Result
Flow* SAT-Reach

Time (secs) Result
Time (secs)

Result
RA Opt Total

Platoon 2 10 1 0.0045 UNSAFE 4.04 0.51 4.56 UNSAFE

Oscillator 4 3 3 0.0004 UNSAFE 0.19 0.11 0.30 UNSAFE

F oscillator 32 4 35 3 0.1900 UNSAFE 7.77 15.88 23.65 UNSAFE

F oscillator 64 4 67 3 3.5920 UNSAFE 38.78 81.09 119.87 UNKNOWN

Two tank U1 4 3 3 0.0037 UNSAFE 0.13 0.05 0.18 UNSAFE

NAV U2 9 4 7 0.6420 UNKNOWN 0.49 0.15 0.64 UNSAFE

NAV U3 9 5 3 0.0010 UNSAFE 0.28 0.14 0.42 UNSAFE

NAV U5 27 6 6 0.80.6293 UNKNOWN 0.47 0.30 0.77 UNSAFE

NAV U10 81 7 12 170.4699 UNKNOWN 2.55 11.89 14.44 UNSAFE

NAV U11 81 7 9 12.2957 UNKNOWN 1.28 7.13 8.41 UNSAFE

NAV U12 81 7 11 64.6145 UNKNOWN 2.88 73.84 76.72 UNSAFE

NAV U13 81 7 10 27.8765 UNKNOWN 1.75 66.65 68.40 UNSAFE

NAV U14 625 5 2 16.3594 UNKNOWN 2.36 1.19 3.55 UNSAFE

NAV U15 625 5 12 - OOM - - - Timeout

NAV U16 625 5 9 - OOM 44.47 1407.59 1452.06 UNSAFE

NAV U17 625 5 10 - OOM 42.37 1102.84 1145.21 UNSAFE

NAV U22 625 7 17 26.6224 UNKNOWN 9.46 60.43 69.79 UNSAFE

NAV U23 625 7 18 26.5592 UNKNOWN 11.53 64.94 76.47 UNKNOWN

NAV S1 9 4 10 2.2723 UNKNOWN 3.05 0 3.05 SAFE

NAV S2 27 6 6 0.6325 UNKNOWN 0.65 0 0.65 SAFE

NAV S3 27 6 6 0.6335 UNKNOWN 0.68 0 0.68 SAFE

NAV S4 27 6 19 - OOM 1057.82 0 1057.82 SAFE

NAV S5 27 6 19 - OOM 386.67 0 386.67 SAFE

NAV S6 81 7 15 - OOM 1547 0 1547 SAFE

NAV S7 81 7 12 164.9963 UNKNOWN 5.82 0 5.82 SAFE

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 23 / 27



Comparison with SpaceEx
Benchmarks #Locs #Dims #Trans BMC

Safety Result
SpaceEx SAT-Reach

Time (secs) #PostC Result
Time (secs)

