Analysing Release-Acquire
Consistency using Partial Orders

FM Update, July 09, 2021

Divyanjali, Subodh Sharma
lIT Delhi

On Memory Consistency Models

o Sequential Consistency (SC): strong safety property; simple reasoning tool
e Interleaved execution semantics;

e a total order on operations consistent with the order of operations of each thread.

 Weaker models: such as relaxed models for high performance

 TSO: W-R reordering; exploiting store buffers

 Release-acquire: weaker than SC model but stricter than relaxed models

RA

Performanceﬁ Programmabillity

SVS: Analysing Release-Acquire Consistency Using Partial Orders

On Release-Acquire Model Eossw, rop11)

* All read are acquires and all writes are release RYacq Ry

e All atomic updates are acquire/release

C ey . . W
 Formal definition: In a consistent execution Wx * Rel
* Every read is justified by a corresponding write Wx[v] & hb o,
- i Wx[v] — Wx][Vv’]
e [rreflexive hb = (U reads-fr om)+ WxIv'] \f‘ Rj[:?
X
e Reads cannot observe overwritten values [0 X
X =y=
« Existence of per location total order on writes: o T\ L Wx[v] — Wx[v’]
modification-order s.1. Wx[1] Wy[1] \ b
rf = Ux[v,v”]
* hb and mo are not inconsistent X

Rylo1 7 /™ Rx[0)

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Positives w.r.t. Release-Acquire

e Verified compilation schemes on x86-TSO and POWER
® | ack of global visibility of updates

® Stores prior to synchronising store also become observable
to synchronising load'’s thread.

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Challenges with Release-Acquire Model

* Counter-intuitive outcomes (not explainable via
interleaving semantics)

* Prior proposals for weak memory models may not be i i
- — I
appllcable Wx[1] Wy[1] Rx[1] Ry[1]

 RA semantics cannot be modelled using store buffers vm,

VMCAI'17][TM, ASPLA'18] Ry[0] Rx[0]

* Dependency involving more than two threads, use of

. . . Independent reads of independent writes
interference combinations [kw, Fse’16,17]

* (Control state reachability is undecidable [aaak, pLbrI19)

Objective: Efficient and sound verification of user assertions in programs
under release-acquire memory model

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Our Proposal

 Abstract domain: A new abstract domain that captures ordering dependencies
(as a partial order) among instructions.

 Upper approximation: Only the latest stores per thread per location are preserved.

* Thread-modular abstract interpretation: analyse each thread in isolation with an
environment assumption.

* PRIORI: a prototype abstract interpreter; effective in refutation and verification of
RA programs

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Results

Comparison for Bug Hunting

Name = PRIOR;Ht . VBMCVS DS TRACER ROMC
dijkstra 0.05 2 0.18 2 0.01 0.01 0.03
bakery 0.18 2 0.10 2 0.01 0.01 0.03
burns 0.01 2 0.04 2 0.01 0.01 0.02
dekker 0.02 2 0.09 2 0.01 0.01 0.03
dekker_sim 0.01 2 0.03 2 0.01 0.01 0.03
lamport 0.02 2 0.20 2 0.01 0.02 0.03
peterson 0.01 2 0.05 2 0.01 0.01 0.03
peterson3 0.12 3 0.55 3 0.01 0.01 0.05
10R1IW 0.02 2 3.99 10 0.01 0.01 0.03
15R1W 0.03 2 24.45 15 0.02 0.01 0.03
szymanski(7) 0.06 1 6.53 2 TO TO TO
fmax(2,7) 1.00 2 X - 0.15 0.05 TO

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Comparison for Proof of Correctness

