
Are you messaging
securely?

Abhishek Bichhawat

Secure Messaging

Secure Messaging

Cryptographic Protocols are Everywhere

• HTTPS:	TLS	1.3,	QUIC,	ACME/Let’s	Encrypt,	…

• Secure	Messaging:	Signal,	MLS,	…

• Single-Sign	On:	OAuth,	OIDC,	SAML,	…

•Wireless:	Wifi/WPA,	4G,	5G,	Zigbee,	…

• Payment:	EMV,	W3C	Web	Payments,	…

4

TLS
Secure Messaging

TLS
Secure Messaging

(In)Secure Messaging

• Lowe’s	attack	and	fix	of	Needham-Schroeder	public	key	protocol	(‘95)	

7

(In)Secure Messaging

8

Verifying Protocols

• Formal	analysis	of	cryptographic	protocols
• Lowe	showed	that	his	fix	was	sufficient	using	a	symbolic	tool

9

Computational	Tools:

CryptoVerif,	EasyCrypt

Precise	probabilistic	assumptions	of	primitives

More	precise;	more	effort

Infeasible	for	large	protocols

Symbolic	Tools:

ProVerif,	Tamarin

Abstract	notions	of	crypto	primitives

Scale	better	

Less	precise	details	about	the	primitives	used

Tools for Verifying Protocols

• Automated	symbolic	protocol	analysis
• Analyze all	possible	execution	traces
• Do	not	scale	well	for	complex	protocols

• Perform	whole	protocol	analysis	
• Cannot	break	the	analysis	into	smaller	(re-usable)	modules.

• Protocols	with	unbounded	loops	and	recursive	data	structures	are	
challenging	to	model	in	these	tools
• Models	are	too	abstract	and	often	leave	out	important	implementation	
details

10

Signal Messaging Protocol

• Asynchronous	continuous	key	exchange	protocol
• Multiple	subprotocols
• X3DH	(initial	key	exchange)
• DH	Ratchet	(post-compromise	security)
• Hash	Ratchet	(forward	security)
• Authenticated	Encryption	(message	security)

• Inherently	recursive
• Security	of	each	message	depends	on	a	chain	of	derived	keys

11

Signal Messaging Protocol

• Existing	Analyses
• using	ProVerif and	CryptoVerif
• Model	X3DH,	Double	Ratchet
• Few	hundred	lines	written	in	applied	pi	
calculus

• ProVerif uses	symbolic	abstraction	
• CryptoVerif uses	computational	model
• One	major	limitation
• Proofs	for	only	3	message	rounds
due	to	recursion

12

Tools for Verifying Protocols

• Dependent	type	systems	based	analysis
• E.g.	RCF,	F7	etc.	
• Provide	modular	proofs
• Implementation	level	analysis	with	unbounded	structures
• Provide	executable	models with	interoperability
• Less	automation	
• No	equational	theories	(do	not	model	Diffie-Hellman/XOR)

13

Bridging the Gap

14

DY-style	tools:
Tamarin,	ProVerif,	...

Dependent	Types:
RCF,	F7,	...

focus	on	protocol	core focus	on	implementation	
aspects

abstract	models
bounded	data	
structures
no	modularity
limited	inductive	
reasoning
limited	
executability

(mostly)	automated	
analysis
global	trace	&	
properties
equational	theories

modular	proofs
implementation	
level	analysis
unbounded	
structures
inductive	reasoning
executable	models
interoperability

missing	global	view
limited	expressivity	
w.r.t.	security	prop.
limited	support	for	
mutable	state
less	automation
no	equational	theories	
(e.g.,	DH)

DY*

else
{
i0 = (uint32_t)32U;

}
uint8_t *nkey = key_block;
if (key_len <= (uint32_t)64U)
{
memcpy(nkey, key, key_len * sizeof (uint8_t));

}
else
{
EverCrypt_Hash_hash_256(key, key_len, nkey);

}
KRML_CHECK_SIZE(sizeof (uint8_t), l);
uint8_t ipad[l];
memset(ipad, (uint8_t)0x36U, l * sizeof (uint8_t));
for (uint32_t i = (uint32_t)0U; i < l; i++)
{
uint8_t xi = ipad[i];
uint8_t yi = key_block[i];
ipad[i] = xi ^ yi;

}
KRML_CHECK_SIZE(sizeof (uint8_t), l);
uint8_t opad[l];
memset(opad, (uint8_t)0x5cU, l * sizeof (uint8_t));
for (uint32_t i = (uint32_t)0U; i < l; i++)
{
uint8_t xi = opad[i];
uint8_t yi = key_block[i];
opad[i] = xi ^ yi;

