Program Synthesis as Dependency Quantified Formula Modulo Theory

Priyanka Golia^{1,2}, Subhajit Roy¹ and Kuldeep S. Meel²

¹Indian Institute of Technology Kanpur ²National University of Singapore

IJCAI 2021

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies the specification. (Church, 1957)

$$f_1(x_1, x_2) \ge 2 \times x_1$$
 and
 $f_1(x_1, x_2) \ge 2 \times x_2$ and
 $(f_1(x_1, x_2) == 2 \times x_1$ or
 $f_1(x_1, x_2) == 2 \times x_2)$

Sythesise a function f_1 that satisfies the specification

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies the specification. (Church, 1957)

Sythesise a function f_1 that satisfies the specification

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies the specification. (Church, 1957)

that satisfies the specification

Program Synthesis: T-Constrained Synthesis

- Given:
 - A set of typed function symbols $\{f_1, f_2, \ldots f_k\}$.
 - A background theory \mathbb{T} .
 - A specification ϕ over the vocabulary of $\mathbb{T} \cup \{\mathit{f}_1, \mathit{f}_2, \ldots \mathit{f}_k\}$
- Find:
 - A set of expressions {e₁, e₂,...e_k} such that the formula φ[f₁/e₁, f₂/e₂,...f_k/e_k] is valid modulo T.

$$\label{eq:linear} \begin{split} \mathbb{T}: \mbox{ Linear Interger Arithmetic (LIA)} \\ \mbox{ Specification } \phi \end{split}$$

- Program synthesis is an exceptionally difficult problem.
- Applied to various domains:
 - program completion.
 - program optimization.
 - programming by example.
- Explored in pragmatic restrictions reducing search space.

Program Synthesis: Syntax Guided Synthesis

- Given:
 - A set of typed function symbols $\{f_1, f_2, \dots f_k\}$.
 - A background theory \mathbb{T} , and a grammar $\{L_1, \ldots L_k\}$ over the vocabulary of \mathbb{T} .
 - A specification φ over the vocabulary of $\mathbb{T} \cup \{f_1, f_2, \dots f_k\}$.
- Find:
 - The set of expressions $\{e_1 \in L_1, \dots e_k \in L_k\}$ s. t. formula $\varphi[f_1/e_1, \dots f_k/e_k]$ is valid modulo \mathbb{T} .

(Alur et al.,2013)

- Given a quantified formula ϕ in theory \mathbb{T} with universal (\forall) and existential (\exists) quantifiers.
- Existentially quantified variables have explicit dependencies on a subset of universally quantified variables.

$$\phi := \forall x_1, \dots, x_n \exists^{H_1} y_1 \dots \exists^{H_m} y_m \phi(x_1, \dots, x_n, y_1, \dots, y_m)$$

Where each $H_i \subseteq \{x_1, \dots, x_n\}$.

• \exists^{H_i} is called Henkin quantifier, and H_i is called Henkin dependencies.

Dependency Quantified Formula

$$\phi := \forall x_1, x_2 \exists^{H_1} y_1 \phi(x_1, x_2, y_1)$$

Where $H_1 = \{x_1\}$, and $\varphi(x_1, x_2, y_1) := (x_1 \lor x_2 \lor y_1)$

• Does there exists a function $y_1 := g_1(x_1)$ such that $\varphi(x_1, x_2, g_1(x_1))$ is a tautology?

Dependency Quantified Formula

 $\phi := \forall x_1, x_2 \exists^{H_1} y_1 \phi(x_1, x_2, y_1)$

Where $H_1 = \{x_1\}$, and $\varphi(x_1, x_2, y_1) := (x_1 \lor x_2 \lor y_1)$

• Does there exists a function $y_1 := g_1(x_1)$ such that $\varphi(x_1, x_2, g_1(x_1))$ is a tautology?

• V	With $g_1(x_1) = \neg x_1$		$g_1(x_1)):=x_1\vee x_2\vee (\neg x_1)$
	$\begin{array}{c} X \\ \hline x_1 = 0, x_2 = 0 \\ x_1 = 0, x_2 = 1 \\ x_1 = 1, x_2 = 0 \\ x_1 = 1, x_2 = 1 \end{array}$	$\phi(x_1, x_2, g_1(x_1))$ True True True True	$\left. \right\}$ Dependency Quantified Formula ϕ
			1

is True.