Resu Its Name _ PRIDRI#It VBTMC DS | Tracer | ROME
CO-2+2W(5) | 0.01 3 0.32 0.01 0.01 17.26
CO-242W(15) | 0.02 3 1.29 0.02 0.01 TO
dijkstra_fen 0.10 5 | 206.70" | 0.01 0.01 0.03
bakery_fen 0.38 7 | 171.627 | 0.17 0.05 0.06
burns_fen 0.02 4 | 37.377 0.02 0.01 0.02
peterson_fen 0.10 6 | 44.127 0.02 0.01 0.03
thar 0.04 6 18.58 0.02 0.01 0.14
hehner_c11 0.03 6 | 107.167 | 0.07 0.02 0.04
red_co_20 0.04 3 31.47 23.32 0.13 TO
exp_bug_6 0.45 6 X 97.13 0.96 37.82
exp_bug_9 0.57 6 X TO 2.98 437 .47
stack_true(12) 0.06 4 X TO 589.81 TO
ib700wdt (1) 0.01 3 31.73 0.01 0.01 0.02
ib700wdt (20) | 0.05 3 TO 0.01 0.01 TO
ib700wdt (40) | 0.07 3 TO 0.01 0.01 TO
keybISR 0.01 4 0.01 0.01 0.01 0.03
fibonacci 0.117 5 | 310.75 TO 56.4 20.61
lamport_fen 0.177 4 | 431.40 0.09 0.03 0.04

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Collecting Semantics

. . rf rf
* Set of Modification orders as o o
collecting semantics a: \fxm d: Rx[1] a: Wx[1] d: Rx[1]
* Sound over- approximation [, icaLp1s] b: Wx[2] —%» e: Wx[3] b: Wx[2] «— ez Wx[3]
» Lemma 1:(7, C) is a poset m0xl moy
c: Rx[4] f: Wx[4] c: Rx[4] f: Wx[4]
-~ -
ae Qe ae e Ce rf rf
t1 I{b’ C‘} C 1o Z{bo Ce a,o}
ce phe e he }e a a a
mM11,1M12 mgl IN229M23 l /\ l
ae b o © €
ta = {bl} G ti:={ae} l \/ l
M4 f
131 e b
' '
f f

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Abstract Semantics

e lemmaZ2:(P,C,uU,Mm, I, 1l)isacomplete

lattice pu = [Ce
|
« pqI1p,: the orderings of p; and p, are both present in / \
the combination Te be
m=] =]
e Dy U p,:the common orderings of p; and p, on \
common elements are present in the combination.
« Require additional checks: pr = a‘\/.b

* For PO elements to remain acyclic

* Do not have conflicting pair — ie, (a,b) and (b,a) cannot
both be in the PO element.

10
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Transfer Functions

(pre(€), mo,m) € S m' = mfx — V]
mo’ = molx — mo(x) O L

S ETTY Sy (¢, mo",m")

STORE

e For x := v, we update the map x — v, and augment / in the modification
order of X so long as it is a valid extension.

* Rules for LOAD and RMW are similarly constructed.

11
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Theoretical Results

Theorem 1

s (P,C,U,M, L, T), wherea: T —Pand~y:P —T.

12
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Upper Approximation

Do we really need to store all the writes to the same location in the PO
domain?

_a.)
a:x =1 c:rl =x //2 p_bl > p = |be
\\ b4
RS rf,’,
MO ’:<f'“ ﬁ
7 /z’ nr \\A p: aT @7 S p/: b
b:Xx =2 d:r2:=x b ¢
peP p'€P

* Older sb-ordered writes to the same location can be forgotten!

 Key advantage: Potentially significant reduction in the number of states!

13
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Theoretical Results

Theorem 1

, T), wherea: T —Pandy:P—T.

Theorem 2
Abstraction function o : P — P is a sound abstraction. l

14
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Thread Modular Analysis with PO Domain

« Keep one p € P per memory location

POx — , POy = SR A —
XZO,y:O Xinit ~— O ylnlt — O
POx:aC1POy: i i
a . x =1 : —
x=1,y=0 | C» rll Y Append stores
b SRS
S | /// :Sb
po ____*__—/:I V
pOX:a.r y:b‘ |] .

