Data Flow Analysis of
Asynchronous Systems using
Infinite Abstract Domains

Snigdha Athaiya™, Siemens Technology, India
K Narayan Kumar, Chennai Mathematical Institute, Chennai

* Work partly done while with Indian Institute of Science

Distributed systems

Multiple
Processes

Parallel and

independent
execution

Processes can
communicate
with each other

Asynchronous System in Detail

Process 1
accesses the
variablex

Sending of
message m; to
channel ¢4

cqisa
channel
mq, m, ale

c MESSAgES

Receive of
message my from
the head of

Process 1 Process 2 channel ¢4

Unordered Channel Abstraction

Do not send Receive
or receive
message m,

message

x=x+1

Q C1!m2 0 @
x=x+1 ‘@ ‘

Process 1 Process 2

Send Process 2
message
Receive
operation
decrements

mq

the counter by
1

Semantics

x=x+1

Process 1

(1,0)

(0,1)

Process 2

<_1r0)

x=0, [0,0]

2 progresses

Infeasible state ‘K‘ x=0, [-1,0]

Negative values for
abstracted channels

contents represents
infeasible states

I abstraction of

S emd ntl CS : concrete config

<X=1, ¢q: [m,, m;]>

° ° : @ x=1, [1,1]

0,1 .
x=x+1 {) (—=1,0) | 2 progresses

(1,0)
H | feasible state ! @ x=1, [0,1]

Process 1 Process 2

But this is

acceptablein
literature

VASS-Control Flow Graph(VCFG) Construction

X = é\ (01>

X+1 (10) (—1,0),

Process 1 Process 2

vector) for
each edge

Asynchronous System with
unordered channels

Feasible/Infeasible Paths in VCFG

All abstract channel contents are
non-negative for all prefixes

Paths with
negative abstract
channel contents
for any prefix are

infeasible

Data Flow Analysis

x=1l,y=1L, Also termed Join-
Over-all-Paths
(JOP)

Each edge, and
fp =1y ofq

path associated
witha L - L
transfer function

X,y = f1(l1; lz) LI xy =1, (13, 13)

Data Flow Analysis of VCFG

Need to compute
Join-Over-all-

X=l1,y=l2

Feasible-Paths
(JOFP)

X,y = f1(l1; lz) LI xy =1, (13, 13)

10

Problem Statement

Given an asynchronous system VCFG, and an arbitrary given finite or
Infinite abstract domain £, an initial value [, € L, initial node v,, and a
target node v, compute the precise join-over-all-feasible-paths(JOFP) for v,
where JOFP is defined as:

JOFP(v) = U (ptf(p)(Lo))

= Vg O*,
p is feasible

Contributions

* A sound and precise Backward DFAS Algorithm, which admits a class
of infinite abstract domains
* Computes precise JOFP

* A sound Forward DFAS Algorithm, admitting a broader class of
infinite abstract domains
* In general, computes conservative over-approximation of JOFP

* Both algorithms use unordered channel abstraction

* In the presentation, we discuss Backward DFAS as it is conceptually
more interesting.

llustrative Example

Loop sends msg
and updates
variables

Receives
message in a

Four
VEIRELIES
a @
t=x=

y=z=0

<channel,
message>

14

Which
variables are
constants at k ?

oG

y=z=0

15

Which

variables are
constants at k ?

Oau® (42

t=7 y =X <'1> <_1)

+ - -

,, c O
t=x= (+1)

y=z=0

Path 1
Variable values : t=0, x=0, y=0, z=0
channel contents :[—2]
Infeasible State

16

Which

variables are
constants at k ?

(e = (42

t=7 y =X <'1> <_1)

=x+1 *
a b C h ’@
t=x= (+1)

y=z=0
[1. t=1,x=2,y=1,2=1]
Path 2

Variable values : t=1,x=2,y=1, z=1
channel contents :[0]

17

t and z are
constants, x and

y are not
constants

_ (-1) (-1)

x:x+1
a b C h ’@
t=x= (+1)

y=z=0

A

1. t=1,x=2,y
2. t=1,x=3,y

TR
NP
R
==
——

Path 3
Variable values : t=1,x=3,y=2, z=1
channel contents :[1]

18

Arbitrarily high

value of the
counter;
infinite possible
configurations

y=z=0

(2
t=x=

tand z are
constants, x and

y are not

constants

(+1)

Exploring all paths or all counter configurations to detect
constants is infeasible

19

Backward DFAS Algorithm

Demand of a path

demand

decreases Increase
in
demand

Demand of a path is the minimum channel contentsat the
beginning of the path, such that, the ending value is >= 0

