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Stackelberg Games
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Two (types of) Players: w w

Both players are rational

Mean-Payoff Games Bi-Matrix Games
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Sequential Moves: 1. Leader announces her strategy

2. Follower announces his response to

leader’s strategy



Game Setting
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Game played on a finite arena

Vertices partitioned into Leader (V;) and Follower (V) vertices
For infinitely many rounds producing an infinite path:
Player owning a vertex moves the token to the next vertex.

Payofts along the path: (¢, d,), (¢cy, d,), (¢35, d5)...

Quantitative: mean-payoff a.k.a long-run average objective 3



Motivation
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Contribution to rational synthesis framework

Nonzero-sum game where both the program and its environment

are rational agents, with their own goals.

Have been studied for qualitative omega-regular objectives.

Fisman, Kupferman, Lustig’ 10 and Kupferman, Perelli, Vardi’ 16 A



Adversarial
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In the adversarial setting, Follower chooses Best-Response

which minimises payoff of Leader



Adversarial
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In the adversarial setting, the program (Leader) assumes less hypothesis on

the behaviour of the user (Follower).

Satisfies specitication for all rational behaviour of the user (Follower).



Strategies

Leader strategies: Given a finite path ending in a Leader
vertex, the choice of the successor vertex.

00 . V*VL —> V
Similarly, Follower strategies: ...
o, : V¥V, —V

Choosing a strategy for Leader and a strategy for Follower
leads to a unique infinite path in the game graph, called the
outcome of the two strategies.

Memoryless strategies:
00 . VL —> V



Adversarial Stackelberg Value (ASV)

( Filiot, Gentilini and Raskin - ICALP 2020 )

ASYV is the largest mean-payoff value Leader can obtain
when Follower plays an adversarial best response.

ASV(cp)(v) = inf Mean-Payoft, [Outcome(s), 0,)]
o, € BR(q))

ASV(v) = sup ASV(c,)(v)

)

0, : Leader Strategy o, : Follower Strategy



Adversarial Stackelberg Value (ASV)

ASV(oy))(v) = inf Mean-Payoft [Outcome(s, o/)]
o, € BR(op)

ASV(v) = sup ASV(c,)(v)

)



Best Responses May Not Exist
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Leader strategy: if a*b, then (c*de)”
Follower strategy: fal%Y%, then (c!"Vde)®

falOOOOOb then (CIOOOOOde)a)

It a*°b, then the vertex v, is never reached.

10



Epsilon-Best Responses Always Exist

Leader strategy:

Follower strategy:

If a“b, then (c*de)”

or e = 0.1, play a'"p

~or € = 0.001, play '

11



Best Responses May Not Exist

Leader strategy: if a*b, then (c*de)”

This set may be empty

ASV(cp)(v) = inf Mean-Payoft, [Outcome(s), /)]
o, € BR(o))

ASV(v) = sup ASV(c,)(v)

)

12



Epsilon-Best Responses Always Exist

Leader strategy: If a*b, then (c*de)”

ASV(oy)(v) = sup inf I\/Iean—PayoffL [Outcome(oy, 0/)]
e>0 01E BR(0,)

ASV(v) = sup ASV(c,)(v)

)

An e-best response of Follower to a Leader strategy is one which is
at most € worse than every other response of Follower.

13



ASV May Not Be Achievable

ASV(V()) — 1

Follower must be given mean-payoff > 1
else he will play vy — v,

No strategy for Leader to get a mean-payoff of 1 for herself.

14



Threshold Problem:
s ASV > c for some threshold c?



Threshold problem and witness

A path 7 is a witness for ASV > c if

(i) mean-Payoft of 7is (¢, d), where ¢’ > ¢ and

(i) ...

16



Threshold problem and witness

A path 7 is a witness for ASV > c if
(i) mean-Payoft of 7 is (¢, d), where ¢’ > ¢ and

(i) and 7 does not cross a (c, d)-bad vertex.

17



Threshold problem and witness

A path 7 is a witness for ASV > c if
(i) mean-Payoft of 7 is (¢, d), where ¢’ > ¢ and

(i) and 7 does not cross a (c, d)-bad vertex.

AW) = { (c, d) € R?| From vertex v, Follower can ensure that Leader’s }
payoff < c and Follower's payoft > d

A vertex vis (c, d)-bad if (c, d) € A(v)

18



Threshold problem and witness

A path 7 is a witness for ASV(v) > c if
(i) mean-Payoft of 7 is (¢, d), where ¢’ > ¢ and

(i) and 7 does not cross a (c, d)-bad vertex.

AW) = { (c, d) € R?| From vertex v, Follower can ensure that Leader’s }
payoff < c and Follower's payoft > d

A vertex vis (c, d)-bad if (c, d) € A(v)

Theorem: ASV(v) > c it and only if there exists a

witness for ASV(v) > c.

19



Threshold problem and witness

Theorem: ASV(v) > c it and only if there exists a

witness for ASV(v) > c.