#PostC Result
Bound RA Opt Total

Platoon 2 10 2 1 3.32 2 UNSAFE 4.04 0.51 4.56 2 UNSAFE

F oscillator 32 4 35 4 3 1.80 4 UNSAFE 7.77 15.88 23.65 4 UNSAFE

F oscillator 64 4 67 4 3 6.88 4 UNSAFE 38.78 81.09 119.87 4 UNKNOWN

Two tank U1 4 3 7 3 0.17 4 UNSAFE 0.13 0.05 0.18 4 UNSAFE

NAV U1 9 4 24 6 0.26 23 UNSAFE 0.27 0.16 0.43 8 UNSAFE

NAV U2 9 4 24 7 0.34 32 UNSAFE 0.49 0.15 0.64 18 UNSAFE

NAV U3 9 5 20 3 0.85 14 UNSAFE 0.28 0.14 0.42 4 UNSAFE

NAV U4 9 5 20 2 0.60 8 UNSAFE 0.17 0.08 0.25 3 UNSAFE

NAV U5 27 6 108 6 0.39 25 UNSAFE 0.47 0.30 0.77 9 UNSAFE

NAV U6 27 6 108 5 0.29 17 UNSAFE 0.36 0.20 0.56 6 UNSAFE

NAV U10 81 7 432 12 42.40 1262 UNSAFE 2.55 11.89 14.44 38 UNSAFE

NAV U11 81 7 432 9 7.05 262 UNSAFE 1.28 7.13 8.41 19 UNSAFE

NAV U12 81 7 432 11 25.11 802 UNSAFE 2.88 73.84 76.72 45 UNSAFE

NAV U13 81 7 432 10 12.87 480 UNSAFE 1.75 66.65 68.40 28 UNSAFE

NAV U15 625 5 2392 12 1877.48 4181 UNSAFE - - - 409 Timeout

NAV U16 625 5 2392 9 341.12 935 UNSAFE 44.47 1407.59 1452.06 147 UNSAFE

NAV U17 625 5 2392 10 580.80 1581 UNSAFE 42.37 1102.84 1145.21 104 UNSAFE

NAV U22 625 7 227 17 3.73 50 UNSAFE 9.46 60.43 69.79 18 UNSAFE

NAV U23 625 7 227 18 4.40 54 UNSAFE 11.53 64.94 76.47 19 UNKNOWN

Two tank S1 4 3 7 12 0.81 13 SAFE 0.53 0 0.53 11 SAFE

NAV S1 9 4 24 10 0.82 76 SAFE 3.05 0 3.05 127 SAFE

ACCS03 1 9 9 36 7 10.62 70 SAFE 633.02 0 633.02 5461 SAFE

NAV S3 27 6 108 6 0.38 25 SAFE 0.68 0 0.68 21 SAFE

NAV S5 27 6 108 19 53.86 1683 SAFE 386.67 0 386.67 2700 SAFE

NAV S7 81 7 432 12 3.25 136 SAFE 5.82 0 5.82 121 SAFE

NAV S10 81 7 432 14 118.18 2669 SAFE 133.86 0 133.86 1655 SAFE

ACCS05 1 81 13 1296 4 336.36 299 SAFE 457.81 0 457.81 4369 SAFE

NAV S12 625 5 2392 15 - - Timeout 158.70 0 158.70 511 SAFE

NAV S13 625 5 2392 15 - - Timeout 300.88 0 300.88 671 SAFE

NAV S14 625 5 2392 20 - - Timeout 135.60 0 135.60 112 SAFE

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 24 / 27



Conclusion

We demonstrate the BMC procedure for affine hybrid systems.

Generates concrete counterexample faster than other existing
procedures.

We have shown the efficiency of our algorithm.

In future, we plan to guide the paths so that SAT-Reach find a CE
faster.

https://gitlab.com/Atanukundu/SAT-Reach

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 25 / 27

https://gitlab.com/Atanukundu/SAT-Reach


References

[1] Goran Frehse et al. “SpaceEx: Scalable Verification of Hybrid
Systems”. In: Proc. 23rd International Conference on Computer
Aided Verification (CAV). Ed. by
Shaz Qadeer Ganesh Gopalakrishnan. LNCS. Springer, 2011.

[2] Aditya Zutshi et al. “A trajectory splicing approach to concretizing
counterexamples for hybrid systems”. In: Proceedings of the 52nd
IEEE Conference on Decision and Control, CDC 2013, December
10-13, 2013, Firenze, Italy. 2013, pp. 3918–3925. doi:
10.1109/CDC.2013.6760488. url:
http://dx.doi.org/10.1109/CDC.2013.6760488.

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 26 / 27

https://doi.org/10.1109/CDC.2013.6760488
http://dx.doi.org/10.1109/CDC.2013.6760488


Thank you for your attention!!

Any questions?

IIT Delhi Formal Methods Update Meeting 2022 July 4-5, 2022 27 / 27


	Introduction
	Preliminaries
	Motivating Example
	Proposed Method
	SAT-based path enumeration
	Reachability Analysis over a path
	Reachability Optimization
	Searching for a CE
	Path Pruning

	Results
	Comparison with dReach and XSpeed
	Comparison with Flow*
	Comparison with SpaceEx

	Conclusion
	References
	References