- A formula ϕ is considered to be DQF(T), if it can be represented as $\forall x_1, \dots, x_n, \exists^{H_1} y_1 \dots \exists^{H_m} y_m \phi(x_1, \dots, x_n, y_1, \dots, y_m)$
- Variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ and $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ should be in underlying theory \mathbb{T} .
- A DQF(T) formula is True, if there exists function a vector g : ⟨g₁(H₁),...,g_m(H_m)⟩ such that φ(x₁,...,x_n,g₁(H₁),...,g_m(H_m)) is a tautology.
- When $\mathbb{T} = \text{Boolean: DQF}(\mathbb{T})$ formula is considered as DQBF.

- Reduction of program synthesis to $\mathsf{DQF}(\mathbb{T})$.
- Reduction of DQF(BV) to DQBF allows us to simply plug-in the state of the art DQBF solvers for BV-constrained synthesis.

$$f_{1}(x_{1}, x_{2}) \ge 2 \times x_{1} \text{ and} f_{1}(x_{1}, x_{2}) \ge 2 \times x_{2} \text{ and} (f_{1}(x_{1}, x_{2}) == 2 \times x_{1} \text{ or} f_{1}(x_{1}, x_{2}) == 2 \times x_{2}) f_{2}(x_{3}, x_{4}) \le 2 \times x_{3} \text{ and} f_{2}(x_{3}, x_{4}) \le 2 \times x_{4} \text{ and} (f_{2}(x_{3}, x_{4}) == 2 \times x_{3} \text{ or} f_{2}(x_{3}, x_{4}) == 2 \times x_{4})$$

• Sythesise functions *f*₁, *f*₂ that satisfies the specification.

$$f_1(x_1, x_2) \ge 2 \times x_1$$
 and
 $f_1(x_1, x_2) \ge 2 \times x_2$ and
 $(f_1(x_1, x_2) == 2 \times x_1$ or
 $f_1(x_1, x_2) == 2 \times x_2$)
 $f_2(x_3, x_4) \le 2 \times x_3$ and
 $f_2(x_3, x_4) \le 2 \times x_4$ and

 $(f_2(x_3, x_4) == 2 \times x_3 \text{ or} f_2(x_3, x_4) == 2 \times x_4)$

$$(y_1 == 2 \times x_2 \text{ and}$$

$$(y_1 == 2 \times x_1 \text{ or}$$

$$y_1 == 2 \times x_2)$$

$$y_2 \le 2 \times x_3 \text{ and}$$

$$(y_2 == 2 \times x_4 \text{ and}$$

$$(y_2 == 2 \times x_3 \text{ or}$$

$$y_2 == 2 \times x_4)$$

 $y_1 \ge 2 \times x_1$ and $y_1 \ge 2 \times x_2$ and

- Sythesise functions *f*₁, *f*₂ that satisfies the specification.
- Replace every call of functions f_1, f_2 by new variables y_1, y_2 in specification.

 $y_1 \geq 2 \times x_1$ and $y_1 > 2 \times x_2$ and $(y_1 = 2 \times x_1 \text{ or }$ $y_1 == 2 \times x_2$ $y_2 \leq 2 \times x_3$ and $y_2 \leq 2 \times x_4$ and $(y_2 = 2 \times x_3 \text{ or }$ $y_2 = 2 \times x_4$

$$\phi := \forall x_1, x_2, x_3, x_4 \exists^{H_1} y_1 \exists^{H_2} y_2 \ \phi(x_1, x_2, x_3, x_4, y_1, y_2)$$

Where $H_1 := \{x_1, x_2\}$ and $H_2 := \{x_3, x_4\}$.

Program synthesis as $DQF(\mathbb{T})$

 $y_1 \ge 2 \times x_1$ and $y_1 \ge 2 \times x_2$ and $(y_1 == 2 \times x_1$ or $y_1 == 2 \times x_2$)

$$\begin{array}{l} y_2 \leq 2 \times x_3 \text{ and} \\ y_2 \leq 2 \times x_4 \text{ and} \\ (y_2 == 2 \times x_3 \text{ or} \\ y_2 == 2 \times x_4) \end{array}$$

 $\phi := \forall x_1, x_2, x_3, x_4 \exists^{H_1} y_1 \exists^{H_2} y_2 \ \phi(x_1, x_2, x_3, x_4, y_1, y_2)$

Where $H_1 := \{x_1, x_2\}$ and $H_2 := \{x_3, x_4\}$.

• DQF(T) solvers find function vector $\langle g_1(x_1, x_2), g_2(x_3, x_4) \rangle$ such that $\varphi(x_1, x_2, x_3, x_4, g_1(x_1, x_2), g_2(x_3, x_4))$ is a tautology. $y_1 \ge 2 \times x_1$ and $y_1 \ge 2 \times x_2$ and $(y_1 == 2 \times x_1$ or $y_1 == 2 \times x_2$)

 $y_2 \le 2 \times x_3 \text{ and}$ $y_2 \le 2 \times x_4 \text{ and}$ $(y_2 == 2 \times x_3 \text{ or}$ $y_2 == 2 \times x_4)$ $\phi := \forall x_1, x_2, x_3, x_4 \exists^{H_1} y_1 \exists^{H_2} y_2 \ \phi(x_1, x_2, x_3, x_4, y_1, y_2)$

Where $H_1 := \{x_1, x_2\}$ and $H_2 := \{x_3, x_4\}$.

