
Data Flow Analysis of
Asynchronous Systems using

Infinite Abstract Domains

Komondoor V Raghavan, Indian Institute of Science, Bengaluru

with

Snigdha Athaiya*, Siemens Technology, India

K Narayan Kumar, Chennai Mathematical Institute, Chennai

1
* Work partly done while with Indian Institute of Science

Distributed systems

P1

P3P2

P4

Multiple
Processes

Parallel and
independent

execution

Processes can
communicate

with each other

2

Asynchronous System in Detail

c1! m1

c1! m2
x = x + 1

c1?m1

Process 1 Process 2

Receive of
message m1 from

the head of
channel c1

• c1 is a
channel

• m1, m2 are

messages

Process 1
accesses the

variable x

Sending of
message m1 to

channel c1

3

Unordered Channel Abstraction

c1! m1

c1! m2

x = x + 1 c1?m1

Process 1 Process 2

〈1,0 〉
x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

Queues make
most

properties
undecidable

Channels
abstracted

using counters

Each
(chan,msg)
associated

with a counter

Send
operation

increments the
counter by 1

Receive
operation

decrements
the counter by

1
4

Send
message

m1

Receive
message

m1

Do not send
or receive

message m2

Semantics

x= 0, [0,0]

5

2 progresses

Infeasible state〈1,0 〉
x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

Negative values for
abstracted channels
contents represents

infeasible states

x= 0, [-1,0]

Semantics

6

x= 1, [1,1]

2 progresses

feasible state !
〈1,0 〉

x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

x= 1, [0,1]

Some infeasible
traces included

due to
abstraction

But this is
acceptable in

literature

abstraction of
concrete config

<x= 1, c1: [m2, m1]>

VASS-Control Flow Graph(VCFG) Construction

Asynchronous System with
unordered channels VCFG

id, 〈1,0〉

id, 〈1,0〉

id, 〈0,1〉

id, 〈0,1〉

id, 〈−1,0〉

id, 〈−1,0〉

x=x+1,

〈0,0〉

〈1,0 〉

x =
x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

x=x+1,

〈0,0〉

(action,
vector) for
each edge

7

Feasible/Infeasible Paths in VCFG

VCFG

id, 〈1,0〉

id, 〈1,0〉

id, 〈0,1〉

id, 〈0,1〉

id, 〈−1,0〉

id, 〈−1,0〉

x=x+1,
〈0,0〉

x=x+1,
〈0,0〉

8

[0,0]

[1,0]

[0,0]

All abstract channel contents are
non-negative for all prefixes

[-1,0]

Paths with
negative abstract
channel contents
for any prefix are

infeasible

Data Flow Analysis

x = 𝑙1,y = 𝑙2 Takes as input a
control flow
graph(CFG)

Abstracts the
value of variables
using a complete

lattice ℒ

Transforms the
initial values using

a path transfer
function

⊔

Joins values due
to different paths
at merge points

x,y = f1 𝑙1, 𝑙2

Also termed Join-
Over-all-Paths

(JOP)

x,y = f2(𝑙1, 𝑙2)

9

Each edge, and
path associated

with a ℒ → ℒ
transfer function

fa

fb

fc

f𝑑

f1 = f𝑏 ∘ f𝑎 f2 = f𝑑 ∘ f𝑐

Data Flow Analysis of VCFG

x = 𝑙1,y = 𝑙2

⊔

10

Some paths may
be infeasible in

the VCFG

Require values
only due to

feasible paths

Need to compute
Join-Over-all-
Feasible-Paths

(JOFP)

x,y = f1 𝑙1, 𝑙2 x,y = f2(𝑙1, 𝑙2)

Problem Statement

Given an asynchronous system VCFG, and an arbitrary given finite or

infinite abstract domain ℒ , an initial value 𝑙0 ∈ ℒ, initial node 𝑣0, and a

target node 𝑣, compute the precise join-over-all-feasible-paths(JOFP) for 𝑣,

where JOFP is defined as:

