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Distributed systems

P1

P3P2

P4

Multiple 
Processes

Parallel and 
independent 

execution

Processes can 
communicate 

with each other
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Asynchronous System in Detail

c1! m1

c1! m2
x = x + 1

c1?m1

Process 1 Process 2

Receive of 
message m1 from 

the head of 
channel c1

• c1 is a 
channel

• m1, m2 are 

messages

Process 1 
accesses the 

variable x

Sending of 
message m1 to 

channel c1
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Unordered Channel Abstraction

c1! m1

c1! m2

x = x + 1 c1?m1

Process 1 Process 2

〈1,0 〉
x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

Queues make 
most 

properties 
undecidable

Channels 
abstracted 

using counters

Each 
(chan,msg) 
associated 

with a counter

Send 
operation 

increments the 
counter by 1

Receive 
operation 

decrements 
the counter by 

1
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Send 
message 

m1

Receive 
message 

m1

Do not send 
or receive 

message m2



Semantics

x= 0, [0,0]
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2 progresses

Infeasible state〈1,0 〉
x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

Negative values for 
abstracted channels 
contents represents 

infeasible states

x= 0, [-1,0]



Semantics
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x= 1, [1,1]

2 progresses

feasible state !
〈1,0 〉

x = x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

x= 1, [0,1]

Some infeasible 
traces included 

due to 
abstraction

But this is 
acceptable in 

literature

abstraction of 
concrete config

<x= 1, c1: [m2, m1]>



VASS-Control Flow Graph(VCFG) Construction

Asynchronous System with 
unordered channels VCFG

id, 〈1,0〉

id, 〈1,0〉

id, 〈0,1〉

id, 〈0,1〉

id, 〈−1,0〉

id, 〈−1,0〉

x=x+1,

〈0,0〉

〈1,0 〉

x =
x + 1

Process 1 Process 2

〈−1,0 〉
〈0,1 〉

x=x+1,

〈0,0〉

(action, 
vector) for 
each edge
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Feasible/Infeasible Paths in VCFG

VCFG

id, 〈1,0〉

id, 〈1,0〉

id, 〈0,1〉

id, 〈0,1〉

id, 〈−1,0〉

id, 〈−1,0〉

x=x+1,
〈0,0〉

x=x+1,
〈0,0〉
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[0,0]

[1,0]

[0,0]

All abstract channel contents are 
non-negative for all prefixes

[-1,0]

Paths with 
negative abstract 
channel contents 
for any prefix are 

infeasible



Data Flow Analysis

x = 𝑙1,y = 𝑙2 Takes as input a 
control flow 
graph(CFG)

Abstracts the 
value of variables 
using a complete 

lattice ℒ

Transforms the 
initial values using 

a path transfer 
function

⊔

Joins values due 
to different paths 
at merge points

x,y = f1 𝑙1, 𝑙2

Also termed Join-
Over-all-Paths 

(JOP)

x,y = f2(𝑙1, 𝑙2)
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Each edge, and 
path associated 

with a ℒ → ℒ
transfer function

fa

fb

fc

f𝑑

f1 = f𝑏 ∘ f𝑎 f2 = f𝑑 ∘ f𝑐



Data Flow Analysis of VCFG

x = 𝑙1,y = 𝑙2

⊔
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Some paths may 
be infeasible in 

the VCFG

Require values 
only due to 

feasible paths

Need to compute 
Join-Over-all-
Feasible-Paths 

(JOFP)

x,y = f1 𝑙1, 𝑙2 x,y = f2(𝑙1, 𝑙2)



Problem Statement

Given an asynchronous system VCFG, and an arbitrary given finite or 

infinite abstract domain ℒ , an initial value 𝑙0 ∈ ℒ, initial node 𝑣0, and a 

target node 𝑣, compute the precise join-over-all-feasible-paths(JOFP) for 𝑣, 

where JOFP is defined as:

JOFP(𝑣)  =  ⨆ (𝑝𝑡𝑓(𝑝) 𝑙0 )
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𝑝 = 𝑣0 →∗ 𝑣,
𝑝 is feasible



Contributions

• A sound and precise Backward DFAS Algorithm, which admits a class 
of infinite abstract domains
• Computes precise JOFP

• A sound Forward DFAS Algorithm, admitting a broader class of 
infinite abstract domains
• In general, computes conservative over-approximation of JOFP

• Both algorithms use unordered channel abstraction

• In the presentation, we discuss Backward DFAS as it is conceptually 
more interesting. 
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Illustrative Example

13



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1
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Four 
Variables

Single 
<channel, 
message>

Receives 
message in a 

loop

Loop sends msg
and updates 

variables



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which 

variables are 

constants at k ?
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t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which 

variables are 

constants at k ?
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Path 1  
Variable values  : t = 0, x=0, y=0, z=0

channel contents :[−2]
Infeasible State



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which 

variables are 

constants at k ?
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Path 2  
Variable values  : t = 1, x=2, y=1, z=1

channel contents :[0]

1. t = 1, x=2, y=1, z=1



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Which 

variables are 

constants at k ?
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Path 3  
Variable values  : t = 1, x=3, y=2, z=1

channel contents :[1]

1. t = 1, x=2, y=1, z=1
2. t = 1, x=3, y=2, z=1

t and z are 

constants, x and 

y are not 

constants



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1
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t and z are 

constants, x and 

y are not 

constants
Arbitrarily high 

value of the 

counter;

infinite possible 

configurations

Exploring all paths or all counter configurations to detect 
constants is infeasible 



Backward DFAS Algorithm
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Demand of a path

〈1〉

〈−1〉 〈−1〉

〈−1〉

[𝟐]

