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On Memory Consistency Models
• Sequential Consistency (SC): strong safety property; simple reasoning tool 


• interleaved execution semantics; 


• a total order on operations consistent with the order of operations of each thread. 


• Weaker models: such as relaxed models for high performance


• TSO: W-R reordering; exploiting store buffers


• Release-acquire: weaker than SC model but stricter than relaxed models
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Performance Programmability
RA
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On Release-Acquire Model [BOSSW, POPL’11]

• All read are acquires and all writes are release 

• All atomic updates are acquire/release 

• Formal definition: In a consistent execution


• Every read is justified by a corresponding write


• Irreflexive hb = (sequenced-before  reads-from)  


•  Reads cannot observe overwritten values


• Existence of per location total order on writes:  
modification-order s.t.  

• hb and mo are not inconsistent

∪ +
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 Positives w.r.t. Release-Acquire
• Verified compilation schemes on x86-TSO and POWER


• Lack of global visibility of updates 

• Stores prior to synchronising store also become observable 
to synchronising load’s thread.
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Challenges with Release-Acquire Model

5
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Independent reads of independent writes

Objective: Efficient and sound verification of user assertions in programs 
under release-acquire memory model 

• Counter-intuitive outcomes (not explainable via 
interleaving semantics)


• Prior proposals for weak memory models may not be 
applicable


• RA semantics cannot be modelled using store buffers [MM, 
VMCAI’17][TM, ASPLA’18]


• Dependency involving more than two threads, use of 
interference combinations [KW, FSE’16,17]


• Control state reachability is undecidable [AAAK, PLDI’19]
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Our Proposal
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• Abstract domain: A new abstract domain that captures ordering dependencies 
(as a partial order) among instructions. 


• Upper approximation: Only the latest stores per thread per location are preserved. 


• Thread-modular abstract interpretation: analyse each thread in isolation with an 
environment assumption. 


• PRIORI: a prototype abstract interpreter; effective in refutation and verification of 
RA programs
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Results
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Results

Comparison for Bug Hunting
Name PRIORI VBMC

CDS Tracer RCMC
T #It T VS

dijkstra 0.05 2 0.18 2 0.01 0.01 0.03

bakery 0.18 2 0.10 2 0.01 0.01 0.03

burns 0.01 2 0.04 2 0.01 0.01 0.02

dekker 0.02 2 0.09 2 0.01 0.01 0.03

dekker sim 0.01 2 0.03 2 0.01 0.01 0.03

lamport 0.02 2 0.20 2 0.01 0.02 0.03

peterson 0.01 2 0.05 2 0.01 0.01 0.03

peterson3 0.12 3 0.55 3 0.01 0.01 0.05

10R1W 0.02 2 3.99 10 0.01 0.01 0.03

15R1W 0.03 2 24.45 15 0.02 0.01 0.03

szymanski(7) 0.06 1 6.58 2 TO TO TO

fmax(2,7) 1.00 2 7 - 0.15 0.05 TO

13
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Results
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Results

Comparison for Proof of Correctness
Name PRIORI VBMC

CDS Tracer RCMC
T #It T

CO-2+2W(5) 0.01 3 0.32 0.01 0.01 17.26

CO-2+2W(15) 0.02 3 1.29 0.02 0.01 TO

dijkstra fen 0.10 5 206.70† 0.01 0.01 0.03

bakery fen 0.38 7 171.62† 0.17 0.05 0.06

burns fen 0.02 4 37.37† 0.02 0.01 0.02

peterson fen 0.10 6 44.12† 0.02 0.01 0.03

tbar 0.04 6 18.58 0.02 0.01 0.14

hehner c11 0.03 6 107.16† 0.07 0.02 0.04

red co 20 0.04 3 31.47 23.32 0.13 TO

exp bug 6 0.45 6 7 97.13 0.96 37.82

exp bug 9 0.57 6 7 TO 2.98 437.47

stack true(12) 0.06 4 7 TO 589.81 TO

ib700wdt (1) 0.01 3 31.73 0.01 0.01 0.02

ib700wdt (20) 0.05 3 TO 0.01 0.01 TO

ib700wdt (40) 0.07 3 TO 0.01 0.01 TO

keybISR 0.01 4 0.01 0.01 0.01 0.03

fibonacci 0.11† 5 310.75 TO 56.4 20.61

lamport fen 0.17† 4 431.40 0.09 0.03 0.04
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Collecting Semantics
• Set of Modification orders as 

collecting semantics


• Sound over- approximation [LV, ICALP’15] 