JOFP(𝑣) = ⨆ (𝑝𝑡𝑓(𝑝) 𝑙0)

11

𝑝 = 𝑣0 →∗ 𝑣,
𝑝 is feasible

Contributions

• A sound and precise Backward DFAS Algorithm, which admits a class
of infinite abstract domains
• Computes precise JOFP

• A sound Forward DFAS Algorithm, admitting a broader class of
infinite abstract domains
• In general, computes conservative over-approximation of JOFP

• Both algorithms use unordered channel abstraction

• In the presentation, we discuss Backward DFAS as it is conceptually
more interesting.

12

Illustrative Example

13

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

14

Four
Variables

Single
<channel,
message>

Receives
message in a

loop

Loop sends msg
and updates

variables

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which

variables are

constants at k ?

15

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which

variables are

constants at k ?

16

Path 1
Variable values : t = 0, x=0, y=0, z=0

channel contents :[−2]
Infeasible State

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which

variables are

constants at k ?

17

Path 2
Variable values : t = 1, x=2, y=1, z=1

channel contents :[0]

1. t = 1, x=2, y=1, z=1

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which

variables are

constants at k ?

18

Path 3
Variable values : t = 1, x=3, y=2, z=1

channel contents :[1]

1. t = 1, x=2, y=1, z=1
2. t = 1, x=3, y=2, z=1

t and z are

constants, x and

y are not

constants

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

19

t and z are

constants, x and

y are not

constants
Arbitrarily high

value of the

counter;

infinite possible

configurations

Exploring all paths or all counter configurations to detect
constants is infeasible

Backward DFAS Algorithm

20

Demand of a path

〈1〉

〈−1〉 〈−1〉

〈−1〉

[𝟐]

Demand of a path is the minimum channel contents at the
beginning of the path, such that, the ending value is >= 0

21

[𝟎]

[𝟎]

[𝟏]

[𝟐]

[𝟏]

No
change

Increase
in

demand

demand
decreases

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Path 𝒑 Demand of path 𝒑 Path Transfer Function of 𝒑

cdefgchijk 2 t’= z, x’= x+1, y’= x, z’= 1

(cdefg)2chijk 1 t’= 1, x’= x+2, y’= x+1, z’= 1

(cdefg)3chijk 0 t’= 1, x’= x+3, y’= x+2, z’= 1

(cdefg)4chijk 0 t’= 1, x’= x+4, y’= x+3, z’= 1

(cdefg)5chijk 0 t’= 1, x’= x+5, y’= x+4, z’= 1

(t’= 1, x’= x+3, y’= x+2, z’= 1)
⊔

(t’= 1,x’= x+4,y’= x+3,z’= 1)
=

(t’= 1,x’=⊤,y’= ⊤,z’= 1)

22

<=
demand

paths

The path
(cdefg)5chijk

is covered

LCP join
operation

t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Path From Worklist Path Extension Demand of a path Path Transfer Functions

chijk abchijk 2 t’= 0, x’= 0, y’= 0, z’= 0

cdefgchijk abcdefgchijk 1 t’= 0, x’= 1, y’= 0, z’= 1

(cdefg)2chijk ab(cdefg)2chijk 0 t’= 1, x’= 2, y’= 1, z’= 1

(cdefg)3chijk ab(cdefg)3chijk 0 t’= 1, x’= 3, y’= 2, z’= 1

(cdefg)4chijk ab(cdefg)4chijk 0 t’= 1, x’= 4, y’= 3, z’= 1

23

Implementation and
Experimental Evaluation

24

Implementation

• implemented both Backward and Forward DFAS algorithms.

