™ Microsoft

Machine Learning with 2KB RAM

Rahul Sharma
Joint work with Vivek Seshadri, Harsha Vardhan Simhadri, Ajay Manchepalli
RF: Shikhar Jaiswal, Aayan Kumar, Nikhil Pratap Ghanathe, Sridhar Gopinath



0T is everywhere




Current loT approach: shortcomings
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Applications of ML on device

FarmBeats GesturePod
SenSys’18 UIST’19



https://dl.acm.org/doi/abs/10.1145/3274783.3274853
https://shishirpatil.github.io/gesturepod/GesturePodPaper.pdf

loT devices have limited resources

* Arduino Uno
* Read only memory: Flash 32 KB

e Read/write memory: RAM 2KB
* No floating-point units

Arduino Uno

* However, real world ML algorithms are hungry for resources
* Most require megabytes or gigabytes of memory



Recent advances in ML

Recent Models have demonstrated high accuracy on real world problems
using thousands (instead of millions/billions) of parameters

Decision Trees Nearest Neighbors Recurrent Neural Networks
Bonsai ProtoNN FastGRNN, RNNPool
ICML 2017 ICML 2017 NeurlPS 2018, 2020

These “Edge ML” algorithms are targeted for loT devices



* Read only memory: Flash 32 KB
* Read/write memory: RAM 2 KB
* No floating-point units

Arduino Uno
Overflow memory

Accurate ML models that

use few parameters No floating-point units

No OS, Virtual memory
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Our approach

let X = input() in
let W1, W2, B = file() in
W1*W2*X+B

Input ML Model

RAM: 2 KB
FLASH: 32KB

Device Constraints

I

SeeDot
Compiler

. |

Generated C code

int8 W1 =93; int8 W2 =102;
int8 B = 66; int1l6 tmpl;

int8 main (int8 X) {
tmpl=W2 *X;
tmpl=W1* (tmpl << 8);
tmpl =tmpl + (B << 2);
return (tmp1l >> 7);

}



No Floating-point Low Flash Low RAM

Fixed-point representation: 3.23 = 25 / 23 (error = 0.105, scale=3)

-0-8-bit Fixed Point -0-16-bit Fixed Point
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No Floating-point Low Flash Low RAM

* 16-bit homogenous code — does not fit on Flash

* 8-bit homogenous code — fits on Flash, but accuracy suffers
* In some cases, accuracy equivalent to a random classifier
* Models with less parameters need more bits for each parameter

* Heterogeneous bitwidths: some variables 16-bits, others 8-bits
* N-variables lead to 2" choices
e Use a heuristic to keep minimal number of variables in 16-bits

13



No Floating-point Low Flash Low RAM

* Heterogenous bitwidths

a, d b, C 93% YES
a,d b C 91% YES
a,d, b, c - 55% YES

14
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No Floating-point Low Flash Low RAM

 Allocation techniques used by present day compilers do not work
* Dynamic memory allocation also fails

OKB 1KB 2KB 3KB

A = malloc(...

A = MatMul(W2, X, ...);
B = malloc(...)

B = MatMul(W1, A, ...);
free(A)

C = malloc(...)

C = MatAdd(B, ...);
free(B)

D = malloc(...) RAM Limit
D = MatMul(C, ...);

free(C)

return D;

4KB




No Floating-point Low Flash N VALY

* Dynamic allocation: fragmentation

* Sizes of variables and their live ranges known at compile time

* SeeDot simulates dynamic memory allocation, at compile time
* Variable to address mapping computed at compile time

» SeeDot injects defragmentation code in the compiler output

16



Accuracy Drop (%)

FastGRNN on Uno (PLDI’19, OOPSLA’20)
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Average Prediction Latency (us)
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Results on FPGAs (FPL'21)

 Evaluated on Xilinx Arty-board (similar power consumption to Uno)
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Results with RNNPool (NeurlPS 20 spotlight)

* Using tiny edge devices for room occupancy

* RNNPool+MobileNets for Face Detection problem
* Provides state-of-the-art accuracy with 150K+ parameters

e ARM Cortex M4 class device
e 256KB RAM and 512KB Flash

 Comparison with floating-point (default compilation):
* RAM Usage: 32x reduction from 7MB to 225KB
* Flash Usage: 3.3x reduction from 1.3MB to 405KB
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Demo: 1 min video



https://www.youtube.com/watch?v=IbPYcyNpfhs&feature=emb_logo

Conclusion

e SeeDot: given a high-level device-agnostic ML algorithm and
device constraints, generates code to run on the device

v'First unified framework for both microcontrollers and FPGAs
v First evaluation of RNNs on Arduino Uno with 2KB of RAM
v'First demonstration of face detection on ARM Cortex M4



Machine Learning

[PLDI'19] [OOPSLA’20] [FPL’21]

[Medium blogpost]

loT

Devices Arduino Low-end FPGA
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BT Microsoft


https://www.microsoft.com/en-us/research/uploads/prod/2018/10/pldi19-SeeDot.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/oopsla20main-p230-p-aba27a6-48263M-final.pdf
https://towardsdatascience.com/enabling-accurate-computer-vision-on-tiny-microcontrollers-with-rnnpool-operator-and-seedot-d6944930dcf9
http://arxiv.org/abs/2107.03653
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