• Lemma 1:             is a poset  
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Fig. 3: Orderings over T ,P

element t3 is ordered below t4. The set of executions having m41 as a part of
their mo is larger than set of executions having m31 as part of their mo.

The element ?T represents a set in which all modification orders are inconsis-
tent, and hence represents an invalid execution. Likewise, we introduce element
>T = (;, ;) in the T representing an empty set of constraints, which is equiva-
lent to the set of all valid executions. By definition, >T is ordered above all the
elements T in the ✓• . We establish that T is a poset under the relation ✓• .

Lemma 1. (T ,✓•), is a poset.

See Appendix C for proofs.

6 Abstract Semantics

We present a two-layered abstraction to arrive at final abstract RA program
semantics. In particular, (i) the set of mo losets of a program is abstracted in
to PO domains, and (ii) the PO domains are further over-approximated, where
for each variable all stores older than the latest store under sb ordering in its
poset are forgotten. Further, we demonstrate that abstract semantics produced
in step (i) from above forms a complete lattice and establish a Galois connection
between the concrete and abstract domains.

6.1 mo Posets as Lattices

In this section we define a lattice over P which is the set of all partial orders.
We use the terms mo poset and PO domain interchangeably for this lattice.

We combine two or more mo losets and respresent them as a collection of
partial orders. For instance, consider mo losets p1 and p2 (shown in Figure 3b) in
P. These can be combined in the following two ways: (i) the orderings in p1 and
p2 are both present in the combination (the binary operator is denoted by u and
the resulting element is denoted by pu), or (ii) common orderings in p1 and p2

on the common elements are present in the combination (the binary operator is
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Abstract Semantics
• Lemma 2:  is a complete 

lattice


• : the orderings of  and  are both present in 
the combination


• : the common orderings of  and  on 
common elements are present in the combination.


• Require additional checks: 


• For PO elements to remain acyclic


• Do not have conflicting pair — ie, (a,b) and (b,a) cannot 
both be in the PO element.

(P, ⊑ , ⊔ , ⊓ , ⊤ , ⊥ )

p1 ⊓ p2 p1 p2

p1 ⊔ p2 p1 p2
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Transfer Functions

• For , we update the map , and augment  in the modification 
order of x so long as it is a valid extension. 


• Rules for LOAD and RMW are similarly constructed. 

x := v x ↦ v l

11

Thread-modular Analysis of Release-Acquire Concurrency 11

(pre(`),mo,m) 2 S m0 = m[x ! v]
mo0 = mo[x ! mo(x) ⌃ `]

store

S `:st x v�����! S t+ (`,mo0,m0)

(pre(`),mo,m) 2 S
(pre(`),mo,m)

`:ld x����! (`,mo00,m00)
m00(x) = v

(pre(`),mo00,m00)
`:st x v0
�����! (`,mo0,m0)

rmw

S `:rmw x v v0
�������! S t+ (`,mo0,m0)

(pre(`),mol,ml) 2 S st 2 I(t)(`)
(st,mos,ms) 2 S

(pre(`),mo0,m00) = AI((pre(`),mol,ml), (st,mos,ms))
m0 = m00[x ! ms(x)]

load

S `:ld x����! S t+ (`,mo0,m0)

Fig. 4: Transfer functions for RA programs. AI((`1,mo1,mo2), (`2,mo2,m2))
def
=

(`1, (mo1 ⌃ `2) u mo2,m1 t m2); AI applies the interference from (`2,mo2,m2)
to the memory and mo poset state of (`1,mo1,mo2).

