

Machine Learning with 2KB RAM

Rahul Sharma

Joint work with Vivek Seshadri, Harsha Vardhan Simhadri, Ajay Manchepalli

RF: Shikhar Jaiswal, Aayan Kumar, Nikhil Pratap Ghanathe, Sridhar Gopinath

IoT is everywhere

Current IoT approach: shortcomings

Milli-watt scale microcontroller

Data Privacy Issues

Arduino Uno

Run ML inference on the IoT device itself

Applications of ML on device

IoT devices have limited resources

Arduino Uno

- Arduino Uno
 - Read only memory:
 - Read/write memory:
 - No floating-point units

- Flash 32 KB
- RAM 2 KB

- However, real world ML algorithms are hungry for resources
 - Most require **megabytes** or **gigabytes** of memory

Recent advances in ML

Recent Models have demonstrated high accuracy on real world problems using thousands (instead of millions/billions) of parameters

Bonsai ICML 2017

Nearest Neighbors

ProtoNN ICML 2017

Recurrent Neural Networks

FastGRNN, RNNPool NeurIPS 2018, 2020

These "Edge ML" algorithms are targeted for IoT devices

Arduino Uno

Accurate ML models that use few parameters

Edge ML

Read only memory:

• Read/write memory:

No floating-point units

Flash 32 KB

RAM 2 KB

Overflow memory

No floating-point units

No OS, Virtual memory

Machine Learning

Machine Learning

Our approach

Fixed-point representation: $3.23 \approx 25 / 2^3$ (error = 0.105, scale=3)

• 16-bit homogenous code → does not fit on Flash

- 8-bit homogenous code → fits on Flash, but accuracy suffers
 - In some cases, accuracy equivalent to a random classifier
 - Models with less parameters need more bits for each parameter
- Heterogeneous bitwidths: some variables 16-bits, others 8-bits
 - N-variables lead to 2^N choices
 - Use a heuristic to keep minimal number of variables in 16-bits

Low Flash

Heterogenous bitwidths

Variables in 8 bits	Variables in 16 bits	Accuracy	Fits within Flash
_	a, b, c, d	97%	NO
а	b, c, d	96%	NO
b	a, c, d	92%	NO
С	a, b, d	67%	NO
d	a, b, c	94%	NO
а	b, c, d	96%	NO
a, d	b, c	93%	YES
a, d, b	С	91%	YES
a, d, b, c	_	55%	YES

Low Flash

- Low RAM
- Allocation techniques used by present day compilers do not work
- Dynamic memory allocation also fails

```
A = malloc(...)
A = MatMul(W2, X, ...);
B = malloc(...)
B = MatMul(W1, A, ...);
free(A)
C = malloc(...)
C = MatAdd(B, ...);
free(B)
D = malloc(...)
D = MatMul(C, ...);
free(C)
return D;
```


• Dynamic allocation: fragmentation

• Sizes of variables and their live ranges known at compile time

- SeeDot simulates dynamic memory allocation, at compile time
 - Variable to address mapping computed at compile time

• SeeDot injects defragmentation code in the compiler output

FastGRNN on Uno (PLDI'19, OOPSLA'20)

Results on FPGAs (FPL'21)

Evaluated on Xilinx Arty-board (similar power consumption to Uno)

Results with RNNPool (NeurIPS'20 spotlight)

- Using tiny edge devices for room occupancy
- RNNPool+MobileNets for Face Detection problem
 - Provides state-of-the-art accuracy with 150K+ parameters
- ARM Cortex M4 class device
 - 256KB RAM and 512KB Flash

- Comparison with floating-point (default compilation):
 - RAM Usage: 32x reduction from 7MB to 225KB
 - Flash Usage: 3.3x reduction from 1.3MB to 405KB

Demo: 1 min video

Conclusion

 SeeDot: given a high-level device-agnostic ML algorithm and device constraints, generates code to run on the device

- ✓ First unified framework for both microcontrollers and FPGAs
- ✓ First evaluation of RNNs on Arduino Uno with 2KB of RAM
- ✓ First demonstration of face detection on ARM Cortex M4

Machine Learning

[PLDI'19] [OOPSLA'20]

[FPL'21]

SeeDot

[Medium blogpost]