Demand of a path is the minimum channel contents at the 
beginning of the path, such that, the ending value is >= 0 
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[𝟎]

[𝟎]

[𝟏]

[𝟐]

[𝟏]

No 
change

Increase
in

demand

demand 
decreases



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Path 𝒑 Demand of path 𝒑 Path Transfer Function of 𝒑

cdefgchijk 2 t’= z, x’= x+1, y’= x, z’= 1

(cdefg)2chijk 1 t’= 1, x’= x+2, y’= x+1, z’= 1

(cdefg)3chijk 0 t’= 1, x’= x+3, y’= x+2, z’= 1

(cdefg)4chijk 0 t’= 1, x’= x+4, y’= x+3, z’= 1

(cdefg)5chijk 0 t’= 1, x’= x+5, y’= x+4, z’= 1

(t’= 1, x’= x+3, y’= x+2, z’= 1) 
⊔

(t’= 1,x’= x+4,y’= x+3,z’= 1)
=

(t’= 1,x’=⊤,y’= ⊤,z’= 1)
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<= 
demand 

paths

The path
(cdefg)5chijk

is covered

LCP join 
operation



t=x=

y=z=0

〈+1 〉 〈-1 〉

〈-1 〉 〈-1〉

〈+1〉

t = z

z = 1

y = x

x = x + 1

Path From Worklist Path Extension Demand of a path Path Transfer Functions

chijk abchijk 2 t’= 0, x’= 0, y’= 0, z’= 0

cdefgchijk abcdefgchijk 1 t’= 0, x’= 1, y’= 0, z’= 1

(cdefg)2chijk ab(cdefg)2chijk 0 t’= 1, x’= 2, y’= 1, z’= 1

(cdefg)3chijk ab(cdefg)3chijk 0 t’= 1, x’= 3, y’= 2, z’= 1

(cdefg)4chijk ab(cdefg)4chijk 0 t’= 1, x’= 4, y’= 3, z’= 1
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Implementation and 
Experimental Evaluation
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Implementation 

• implemented both Backward and Forward DFAS algorithms.

• used 14 benchmarks; Spin, P, JPF-actor models, Go Programs
• Implementation assumes an XML representation of the program

• highly parallel prototype, to handle the complexity of the algorithm
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Experimental setup
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𝑛1

𝑛2

x := y + 1

reference to variable y is 
a “use” at node 𝑛1

Objective is to find 
whether the use of y is a 

constant at 𝑛1

Nodes part of a VCFG

Constant Propagation 
(CP) is the popular 
abstract domain for 
detecting constants



Implementation 

• CP is an infinite abstract domain; Forward DFAS instantiated with CP
• analyzes all instructions with “best” precision

• Linear Constant Propagation(LCP) is a less precise variant of CP; 
Backward DFAS instantiated with the LCP analysis
• LCP is an infinite abstract domain. However, finite-height transfer function 

lattice unlike CP

• Baselines:

• Join-Over-all-Paths (JOP): ignores all queue operations, CP analysis

• JOFP using Copy Constant Propagation (CCP):
• CCP is a finite abstract domain, and is less precise than LCP

• Closest related work that computes JOFP admits only abstract finite domains
27



Results Summary

• Uses Identified as constants:

• Both outperform the baselines
• Forward DFAS finds 2.9x more constants than JOP, 62% more than CCP
• Backward DFAS finds 2.2x more constants than JOP, 26% more than CCP

• In summary Forward DFAS appears more precise, but Backward DFAS 
infers more constants in 2 benchmarks. Thus, they are incomparable.
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Total Number of Uses 189

Constants identified by Forward DFAS 63

Constants identified by Backward DFAS 49

Constants identified by CP JOP (Baseline) 22

Constants identified by CCP JOFP (Baseline) 39



Results Summary

• Use the inferred constants to verify assertions present in the benchmark 
models

• Assertions verified:

• Both Forward and Backward DFAS verify almost 5 times the assertions 
verified by JOP

• Forward DFAS verifies 57% more assertions than CCP, Backward DFAS 
verifies 43% more
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Total Assertions 42

Assertions verified by Forward DFAS 22

Assertions verified by Backward DFAS 20

Assertions verified by CP JOP 4

Assertions verified by CCP JOFP 14



Approach Geometric Mean Execution Time Range

Forward DFAS 0.64 1.2s – 18s (did not terminate on 2 benchmarks)

Backward DFAS 0.09 1s – 284s 

CCP JOFP Baseline 0.11 1s – 226s 

Execution Time
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JOP is always 
fast

Forward DFAS fast in 
general, has scalability 
issues in case of some 

benchmarks

Backward DFAS seems 
slower; demand-driven 

nature results in 
cumulative reporting of 

time

CCP is 
comparable with 
Backward DFAS

• Execution Time slowdown with respect to the Naïve baseline, i.e., 
JOP:



Future Work

• To extend Backward DFAS algorithm to admit any infinite domain, and 
support widening

• Improving the scalability of Forward DFAS; explore approaches like 
Partial Order Reduction

• Handling parameters in function calls

• To run the algorithm on real world asynchronous programs.
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All these approaches admit only finite abstract domains



Conclusion

• Proposed two approaches for interprocedural data flow analysis of 
asynchronous systems using infinite abstract domains,
• Backward DFAS that computes the precise JOFP solution, admits a restricted 

class of infinite abstract domains

• A more general Forward DFAS algorithm, that gives a sound solution. It over-
approximates the JOFP in general. 

• We have implemented the interprocedural algorithms as a tool

• The proposed algorithm performs significantly better than two 
different baseline approaches on 14 benchmarks
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