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Stackelberg Games
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Two (types of) Players:

Leader Follower

1. Leader announces her strategy

2. Follower announces his response to 
leader’s strategy 

Sequential Moves:

Game:

Bi-Matrix Games

I II

I (1,2) (3,0)

II (0,0) (2,1)

Mean-Payoff Games

(0, 1) (0, 2.2)(2,0)

v1 v2v0
(0,1) (0,0)

(0,0)

Both players are rational



Game Setting
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(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Game played  on a  finite arena

a c d

e

b

For infinitely many rounds producing an infinite path:  

        Player owning a vertex moves the token to the next vertex. 

        Payoffs along the path: ( , ), ( , ), ( , )… c1 d1 c2 d2 c3 d3

Leader Follower

Vertices partitioned into Leader  and Follower  vertices(VL) (VF)

Quantitative: mean-payoff a.k.a long-run average objective



Motivation
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(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Contribution to rational synthesis framework

a c d

e

b

Nonzero-sum game where both the program and its environment  

are rational agents, with their own goals.

Leader Follower

Have been studied for qualitative omega-regular objectives. 

Fisman, Kupferman, Lustig’ 10 and Kupferman, Perelli, Vardi’ 16



Cooperative vs Adversarial
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v1

v2

v3

v4

v5

v6

v7

v8

v0

Leader

In the adversarial setting, Follower chooses  Best-Response 
which minimises payoff of Leader

Mean-Payoff: (3, 10)

Follower Leader

(1, 10)

(4, 10)

(7, 10)

(5, 10)

(6, 10)

(3, 10)



Cooperative vs Adversarial
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v1

v2

v3

v4

v5

v6

v7

v8

v0

Leader

In the adversarial setting, the program (Leader) assumes less hypothesis on 
the behaviour of the user (Follower). 

Satisfies specification for all rational behaviour of the user (Follower).

Mean-Payoff: (3, 10)

Follower Leader

(1, 10)

(4, 10)

(7, 10)

(5, 10)

(6, 10)

(3, 10)



Strategies

Leader strategies: Given a finite path ending in a Leader 
vertex, the choice of the successor vertex. 

 :  

Similarly, Follower strategies: … 

 :  

Choosing a strategy for Leader and a strategy for Follower 
leads to a unique infinite path in the game graph, called the 
outcome of the two strategies. 

Memoryless strategies: 

 :  

 : 

σ0 V*VL ⟶ V

σ1 V*VF ⟶ V

σ0 VL ⟶ V

σ1 VF ⟶ V
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Adversarial Stackelberg Value ( )ASV
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 is the largest mean-payoff value Leader can obtain 
when Follower plays an adversarial best response.
ASV

, ASV(σ0)(v) = inf
σ1 ∈ BR(σ0)

Mean-PayoffL [Outcome(σ0 σ1)]

 ASV(v) = sup
σ0

ASV(σ0)(v)

( Filiot, Gentilini and Raskin - ICALP 2020 )

 : Leader Strategyσ0  : Follower Strategyσ1



9

v1

v2

v3

v4

v5

v6

v7

v8

v0

Leader

ASV = 3

(1, 10)

(4, 10)

(7, 10)

(5, 10)

(6, 10)

(3, 10)

, ASV(σ0)(v) = inf
σ1 ∈ BR(σ0)

Mean-Payoff [Outcome(σ0 σ1)]

 ASV(v) = sup
σ0

ASV(σ0)(v)

Adversarial Stackelberg Value ( )ASV



Best Responses May Not Exist
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(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Leader strategy: If , then akb (ckde)ω

a c d

e 

b

Follower strategy: If , then  

If , then  

If , then the vertex  is never reached.

a1000b (c1000de)ω

a100000b (c100000de)ω

a∞b v1



Epsilon-Best Responses Always Exist

11

(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Leader strategy: If , then akb (ckde)ω

a c d

e

b

Follower strategy: For , play  

For , play 

ϵ = 0.1 a1000b

ϵ = 0.001 a100000b



Best Responses May Not Exist
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(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Leader strategy: If , then akb (ckde)ω

a c d

e 

b

, ASV(σ0)(v) = inf
σ1 ∈ BR(σ0)

Mean-PayoffL [Outcome(σ0 σ1)]

 ASV(v) = sup
σ0

ASV(σ0)(v)

This set may be empty
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(0, 0) (0, 10)

v1 v2v0

(0, 10) (0, 5)

(0, 5)

Leader strategy: If , then akb (ckde)ω

a c d

e 

b

 ASV(v) = sup
σ0

ASV(σ0)(v)

, ASV(σ0)(v) = sup
ϵ > 0

inf
σ1 ∈ BRϵ(σ0)

Mean-PayoffL [Outcome(σ0 σ1)]

Epsilon-Best Responses Always Exist

An -best response of Follower to a Leader strategy is one which is 
at most  worse than every other  response of Follower.