}
uint32_t
scrut[8U] =
{
(uint32_t)0x6a09e667U, (uint32_t)0xbb67ae85U, (uint32_t)0x3c6ef372U, (uint32_t)0xa54ff53aU,
(uint32_t)0x510e527fU, (uint32_t)0x9b05688cU, (uint32_t)0x1f83d9abU, (uint32_t)0x5be0cd19U

};
uint32_t *s = scrut;
uint8_t *dst1 = ipad;
Hacl_Hash_Core_SHA2_init_256(s);
if (data_len == (uint32_t)0U)
{
EverCrypt_Hash_update_last_256(s, (uint64_t)0U, ipad, (uint32_t)64U);

}
else

F*

States	of	
principals

DY* Architecture

16Global	Trace

Generic	
Proofs

Protocol	
Implementation

(stateless)

Crypto

Network	
Communication

Application	
State

Runtime Model
Append only log

that captures
relevant interaction
with the network

Labeling Layer

Messages	sent	over	
the	network

Keys	and	nonces

Attacker Model

• Active	Network	Attacker
• Can	derive	arbitrary	messages	from	its	knowledge
• Cannot	“break”	crypto,	
i.e.,	no	decryption	w/o	key,	no	forging	of	signatures,	...
• Can	(dynamically)	corrupt	principals

• Goal:	Show	that	protocol	is	secure	given	such	an	attacker

17

DY* Architecture

18

Crypto

Network	
Communication

Application	
State

Global	Trace

Generic	
Proofs

Protocol	
Implementation

(stateless)

RUNTIME MODEL
Append only log

that captures
relevant interaction
with the network

Labeling Layer

INVARIANTS

F* verifies
invariants

Security Properties in DY*

• Forward	secrecy

val initiator_forward_secrecy_lemma:
i:timestamp -> a:principal -> b:principal ->
gx:bytes -> gy:bytes -> k:bytes -> LCrypto unit (pki isodh)

(requires (fun t0 -> i < trace_len t0 /\
did_event_occur_at i a (finishI a b gx gy k)))

(ensures (fun t0 _ t1 -> t0 == t1 /\ (
corrupt_at i (P b) \/
(exists si sj vi vj . is_labeled isodh_global_usage i k

(join (readers [V a si vi]) (readers [V b sj vj])) /\
(corrupt_at (trace_len t0) (V a si vi) \/
corrupt_at (trace_len t0) (V b sj vj) \/
is_unknown_to_attacker_at (trace_len t0) k)

)))) 19

Whenever Alice finishes the protocol s.t.
Alice assumes that she talked to Bob and

exchanged a key k ...

... then Bob was compromised during the protocol run OR …

... the exchanged key k is
unknown to the attacker.

Signal Messaging Protocol in DY*

• First	mechanized	proof	accounting	for
• Forward	Secrecy
• Post-compromise	Security
• Unbounded	number	of	protocol	
rounds at	the	same	time

• First	type-based	formulation	and	proof	of
post-compromise	security	for	any	protocol
• First	analysis	of	Signal	based	on	dependent	types
• Appeared	at	IEEE	European	Symposium	on	Security	and	Privacy	
(EuroS&P 2021)

20

Signal Messaging Protocol in DY*

21

WhatsApp

IKpsk2:

← s

. . .

→ e, es, s, ss

← e, ee, se, psk

IK:

← s

. . .

→ e, es, s, ss

← e, ee, se

XK:

← s

. . .

→ e, es

← e, ee

→ s, se

How do we verify so many protocols?

Noise : Family of 59+ protocols

Noise* Security Analysis

• Previous	works	do	not	cover	important	details	like	message	formats,	
protocol	state	machines,	or	key	management.
• Perform	per-instance	verification	of	each	Noise	protocol
• For	new	protocols	derived	from	the	framework,	the	verification	needs	
to	be	performed	again	with	the	implementation	done

• Our	approach	does	this	analysis	in	a	generic	manner,	once	and	for	all
• Even	valid	for	future	protocols	
• Appeared	at	IEEE	Symposium	on	Security	and	Privacy	(Oakland)	this	year

23

Future Directions and Collaborations

• Lots	of	interesting	work	to	be	done!
• Group	messaging	protocols

• Novel	security	properties
• Have	not	been	tried	with	existing	tools	

• Concrete	DY*:	fully	verified	implementations
• Plug-and-play	reference	implementations

• Equivalence	properties
• WIM*:	mechanize	the	Web	Infrastructure	Model
• Contact	me	at	abhishek.b@iitgn.ac.in if	you	are	interested	in	
collaborating	on	this

24

mailto:abhishek.b@iitgn.ac.in

