Analysing Release-Acquire Consistency using Partial Orders FM Update, July 09, 2021

Divyanjali, Subodh Sharma IIT Delhi

On Memory Consistency Models

- Sequential Consistency (SC): strong safety property; simple reasoning tool
 - interleaved execution semantics;
 - a total order on operations consistent with the order of operations of each thread.
- Weaker models: such as relaxed models for high performance
 - TSO: W-R reordering; exploiting store buffers
- Release-acquire: weaker than SC model but stricter than relaxed models

ial Ordan

On Release-Acquire Model [BOSSW, POPL'11]

- All read are *acquires* and all writes are *release*
- All atomic updates are *acquire/release*
- Formal definition: In a *consistent* execution
 - Every read is justified by a corresponding write
 - Irreflexive $hb = (sequenced-before \cup reads-from)^+$ \bullet
 - Reads cannot observe overwritten values
 - Existence of per location total order on writes: modification-order s.t.
 - hb and mo are not inconsistent

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Positives w.r.t. Release-Acquire

- Verified compilation schemes on x86-TSO and POWER
- Lack of global visibility of updates
- Stores prior to synchronising store also become observable to synchronising load's thread.

Challenges with Release-Acquire Model

- Counter-intuitive outcomes (not explainable via) interleaving semantics)
- Prior proposals for weak memory models may not be applicable
 - RA semantics cannot be modelled using store buffers [MM, VMCAI'17][TM, ASPLA'18]
 - Dependency involving more than two threads, use of interference combinations [KW, FSE'16, 17]
- Control state reachability is undecidable [AAAK, PLDI'19]

Objective: Efficient and sound verification of user assertions in programs under release-acquire memory model

Independent reads of independent writes

Our Proposal

- Abstract domain: A new abstract domain that captures ordering dependencies (as a partial order) among instructions.
 - Upper approximation: Only the latest stores per thread per location are preserved.
- Thread-modular abstract interpretation: analyse each thread in isolation with an environment assumption.
- PRIORI: a prototype abstract interpreter; effective in refutation and verification of RA programs

Results

Comparison for Bug Hunting

				<u> </u>			
Name	PRIORI		VBMC		CDS		BCMC
	Т	#lt	Т	VS		IRACER	
dijkstra	0.05	2	0.18	2	0.01	0.01	0.03
bakery	0.18	2	0.10	2	0.01	0.01	0.03
burns	0.01	2	0.04	2	0.01	0.01	0.02
dekker	0.02	2	0.09	2	0.01	0.01	0.03
dekker_sim	0.01	2	0.03	2	0.01	0.01	0.03
lamport	0.02	2	0.20	2	0.01	0.02	0.03
peterson	0.01	2	0.05	2	0.01	0.01	0.03
peterson3	0.12	3	0.55	3	0.01	0.01	0.05
10R1W	0.02	2	3.99	10	0.01	0.01	0.03
15R1W	0.03	2	24.45	15	0.02	0.01	0.03
szymanski(7)	0.06	1	6.58	2	ТО	ТО	ТО
fmax(2,7)	1.00	2	×	-	0.15	0.05	ТО

ial Ordan

Comparison for Proof of Correctness

Results

Name	PRIORI		VBMC	CDS		
	Т	#lt	Т	UDD	IRACER	
CO-2+2W(5)	0.01	3	0.32	0.01	0.01	17.26
CO-2+2W(15)	0.02	3	1.29	0.02	0.01	ТО
dijkstra_fen	0.10	5	206.70 [†]	0.01	0.01	0.03
bakery_fen	0.38	7	171.62 [†]	0.17	0.05	0.06
burns_fen	0.02	4	37.37 [†]	0.02	0.01	0.02
peterson_fen	0.10	6	44.12 [†]	0.02	0.01	0.03
tbar	0.04	6	18.58	0.02	0.01	0.14
hehner_c11	0.03	6	107.16^{\dagger}	0.07	0.02	0.04
red_co_20	0.04	3	31.47	23.32	0.13	ТО
exp_bug_6	0.45	6	×	97.13	0.96	37.82
exp_bug_9	0.57	6	×	ТО	2.98	437.47
stack_true(12)	0.06	4	×	ТО	589.81	ТО
ib700wdt (1)	0.01	3	31.73	0.01	0.01	0.02
ib700wdt (20)	0.05	3	ТО	0.01	0.01	ТО
ib700wdt (40)	0.07	3	ТО	0.01	0.01	ТО
keybISR	0.01	4	0.01	0.01	0.01	0.03
fibonacci	0.11^{+}	5	310.75	ТО	56.4	20.61
lamport_fen	0.17^{\dagger}	4	431.40	0.09	0.03	0.04

ial Ordan

Collecting Semantics

- Set of Modification orders as collecting semantics
 - Sound over- approximation [LV, ICALP'15]
 - Lemma 1: (\mathcal{T}, \subseteq) is a poset

$$t_{1} \coloneqq \begin{cases} a \bullet a \bullet \\ b \bullet c \bullet \\ c \bullet b \bullet \end{cases} \subseteq t_{2} \coloneqq \begin{cases} a \bullet a \bullet c \bullet \\ b \bullet c \bullet a \bullet \\ c \bullet b \bullet \\ m_{11}, m_{12} \end{cases}$$
$$t_{2} \coloneqq t_{2} \coloneqq \begin{cases} a \bullet \\ b \bullet c \bullet a \bullet \\ m_{21}, m_{22}, m_{23} \end{cases}$$
$$t_{3} \coloneqq \begin{cases} a \bullet \\ b \bullet \\ m_{31} \end{cases} \subseteq t_{4} \coloneqq \{a \bullet \}$$
$$m_{41}$$

Abstract Semantics

- Lemma 2: $(P, \subseteq, \sqcup, \sqcap, \top, \bot)$ is a complete lattice
 - $p_1 \sqcap p_2$: the orderings of p_1 and p_2 are both present in the combination
 - $p_1 \sqcup p_2$: the common orderings of p_1 and p_2 on common elements are present in the combination.
 - Require additional checks:
 - For PO elements to remain acyclic
 - Do not have conflicting pair ie, (a,b) and (b,a) cannot both be in the PO element.