ϵ
ϵ



 May Not Be AchievableASV
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Follower must be given mean-payoff > 1  
else he will play v0 → v1

ASV(v0) = 1

v2

(1, 1)

(1, 1)
v0

(0, 1)

v1

(0, 1)

(0, 2)

No strategy for Leader to get a mean-payoff of 1 for herself.



Threshold Problem:  
Is  > c for some threshold c?ASV



Threshold problem and witness
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A path  is a witness for  > c if  

(i) mean-Payoff of  is (c’, d), where c’ > c and  

(ii) …

π ASV

π

v2

(1, 1)

(1, 1)
v0

(0, 1)

v1

(0, 1)

(0, 2)



Threshold problem and witness
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A path  is a witness for  > c if  

(i) mean-Payoff of  is (c’, d), where c’ > c and  

(ii) and  does not cross a c, d -bad vertex.

π ASV

π

π ( )

v2

(1, 1)

(1, 1)
v0

(0, 1)

v1

(0, 1)

(0, 2)



Threshold problem and witness
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A path  is a witness for  > c if  

(i) mean-Payoff of  is (c’, d), where c’ > c and  

(ii) and  does not cross a c, d -bad vertex.

π ASV

π

π ( )

v2

(1, 1)

(1, 1)
v0

(0, 1)

v1

(0, 1)

(0, 2)

A vertex  is c, d -bad if (c, d)  v ( ) ∈ Λ(v)

(c, d) ∈ ℝ2 ∣ From vertex , Follower can ensure that Leader’s 
payoff  c and Follower’s payoff  d

v
⩽ ⩾{Λ(v) = {



Threshold problem and witness
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A path  is a witness for (v) > c if  

(i) mean-Payoff of  is (c’, d), where c’ > c and  

(ii) and  does not cross a c, d -bad vertex.

π ASV

π

π ( )

A vertex  is c, d -bad if (c, d)  v ( ) ∈ Λ(v)

(c, d) ∈ ℝ2 ∣ From vertex , Follower can ensure that Leader’s 
payoff  c and Follower’s payoff  d

v
⩽ ⩾{Λ(v) = {

Theorem: ASV(v) > c if and only if there exists a 

witness for ASV(v) > c.



Threshold problem and witness
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Theorem: ASV(v) > c if and only if there exists a 

witness for ASV(v) > c.

If (v) > c, we can find a regular witness of the form ASV
π1 ⋅ (l[α.k]

1 ⋅ π2 ⋅ l[β.k]
2 ⋅ π3)ω

u ⋅ vω

v2v1v
π1

π2

π3

l1 l2

 and  are simple cycles,  

 and  are finite acyclic plays 

l1 l2

π1, π2 π3



Threshold problem: NP membership
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Theorem: ASV(v) > c if and only if there exists a 

witness for ASV(v) > c.

If (v) > c, we can find a regular witness of the form ASV
π1 ⋅ (l[α.k]

1 ⋅ π2 ⋅ l[β.k]
2 ⋅ π3)ω

Leads to an NP-membership for the threshold problem.

A path  is a witness for (v) > c if  

(i) mean-Payoff of  is (c’, d), where c’ > c and  

(ii) and  does not cross a c, d -bad vertex.

π ASV

π

π ( )

(c, d) ∈ ℝ2 ∣ From vertex , Follower can ensure that Leader’s 
payoff  c and Follower’s payoff  d

v
⩽ ⩾{Λ(v) = {
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, ASV(σ0)(v) = inf
σ1 ∈ BR(σ0)

Mean-Payoff [Outcome(σ0 σ1)]

ASV𝖬𝖫(v) = sup
σ0 ∈ Σ𝖬𝖫

0

ASV(σ0)(v)

Adversarial Stackelberg Value for memoryless strategies ( )ASV𝖬𝖫

Deciding if  is NP-complete.ASV𝖬𝖫(v) > c

Memoryless strategies: 

 :  

 :  

σ0 VL ⟶ V

σ1 VF ⟶ V



Computing the ASV



Computing the  : Using FO-Theory over Reals with AdditionASV
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ASV(v) = sup{c |There is a -witness π for ASV(v) > c}

ρ(c) = ∃x, y : x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y)

Shows that there exist plays with 
mean-payoff (x, y) in the SCC . 