6.2 Abstract Semantics of RA programs

The values of shared variables in the program can be abstracted to any known
numeric abstract domain such as interval, octagon, or polyhedra. Let V] repre-
sents the set of values in the chosen abstract domain. Let M : V ! V] define
the memory state of a program. Let M : V ! P represent a map from shared
variables to corresponding elements in the abstract mo poset lattice P. We abuse
notations ⌃,t,u,r, ", and C to represent the corresponding pointwise-lifted
operators for M. For instance, the pointwise lifting of ⌃ appends the stores of
variable v only to its modification order (i.e., M(v)); the modification orders
M(v0) for variables v

0 6= v remain unchanged. The pointwise lifting for other
operators is straighforward. From Theorem 2, it follows that M along with the
pointwise lifted operators constitute the sought abstract domain.

Let ⌃ ✓ L ⇥ (M ⇥ M) represents the set of all reachable program states.
The transfer functions for operations ld, st and rmw are defined in Figure 4. We
provide additional rules (for lock and unlock) and auxillary functions, which are
supported by our technique, in Appendix D. Since we assume the SSA represen-
tation of programs, arithmetic operations only modify the thread local variables.
As a result,M remains unchanged. The e↵ects of arithmetic operations on shared
variables is captured via numeric abstract domains. Thus, the transfer functions
for such operations are excluded from our presentation. The semantic definitions
in Figure 4 are parameterized in terms of the set of currently explored reachable
program states, S ✓ ⌃, at a some point during the analysis.

Consider the load rule which, defines the semantics of a load operation. A
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Theoretical Results
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Theoretical Results

Lemma 1

(T ,✓), is a poset.

Lemma 2

(P,v,t,u,?,>) is a complete lattice.

Theorem 1

(T ,✓•) ���! ���↵
�

(P,v,t,u,?,>), where ↵ : T ! P and � : P ! T .

Theorem 2

Abstraction function ↵]
: P ! P is a sound abstraction.

19
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Upper Approximation
• Do we really need to store all the writes to the same location in the PO 

domain?


• Older sb-ordered writes to the same location can be forgotten! 


• Key advantage: Potentially significant reduction in the number of states!
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Forgetting Stores: Second Level Abstraction

Do we need all store events in Partial Order for program analysis?

a : x := 1

b : x := 2

c : r1 := x

d : r2 := x

//2

mo
rf

nrf

p =
a

b

p =
a

b

p 2 P

p
0
= b

p
0
= b

p
0 2 P

↵]

↵]

Note that sb ✓ mo
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Thread Modular Analysis with PO Domain
• Keep one  per memory locationp ∈ P
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Thread-modular Analysis using mo poset for RA programs

Keep one p 2 P per memory location along with corresponding memory

map in each program state

xinit := 0 yinit := 0

a : x := 1

b : y := 1

c : r1 := y

d : r2 := x

rf
sb sb

hb

pox = , poy =

x = 0, y = 0

pox = a , poy =

x = 1, y = 0

pox = a , poy = b

x = 1, y = 1

pox = a , poy = b

x = 1, y = 1

pox = a , poy = b

x = 1, y = 1

• Append store events

• Check consistency and extensibility for load events

• Carry program state on when interference in applied

20

Append stores
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Thread Modular Analysis with PO Domain
• Keep one  per memory locationp ∈ P
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Applying the effects of the 

environment: 

carry the program state

Thread-modular Analysis using mo poset for RA programs

Keep one p 2 P per memory location along with corresponding memory
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Some ideas
• Upper approximation can increase the false-alarm rate 


• Counter-example guided refinement? 


• Critical writes? 


• Application to other relaxed memory models (PO domains are general)


• TSO/PSO, RA+NA, RA+RLX

17



Thank You! 
svs@cse.iitd.ac.in

mailto:svs@cse.iitd.ac.in

