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Asynchronous System in Detail
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Unordered Channel Abstraction
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VASS-Control Flow Graph(VCFG) Construction
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Feasible/Infeasible Paths in VCFG
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Data Flow Analysis
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Data Flow Analysis of VCFG
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Problem Statement

Given an asynchronous system VCFG, and an arbitrary given finite or
Infinite abstract domain £, an initial value [, € L, initial node v,, and a
target node v, compute the precise join-over-all-feasible-paths(JOFP) for v,
where JOFP is defined as:

JOFP(v) = U (ptf(p)(Lo))

= Vg O*,
p is feasible



Contributions

* A sound and precise Backward DFAS Algorithm, which admits a class
of infinite abstract domains
* Computes precise JOFP

* A sound Forward DFAS Algorithm, admitting a broader class of
infinite abstract domains
* In general, computes conservative over-approximation of JOFP

* Both algorithms use unordered channel abstraction

* In the presentation, we discuss Backward DFAS as it is conceptually
more interesting.
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Backward DFAS Algorithm
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Implementation and
Experimental Evaluation



Implementation

* implemented both Backward and Forward DFAS algorithmes.

e used 14 benchmarks; Spin, P, JPF-actor models, Go Programs
* Implementation assumes an XML representation of the program

* highly parallel prototype, to handle the complexity of the algorithm



Experimental setup
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Implementation

 CP is an infinite abstract domain; Forward DFAS instantiated with CP
 analyzes all instructions with “best” precision

* Linear Constant Propagation(LCP) is a less precise variant of CP;
Backward DFAS instantiated with the LCP analysis

e LCP is an infinite abstract domain. However, finite-height transfer function
lattice unlike CP

* Baselines:
 Join-Over-all-Paths (JOP): ignores all queue operations, CP analysis
e JOFP using Copy Constant Propagation (CCP):

* CCPis afinite abstract domain, and is less precise than LCP
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Results Summary

e Uses Identified as constants:

Constantsidentified by Forward DFAS 63
Constantsidentified by Backward DFAS 49
Constantsidentified by CP JOP (Baseline) 22
Constants identified by CCP JOFP (Baseline) 39

* Both outperform the baselines
 Forward DFAS finds 2.9x more constantsthan JOP, 62% more than CCP
e Backward DFAS finds 2.2x more constants thanJOP, 26% more than CCP

* In summary Forward DFAS appears more precise, but Backward DFAS
infers more constants in 2 benchmarks. Thus, they are incomparable.
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Results Summary

* Use the inferred constants to verify assertions present in the benchmark
models

e Assertions verified:

Total Assertions _

Assertions verified by Forward DFAS 22
Assertions verified by Backward DFAS 20
Assertions verified by CP JOP 4

Assertions verified by CCP JOFP 14

e Both Forward and Backward DFAS verify almost 5 times the assertions
verified by JOP

* Forward DFAS verifies 57% more assertions than CCP, Backward DFAS
verifies 43% more
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Execution Time

* Execution Time slowdown with respect to the Naive baseline, i.e.,

JOP:
Approach Execution Time Range
Forward DFAS 0.64 1.2s — 18s (did not terminate on 2 benchmarks)
Backward DFAS 0.09 1s — 284s
CCP JOFP Baseline 0.11 1s —226s

JOP is always

Backward DFAS seems
CCPis

comparable with
Backward DFAS

slower; demand-driven
nature results in
cumulative reporting of
time




Future Work

* To extend Backward DFAS algorithm to admit any infinite domain, and
support widening

* Improving the scalability of Forward DFAS; explore approaches like
Partial Order Reduction

* Handling parameters in function calls

* To run the algorithm on real world asynchronous programs.
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Conclusion

* Proposed two approaches for interprocedural data flow analysis of
asynchronous systems using infinite abstract domains,

e Backward DFAS that computes the precise JOFP solution, admits a restricted
class of infinite abstract domains

A more general Forward DFAS algorithm, that gives a sound solution. It over-
approximates the JOFP in general.

 We have implemented the interprocedural algorithms as a tool

* The proposed algorithm performs significantly better than two
different baseline approaches on 14 benchmarks