• used 14 benchmarks; Spin, P, JPF-actor models, Go Programs
• Implementation assumes an XML representation of the program

• highly parallel prototype, to handle the complexity of the algorithm

25

Experimental setup

26

𝑛1

𝑛2

x := y + 1

reference to variable y is
a “use” at node 𝑛1

Objective is to find
whether the use of y is a

constant at 𝑛1

Nodes part of a VCFG

Constant Propagation
(CP) is the popular
abstract domain for
detecting constants

Implementation

• CP is an infinite abstract domain; Forward DFAS instantiated with CP
• analyzes all instructions with “best” precision

• Linear Constant Propagation(LCP) is a less precise variant of CP;
Backward DFAS instantiated with the LCP analysis
• LCP is an infinite abstract domain. However, finite-height transfer function

lattice unlike CP

• Baselines:

• Join-Over-all-Paths (JOP): ignores all queue operations, CP analysis

• JOFP using Copy Constant Propagation (CCP):
• CCP is a finite abstract domain, and is less precise than LCP

• Closest related work that computes JOFP admits only abstract finite domains
27

Results Summary

• Uses Identified as constants:

• Both outperform the baselines
• Forward DFAS finds 2.9x more constants than JOP, 62% more than CCP
• Backward DFAS finds 2.2x more constants than JOP, 26% more than CCP

• In summary Forward DFAS appears more precise, but Backward DFAS
infers more constants in 2 benchmarks. Thus, they are incomparable.

28

Total Number of Uses 189

Constants identified by Forward DFAS 63

Constants identified by Backward DFAS 49

Constants identified by CP JOP (Baseline) 22

Constants identified by CCP JOFP (Baseline) 39

Results Summary

• Use the inferred constants to verify assertions present in the benchmark
models

• Assertions verified:

• Both Forward and Backward DFAS verify almost 5 times the assertions
verified by JOP

• Forward DFAS verifies 57% more assertions than CCP, Backward DFAS
verifies 43% more

29

Total Assertions 42

Assertions verified by Forward DFAS 22

Assertions verified by Backward DFAS 20

Assertions verified by CP JOP 4

Assertions verified by CCP JOFP 14

Approach Geometric Mean Execution Time Range

Forward DFAS 0.64 1.2s – 18s (did not terminate on 2 benchmarks)

Backward DFAS 0.09 1s – 284s

CCP JOFP Baseline 0.11 1s – 226s

Execution Time

30

JOP is always
fast

Forward DFAS fast in
general, has scalability
issues in case of some

benchmarks

Backward DFAS seems
slower; demand-driven

nature results in
cumulative reporting of

time

CCP is
comparable with
Backward DFAS

• Execution Time slowdown with respect to the Naïve baseline, i.e.,
JOP:

Future Work

• To extend Backward DFAS algorithm to admit any infinite domain, and
support widening

• Improving the scalability of Forward DFAS; explore approaches like
Partial Order Reduction

• Handling parameters in function calls

• To run the algorithm on real world asynchronous programs.

31

Related Work

• Jhala, Ranjit, and Rupak Majumdar. "Interprocedural analysis of
asynchronous programs." ACM SIGPLAN Notices. Vol. 42. No. 1. ACM,
2007.

• Abdulla, Parosh Aziz, and Bengt Jonsson. "Verifying programs with
unreliable channels." information and computation 127.2 (1996): 91-
101.

• Bouajjani, Ahmed, and Michael Emmi. "Analysis of recursively parallel
programs." ACM Sigplan Notices. Vol. 47. No. 1. ACM, 2012.

32

All these approaches admit only finite abstract domains

Conclusion

• Proposed two approaches for interprocedural data flow analysis of
asynchronous systems using infinite abstract domains,
• Backward DFAS that computes the precise JOFP solution, admits a restricted

class of infinite abstract domains

• A more general Forward DFAS algorithm, that gives a sound solution. It over-
approximates the JOFP in general.

• We have implemented the interprocedural algorithms as a tool

• The proposed algorithm performs significantly better than two
different baseline approaches on 14 benchmarks

33