(Chatterjee et al. ’10)

S

Shows that the play does not 
cross a (c, y)- bad vertex in . 

(Brenguier, Raskin ’15)

S

 and 

       ends in .

= max
S∈SCC

sup{c |There is a -witness π for ASV(v) > c

π S}

Uses the notion of a witness



Computing the  : Using FO-Theory over Reals with AdditionASV
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ASV(v) = sup{c |There is a -witness π for ASV(v) > c}

ρS(c) = ∃x, y : x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y)

Shows that there exist plays with 
mean-payoff (x, y).

Shows that the play does not 
cross a (c, y)- bad vertex.

We can also express  as a set of linear programs. 

In the linear program, we maximise c. (Gives an EXPTime algorithm.)

ρS(c)

 and 

                     ends in .

= max
S∈SCC

sup{c |There is a -witness π for ASV(v) > c

π S}



Fragility of ASV



Robustness: ASV under perturbation of weights
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v1

v2

v3

v4

v5

v6

v0

Leader

In the adversarial setting, Follower chooses  Best-Response 
which minimises payoff of Leader

Mean-Payoff: (10, 10)

Follower Leader

(8, 9)

(4, 5)

(0, 9)

(10,10)

ASV = 10



Robustness: ASV under perturbation of weights
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v1

v2

v3

v4

v5

v6

v0

Leader

In the adversarial setting, Follower chooses  Best-Response 
which minimises payoff of Leader

Mean-Payoff: (10, 10)

Follower Leader

(8, 9)

(4, 5)

(0, 9)

(10,10)

ASV ( ) = 10G v0 → v4

(0,9.55)

(10,9.45)

ASV ( ) = 0H v0 → v4

δ = 0.6
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v1

v2

v3

v4

v5

v6

v0

Leader

Follower Leader

(8, 9)

(4, 5)

(0,9)

(10,10)

Robustness against sub-optimal responses

ASV( ) =10 

ASV ( ) =  0

v0 → v4
ϵ v0 → v4

Sub-optimality: ϵ = 1.2
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v1

v2

v3

v4

v5

v6

v0

Leader

Follower Leader

(8, 9)

(4, 5)

(0,9)

(10,10)

Robustness in zero-sum games

ASV( ) =10 

ASV ( ) =  0

v0 − − > v4

ϵ v0 − − > v4

Sub-optimality: ϵ = 1.2

Strategy in zero-sum games are robust against perturbations and 

-best responses of Follower.ϵ



Robustness against perturbation
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Theorem: ∀H ∀σ0 ∈ G±δ : 𝖠𝖲𝖵H(σ0)(v) > 𝖠𝖲𝖵2δ
G (σ0)(v) − δ

Robustness against sub-optimal responses ( ) implies  

robustness against perturbation of .

𝖠𝖲𝖵2δ
G

δ

 ASVϵ(v) = sup
σ0

ASVϵ(σ0)(v)

, ASVϵ(σ0)(v) = inf
σ1 ∈ BRϵ(σ0)

Mean-PayoffL [Outcome(σ0 σ1)]

We suggest the solution concept  instead of .𝖠𝖲𝖵ϵ 𝖠𝖲𝖵



Combined robustness of 𝖠𝖲𝖵ϵ
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∀H ∈ G±δ : 𝖠𝖲𝖵ϵ
H(v) > 𝖠𝖲𝖵2δ+ϵ

G (v) − δ

Combined robustness against perturbation of , and 

sub-optimal response of Player 1.

δ

While adversarial Stackelberg value (ASV) is fragile against  

perturbation and suboptimal responses of Player 1, the 

 is robust against both.𝖠𝖲𝖵ϵ



Combined robustness of 𝖠𝖲𝖵ϵ
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∀H ∈ G±δ : 𝖠𝖲𝖵ϵ
H(v) > 𝖠𝖲𝖵2δ+ϵ

G (v) − δ

Combined robustness against perturbation of , and 

sub-optimal response of Player 1.

δ

While adversarial Stackelberg value (ASV) is fragile against  

perturbation and suboptimal responses of Player 1, the 

 is robust against both.𝖠𝖲𝖵ϵ

 is achievable unlike .𝖠𝖲𝖵ϵ 𝖠𝖲𝖵

Given a threshold , we can compute in EXPTime 

the largest  such that .

c

ϵ 𝖠𝖲𝖵ϵ > c