Transfer Functions

$$\begin{array}{l} (pre(\ell), mo, m) \in \mathcal{S} \\ mo' = mo[x \rightarrow \mathcal{S} \\ \end{array} \\ \mathcal{S} \xrightarrow{\ell: \text{st } x \ v} \mathcal{S} \amalg \end{array}$$

- For x := v, we update the map $x \mapsto v$, and augment l in the modification order of x so long as it is a valid extension.
- Rules for LOAD and RMW are similarly constructed.

Theoretical Results

Theorem 1 $(\mathcal{T}, \subseteq) \xrightarrow{\gamma} (\mathcal{P}, \subseteq, \sqcup, \sqcap, \bot, \top)$, where $\alpha : \mathcal{T} \to \mathcal{P}$ and $\gamma : \mathcal{P} \to \mathcal{T}$.

Upper Approximation

 Do we really need to store all the writes to the same location in the PO domain?

- Older sb-ordered writes to the same location can be forgotten!
- Key advantage: Potentially significant reduction in the number of states!

Theoretical Results

Theorem 1 $(\mathcal{T}, \subseteq) \xrightarrow{\gamma} (\mathcal{P}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$, where $\alpha : \mathcal{T} \to \mathcal{P}$ and $\gamma : \mathcal{P} \to \mathcal{T}$.

Theorem 2

Abstraction function $\alpha^{\sharp}: \mathcal{P} \to \mathcal{P}$ is a sound abstraction.

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Thread Modular Analysis with PO Domain

• Keep one $p \in P$ per memory location

$$\begin{array}{c}
po_{x} = \ , \ po_{y} = \ , \ x = 0, \ y = 0 \end{array} \quad x_{init} := \\
\begin{array}{c}
po_{x} = \ \bullet \ , \ po_{y} = \ \\
x = 1, \ y = 0 \end{array} \quad a : x := \\
\begin{array}{c}
sb \\
 & \\
 & \\
 & \\
 & \\
 & \\
\end{array} \quad b : y := \\
\end{array}$$

Append stores

Thread Modular Analysis with PO Domain

• Keep one $p \in P$ per memory location

Applying the effects of the environment: carry the program state

Some ideas

- Upper approximation can increase the false-alarm rate
 - Counter-example guided refinement?
 - Critical writes?
- Application to other relaxed memory models (PO domains are general)
 - TSO/PSO, RA+NA, RA+RLX

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Thank You! svs@cse.iitd.ac.in

Theoretical Results

Theorem 1

 $(\mathcal{T}, \preceq) \xleftarrow{\gamma}{\alpha} (\mathcal{P}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$, where $\alpha : \mathcal{T} \to \mathcal{P}$ and $\gamma : \mathcal{P} \to \mathcal{T}$.

Theorem 2

Abstraction function $\alpha^{\sharp}: \mathcal{P} \to \mathcal{P}$ is a sound abstraction.

Our Proposal

- Abstraction: A new abstract domain that captures ordering dependencies (as a partial order) among instructions.
- Upper approximation: Only the latest stores per thread per location are preserved.
- Meet, Join, Widening: Operators over elements of the abstract lattice.
- Thread-modular abstract interpretation: analyse each thread in isolation with an environment assumption.
- PRIORI: a prototype abstract interpreter; effective in refutation and verification of RA programs

SVS: Analysing Release-Acquire Consistency Using Partial Orders

Results

Comparison for Proof of Correctness								
Name	PRIORI		VBMC	CDS		PCMC		
	Т	#lt	Т		IRACER	nomo		
CO-2+2W(5)	0.01	3	0.32	0.01	0.01	17.26		
CO-2+2W(15)	0.02	3	1.29	0.02	0.01	то		
dijkstra₋fen	0.10	5	206.70 [†]	0.01	0.01	0.03		
bakery_fen	0.38	7	171.62 [†]	0.17	0.05	0.06		
burns_fen	0.02	4	37.37 [†]	0.02	0.01	0.02		
peterson_fen	0.10	6	44.12 [†]	0.02	0.01	0.03		
tbar	0.04	6	18.58	0.02	0.01	0.14		
hehner_c11	0.03	6	107.16 [†]	0.07	0.02	0.04		
red_co_20	0.04	3	31.47	23.32	0.13	то		
exp_bug_6	0.45	6	×	97.13	0.96	37.82		
exp_bug_9	0.57	6	×	то	2.98	437.47		
stack_true(12)	0.06	4	×	то	589.81	то		
ib700wdt (1)	0.01	3	31.73	0.01	0.01	0.02		
ib700wdt (20)	0.05	3	то	0.01	0.01	то		
ib700wdt (40)	0.07	3	то	0.01	0.01	то		
keybISR	0.01	4	0.01	0.01	0.01	0.03		
fibonacci	0.11 [†]	5	310.75	то	56.4	20.61		
lamport_fen	0.17 [†]	4	431.40	0.09	0.03	0.04		

8