15
SVS: Analysing Release-Acquire Consistency Using Partial Orders

Thread Modular Analysis with PO Domain

« Keep one p € P per memory location

pox =| |, po, = _
x =0,y i 0 Xinit ~— Yinit ~—
pox =|a e|, PO, = oy — 1 :_C_'_I’_]._ ':');‘, pox =[a e, POy =|p e Applying the effects of the
x=1,y=0 A x=1y=1 environment:
| = = T
: rf -~ | carry the program state
sb | P 'sb
po — o - _*’_ — ../:I ¢
POx —|a @, POy — b e | . o

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Some ideas

 Upper approximation can increase the false-alarm rate
e Counter-example guided refinement?
o Critical writes?
* Application to other relaxed memory models (PO domains are general)

e TSO/PSO, RA+NA, RA+RLX

17
SVS: Analysing Release-Acquire Consistency Using Partial Orders

: .@ Our Proposal
On Release-Acquire Model aty et i popL 2011; P
. » Abstraction: A new abstract domain that captures ordering dependencies (as a
» All read are acquires and all writes are release RYacq Ry partial order) among instructions.
» All atomic updates are acquire/release « Upper approximation: Only the latest stores per thread per location are preserved.
* Formal definition: In a consistent execution Wx WX Ret » Meet, Join, Widening: Operators over elements of the abstract lattice.
» Every read is justified by a corresponding write [x =y=0] * Thread-modular abstract interpretation: analyse each thread in isolation with an
" T4 environment assumption.
o Irreflexive hb = (sequenced-before U reads-from)™* Wx[1] Wy[1]
Read ob " | “ W * PRIORI: a prototype abstract interpreter; effective in refutation and verification of
* Reads cannot observe overwritten values o N LY
avio] ¥7 " Rxfo] RA programs
 Existence of per location total order on writes: o)
modification-order s.t. V\1X[V] v>hb Wxv] = Wx[v] Wx[v] —% Wx[v’]
HZ(){ hb
* hb and mo are not inconsistent Wx[v’] \f‘ Rx[v] \f‘ uiﬁ: V']
X X ; . o N
3 SVS: Analysing Release-Acquire Consistency Using Partial Orders SVS: Analysing Release-Acquire Consistency Using Partial Orders

Thank You!
svs@cse.litd.ac.in

Comparison for Proof of Correctness

. ReSUIts Name : PRIORI#It VBTMC e rh—
TheOretlcaI ReSUItS CO-2+2W(5) | 0.01 3 | 032 0.01 0.01 17.26
CO-24+2W(15) | 0.02 3 1.29 0.02 0.01 TO
dijkstra_fen 0.10 5 | 206.70" 0.01 0.01 0.03
bakery_fen 0.38 7 | 171.62" | 0.17 0.05 0.06
burns_fen 0.02 4 37.371 0.02 0.01 0.02
Theorem 1 peterson_fen 0.10 6 | 44.121 0.02 0.01 0.03
. tbar 0.04 6 18.58 | 0.02 0.01 0.14
(T,<) = (P,C,u,M, L, T), wherea: T -Pandy:P —T. hehner_c11 0.03 6 | 107.16" | 0.07 0.02 0.04
a red_co_20 0.04 3 | 3147 | 2332 0.13 TO
exp_bug_6 0.45 6 X 97.13 0.96 37.82
exp-bug_9 0.57 6 X TO 2.98 437.47
stack_true(12) | 0.06 4 X TO 589.81 TO
ib700wdt (1) | 0.01 3 | 3173 0.01 0.01 0.02
Theorem 2 J ib700wdt (20) | 0.05 3 TO 0.01 0.01 TO
: : _ : : ib700wdt (40) | 0.07 3 TO 0.01 0.01 TO
Abstraction function o : P — P is a sound abstraction. ceyblSR e . s - - e
fibonacci 0.117 5 | 310.75 TO 56.4 20.61
lamport_fen 0.177 4 | 431.40 0.09 0.03 0.04

SVS: Analysing Release-Acquire Consistency Using Partial Orders

13
SVS: Analysing Release-Acquire Consistency Using Partial Orders

mailto:svs@cse.iitd.ac.in