21

m Demand of path p Path Transfer Function of p

(t'=1, x'=x+3, y'=x+2, 2’= 1)
L
(t'=1,x'=x+4,y’= x+3,2’= 1)

operation

cdefgchijk 2 t'=z x'=x+1,y'=x,2= 1

(cdefg)?chijk 1 t’=1, x’=x+2, y'=x+1, = 1
m) (cdefg)>chijk 0 t’=1, x’=x+3, y'=x+2, 2= 1
m) (cdefg)*chijk 0

(~ADEAND Al fa)

\LUCJy} L"'J’\ U

The path

(cdefg)®chijk
is covered

<=
demand
paths

22

t=x=
y=2=0

Path From Worklist Path Extension Demand of a path Path Transfer Functions

chijk
cdefgchijk
(cdefg)?chijk
(cdefq)3chijk

abchijk
abcdefgchijk

ab (cdefg)?chijk
ab(cdefg)>chijk

ol ~Ap

© O O Kk

t’=0,x=0,y’=0,2=0
t’=0,x=1,y’=0, 2= 1
t’'=1,x=2,y'=1,7=1

_chegﬁ\él,.t.::l,
TG) CrifK

£N4 il
goeacjg) Criyr

23

Implementation and
Experimental Evaluation

Implementation

* implemented both Backward and Forward DFAS algorithmes.

e used 14 benchmarks; Spin, P, JPF-actor models, Go Programs
* Implementation assumes an XML representation of the program

* highly parallel prototype, to handle the complexity of the algorithm

Experimental setup

Nodes part of a VCFG

Objectiveis to find
whether the use of y is a
constantatng

Constant Propagation
(CP) is the popular
abstract domain for
detecting constants

26

Implementation

 CP is an infinite abstract domain; Forward DFAS instantiated with CP
 analyzes all instructions with “best” precision

* Linear Constant Propagation(LCP) is a less precise variant of CP;
Backward DFAS instantiated with the LCP analysis

e LCP is an infinite abstract domain. However, finite-height transfer function
lattice unlike CP

* Baselines:
 Join-Over-all-Paths (JOP): ignores all queue operations, CP analysis
e JOFP using Copy Constant Propagation (CCP):

* CCPis afinite abstract domain, and is less precise than LCP

27

Results Summary

e Uses Identified as constants:

Constantsidentified by Forward DFAS 63
Constantsidentified by Backward DFAS 49
Constantsidentified by CP JOP (Baseline) 22
Constants identified by CCP JOFP (Baseline) 39

* Both outperform the baselines
 Forward DFAS finds 2.9x more constantsthan JOP, 62% more than CCP
e Backward DFAS finds 2.2x more constants thanJOP, 26% more than CCP

* In summary Forward DFAS appears more precise, but Backward DFAS
infers more constants in 2 benchmarks. Thus, they are incomparable.

28

Results Summary

* Use the inferred constants to verify assertions present in the benchmark
models

e Assertions verified:

Total Assertions _

Assertions verified by Forward DFAS 22
Assertions verified by Backward DFAS 20
Assertions verified by CP JOP 4

Assertions verified by CCP JOFP 14

e Both Forward and Backward DFAS verify almost 5 times the assertions
verified by JOP

* Forward DFAS verifies 57% more assertions than CCP, Backward DFAS
verifies 43% more

29

Execution Time

* Execution Time slowdown with respect to the Naive baseline, i.e.,

JOP:
Approach Execution Time Range
Forward DFAS 0.64 1.2s — 18s (did not terminate on 2 benchmarks)
Backward DFAS 0.09 1s — 284s
CCP JOFP Baseline 0.11 1s —226s

JOP is always

Backward DFAS seems
CCPis

comparable with
Backward DFAS

slower; demand-driven
nature results in
cumulative reporting of
time

Future Work

* To extend Backward DFAS algorithm to admit any infinite domain, and
support widening

* Improving the scalability of Forward DFAS; explore approaches like
Partial Order Reduction

* Handling parameters in function calls

* To run the algorithm on real world asynchronous programs.

Related Work

e Jhala, Ranjit, and Rupak Majumdar. "Interprocedural analysis of
asynchronous programs.” ACM SIGPLAN Notices. Vol. 42. No. 1. ACM,
2007.

* Abdulla, Parosh Aziz, and Bengt Jonsson. "Verifying programs with
unreliable channels." information and computation 127.2 (1996): 91-
101.

* Bouajjani, Ahmed, and Michael Emmi. "Analysis of recursively parallel
programs.” ACM Sigplan Notices. Vol. 47. No. 1. ACM, 2012.

All these approaches admit only finite abstract domains

32

Conclusion

* Proposed two approaches for interprocedural data flow analysis of
asynchronous systems using infinite abstract domains,

e Backward DFAS that computes the precise JOFP solution, admits a restricted
class of infinite abstract domains

A more general Forward DFAS algorithm, that gives a sound solution. It over-
approximates the JOFP in general.

 We have implemented the interprocedural algorithms as a tool

* The proposed algorithm performs significantly better than two
different baseline approaches on 14 benchmarks

