™ Microsoft

Machine Learning with 2KB RAM

Rahul Sharma
Joint work with Vivek Seshadri, Harsha Vardhan Simhadri, Ajay Manchepalli
RF: Shikhar Jaiswal, Aayan Kumar, Nikhil Pratap Ghanathe, Sridhar Gopinath

0T is everywhere

Current loT approach: shortcomings

Data
—

. |
L*-_

Prediction

Milli-watt scale microcontroller

High Latency I;l Energy Efficiency G Data Privacy Issues

a;oo thIhQMN-ls,l

DIGITAL (PWM~) rs " |

% Run ML inference on
| the |oT device itself

Arduino Uno

Applications of ML on device

FarmBeats GesturePod
SenSys’18 UIST’19

https://dl.acm.org/doi/abs/10.1145/3274783.3274853
https://shishirpatil.github.io/gesturepod/GesturePodPaper.pdf

loT devices have limited resources

* Arduino Uno
* Read only memory: Flash 32 KB

e Read/write memory: RAM 2KB
* No floating-point units

Arduino Uno

* However, real world ML algorithms are hungry for resources
* Most require megabytes or gigabytes of memory

Recent advances in ML

Recent Models have demonstrated high accuracy on real world problems
using thousands (instead of millions/billions) of parameters

Decision Trees Nearest Neighbors Recurrent Neural Networks
Bonsai ProtoNN FastGRNN, RNNPool
ICML 2017 ICML 2017 NeurlPS 2018, 2020

These “Edge ML” algorithms are targeted for loT devices

* Read only memory: Flash 32 KB
* Read/write memory: RAM 2 KB
* No floating-point units

Arduino Uno
Overflow memory

Accurate ML models that

use few parameters No floating-point units

No OS, Virtual memory

Machine Learning

nl.\) ONNX [d rytbrcH

Intel x86 nVIDIA GPU

Machine Learning

loT

Devices Arduino Low-end FPGA

11

Our approach

let X = input() in
let W1, W2, B = file() in
W1*W2*X+B

Input ML Model

RAM: 2 KB
FLASH: 32KB

Device Constraints

I

SeeDot
Compiler

. |

Generated C code

int8 W1 =93; int8 W2 =102;
int8 B = 66; int1l6 tmpl;

int8 main (int8 X) {
tmpl=W2 *X;
tmpl=W1* (tmpl << 8);
tmpl =tmpl + (B << 2);
return (tmp1l >> 7);

}

No Floating-point Low Flash Low RAM

Fixed-point representation: 3.23 = 25 / 23 (error = 0.105, scale=3)

-0-8-bit Fixed Point -0-16-bit Fixed Point

10
T
O
IE 0.1 Optimal Scale
O for 16-bit
£ 00 o
O
& 0.001
< Optimal Scale
0.0001 for 8-bit
0.00001

o 1 2 3 4 5 66 7 8 9 10 M 12 13 14
Scale

12

No Floating-point Low Flash Low RAM

* 16-bit homogenous code — does not fit on Flash

* 8-bit homogenous code — fits on Flash, but accuracy suffers
* In some cases, accuracy equivalent to a random classifier
* Models with less parameters need more bits for each parameter

* Heterogeneous bitwidths: some variables 16-bits, others 8-bits
* N-variables lead to 2" choices
e Use a heuristic to keep minimal number of variables in 16-bits

13

No Floating-point Low Flash Low RAM

* Heterogenous bitwidths

a, d b, C 93% YES
a,d b C 91% YES
a,d, b, c - 55% YES

14

15

No Floating-point Low Flash Low RAM

 Allocation techniques used by present day compilers do not work
* Dynamic memory allocation also fails

OKB 1KB 2KB 3KB

A = malloc(...

A = MatMul(W2, X, ...);
B = malloc(...)

B = MatMul(W1, A, ...);
free(A)

C = malloc(...)

C = MatAdd(B, ...);
free(B)

D = malloc(...) RAM Limit
D = MatMul(C, ...);

free(C)

return D;

4KB

No Floating-point Low Flash N VALY

* Dynamic allocation: fragmentation

* Sizes of variables and their live ranges known at compile time

* SeeDot simulates dynamic memory allocation, at compile time
* Variable to address mapping computed at compile time

» SeeDot injects defragmentation code in the compiler output

16

Accuracy Drop (%)

FastGRNN on Uno (PLDI’19, OOPSLA’20)

-10
00
10
20
30
40
50
60
70
80
90

100

10

o © O g geoeo0e 0O e o

O Homogenous 16-bit code

¢ @ Homogenous 8-bit code
o @ Heterogenous SeeDot code
O
e © °
15 20 25 30 35 40

Model Size (KB)

Average Prediction Latency (us)

18

Results on FPGAs (FPL'21)

 Evaluated on Xilinx Arty-board (similar power consumption to Uno)

65536
16384
4096
1024
256
64

16

4

1

B Microcontroller

M Vanilla FPGA m SeeDOT

Bonsai

ProtoNN

19

Results with RNNPool (NeurlPS 20 spotlight)

* Using tiny edge devices for room occupancy

* RNNPool+MobileNets for Face Detection problem
* Provides state-of-the-art accuracy with 150K+ parameters

e ARM Cortex M4 class device
e 256KB RAM and 512KB Flash

 Comparison with floating-point (default compilation):
* RAM Usage: 32x reduction from 7MB to 225KB
* Flash Usage: 3.3x reduction from 1.3MB to 405KB

20

Demo: 1 min video

https://www.youtube.com/watch?v=IbPYcyNpfhs&feature=emb_logo

Conclusion

e SeeDot: given a high-level device-agnostic ML algorithm and
device constraints, generates code to run on the device

v'First unified framework for both microcontrollers and FPGAs
v First evaluation of RNNs on Arduino Uno with 2KB of RAM
v'First demonstration of face detection on ARM Cortex M4

Machine Learning

[PLDI'19] [OOPSLA’20] [FPL’21]

[Medium blogpost]

loT

Devices Arduino Low-end FPGA

22

BT Microsoft

https://www.microsoft.com/en-us/research/uploads/prod/2018/10/pldi19-SeeDot.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/10/oopsla20main-p230-p-aba27a6-48263M-final.pdf
https://towardsdatascience.com/enabling-accurate-computer-vision-on-tiny-microcontrollers-with-rnnpool-operator-and-seedot-d6944930dcf9
http://arxiv.org/abs/2107.03653

	Machine Learning with 2KB RAM
	IoT is everywhere
	Current IoT approach: shortcomings
	Run ML inference on the IoT device itself
	Applications of ML on device
	IoT devices have limited resources
	Recent advances in ML
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Our approach
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	FastGRNN on Uno (PLDI’19, OOPSLA’20)
	Results on FPGAs (FPL’21)
	Results with RNNPool (NeurIPS’20 spotlight)
	Slide Number 20
	Conclusion
	Slide Number 22