It ASV(v) > c, we can find a regular witness of the form

. k
) - (ll[a k] . T, - lz[ﬂ I, 773)”

(0)]
u-v
"¢"~“ "¢'~“
] . ] '
o ' L
Y ' Y ’
. .
TT
71'1 2
Vi -
3

[, and [, are simple cycles,

m,, 7, and 75 are finite acyclic plays 20



Threshold problem: NP membership

Theorem: ASV(v) > c it and only if there exists a

witness for ASV(v) > c.

It ASV(v) > ¢, we can find a regular witness of the form

: k
71'1 ¢ (ll[a k] ¢ 7[2 * lz[ﬂ ] ¢ 71'3)60

A path 7 is a witness for ASV(v) > c if
(i) mean-Payoft of 7 is (¢, d), where ¢’ > ¢ and

(i) and 7 does not cross a (c, d)-bad vertex.

A(v) = { (c, d) € R?| From vertex v, Follower can ensure that Leader’s }
payoff < c and Follower’s payoft > d

Leads to an NP-membership for the threshold problem. 21



Adversarial Stackelberg Value tor memoryless strategies (ASV )

ASV(oy))(v) = inf Mean-Payoft [Outcome(s, o/)]
o, € BR(q))

ASVML(V) = Sup ASV(U())(V)

o, € I

Deciding it ASVL(v) > ¢ is NP-complete.

Memoryless strategies:
00 . VL —> V

GIZVF_>V

22



Computing the ASV



Computing the ASV : Using FO-Theory over Reals with Addition

Uses the notion of a witness

ASV(v) = sup{c|There is a -witness = for ASV(v) > c}

= max sup{c|There is a -witness & for ASV(v) > ¢ and
Y=\ee

7 ends in S}. Shows that there exist plays with

mean-payoft (x, y) in the SCC §.

(Chatterjee et al. "10)

p(C) — Hxay L X > CA (I)S(xay) A _ITS(Cay)

l

Shows that the play does not
cross a (c, y)- bad vertex in §.

(Brenguier, Raskin ‘15)
24



Computing the ASV : Using FO-Theory over Reals with Addition

ASV(v) = sup{c|There is a -witness & for ASV(v) > c}

= max sup{c|There is a -witness 7 for ASV(v) > ¢ and
Sescc

wendsin S}.

Shows that there exist plays with
mean-payoft (x, y).

T

ps(c) =3Ax,y: x> c ADy(x,y) A WP(c,y)

l

Shows that the play does not
cross a (c, y)- bad vertex.

We can also express pg(c) as a set of linear programs.

In the linear program, we maximise c. (Gives an EXPTime algorithm.)

25



Fragility of ASV



Robustness: ASV under perturbation of weights

Mean-Payoft: (10, 10)

X

In the adversarial setting, Follower chooses Best-Response

which minimises payoff of Leader

27



Robustness: ASV under perturbation of weights

ASVG(VO —> V4) =10

Mean-Payoft: (10, 10)

0=0.6

(0,9.55)
(10,9.45) \
(10,10) C Leader (4, 5)

X

In the adversarial setting, Follower chooses Best-Response

which minimises payoff of Leader

28



Robustness against sub-optimal responses

Leader
ASV(vy — Vv,) =10 o
ASVG(VO — V4) = O w

Sub-optimality: € = 1.2 Q
(0,9) D (8, 9)

Leader\‘.D

® ° "3 (4, 5)
< 'I‘

29



Robustness in zero-sum games

Leader
ASV(VO - — > V4) =1O o
ASVG(VO - — > V4) — O w
Sub-optimality: € = 1.2 @

(0,9)

Strategy in zero-sum games are robust against perturbations and

e-best responses ot Follower. 20



Robustness against perturbation

We suggest the solution concept ASV® instead of ASV.

ASVi(cp))(v) = inf  Mean-Payoff, [Outcome(s, o]
o, € BR (o)

ASVE(v) = sup ASV¢(6)(v)

o)

Robustness against sub-optimal responses (ASVZ) implies

robustness against perturbation of 6.

Theorem: VH Vo, € G : ASVy(6)(v) > ASVE(6,)(v) — &

31



Combined robustness of ASV¢

Combined robustness against perturbation ot §, and

sub-optimal response of Player 1.

VH € G*° : ASV5(v) > ASVET(v) — 6

While adversarial Stackelberg value (ASV) is fragile against

perturbation and suboptimal responses of Player 1, the

ASV® is robust against both.

32



Combined robustness of ASV¢

Combined robustness against perturbation of §, and

sub-optimal response of Player 1.
VH € G*° : ASV5(v) > ASVET(v) — 6

While adversarial Stackelberg value (ASV) is fragile against

perturbation and suboptimal responses of Player 1, the

ASV® is robust against both.

Given a threshold ¢, we can compute in EXPTime

the largest ¢ such that ASV® > c.

ASV¢ is achievable unlike ASV. 13