- DQF(T) solvers find function vector $\langle g_1(x_1, x_2), g_2(x_3, x_4) \rangle$ such that $\varphi(x_1, x_2, x_3, x_4, g_1(x_1, x_2), g_2(x_3, x_4))$ is a tautology.
- $g_1(x_1, x_2)$ required set of expression for $f_1(input1, input2)$.
- $g_2(x_3, x_4)$ required set of expression for $f_2(input1, input2)$.

 $f_1(x_1, x_2) \ge 2 \times x_1$ and $f_1(x_1, x_2) \ge 2 \times x_2$ and $(f_1(x_1, x_2) == 2 \times x_1$ or $f_1(x_1, x_2) == 2 \times x_2$) • Henkin dependencies for y_1 are x_1 and x_2 .

$$\phi := \forall x_1, x_2 \exists^{H_1} y_1 \ \phi(x_1, x_2, y_1)$$

Where $H_1 := \{x_1, x_2\}.$

• DQF(\mathbb{T}) solvers find function vector $\langle g_1(x_1, x_2) \rangle$ such that $\varphi(x_1, x_2, g_1(x_1, x_2))$ is a tautology.

$f_1(x_1, x_2) \ge 2 \times x_1$ and $f_1(x_2, x_3) \ge 2 \times x_3$ and $(f_1(x_1, x_3) = 2 \times x_1$ or
$(f_1(x_1, x_3) = 2 \times x_1 \text{ or }$
. ,
$f_1(x_1, x_3) == 2 \times x_3)$

• Multiple CallSigns: Not every call of function *f*₁ have same set of arguments.

```
 \begin{array}{l} f_1(\textit{input1},\textit{input2}) \\ \text{If (input1 } \geq \textit{input2}) \\ \text{Return 2 } \times \textit{input1} \\ \text{Else} \\ \text{Return 2 } \times \textit{input2} \end{array} \} \\ \end{array}
```

$$f_1(x_1, x_2) \ge 2 \times x_1$$
 and
 $f_1(x_2, x_3) \ge 2 \times x_3$ and
 $(f_1(x_1, x_3) == 2 \times x_1$ or
 $f_1(x_1, x_3) == 2 \times x_3$)

• Replace every instance of f_1 by same variable: $y_1 := f_1(x_1, x_2)$ and $y_1 := f_1(x_2, x_3)...$ $H_1 = \{x_1, x_2, x_3\}$ Not Correct!!

```
f_1(x_1, x_2) \ge 2 \times x_1 and

f_1(x_2, x_3) \ge 2 \times x_3 and

(f_1(x_1, x_3) == 2 \times x_1 or

f_1(x_1, x_3) == 2 \times x_3
```

- Replace every instance of f₁ by same variable: y₁ := f₁(x₁, x₂) and y₁ := f₁(x₂, x₃)...
 H₁ = {x₁, x₂, x₃} Not Correct!!
- Different variable y variables for every instance of f1 ?

$$y_1 := f_1(x_1, x_2), y_2 := f_1(x_2, x_3), y_3 := f_1(x_1, x_3)$$

But, we want to synthesise a Single function that satisfies All constraints.

$$f_1(x_1, x_2) \ge 2 \times x_1$$
 and
 $f_1(x_2, x_3) \ge 2 \times x_3$ and
 $(f_1(x_1, x_3) == 2 \times x_1$ or
 $f_1(x_1, x_3) == 2 \times x_3$

- Replace every instance of f_1 by same variable: $y_1 := f_1(x_1, x_2)$ and $y_1 := f_1(x_2, x_3)...$ $H_1 = \{x_1, x_2, x_3\}$ Not Correct!!
- Different variable y variables for every instance of f_1 ?

$$y_1 := f_1(x_1, x_2), y_2 := f_1(x_2, x_3), y_3 := f_1(x_1, x_3)$$

• But, we want to synthesise a Single function that satisfies All constraints.

We need to take care of Multiple CallSign instances to reduce to $\mathsf{DQF}(\mathbb{T})$

- Introduce function arity many new variables.
- Here a,b are newly introduced variables.

 $f_1(x_1, x_2) \ge 2 \times x_1$ and $f_1(x_2, x_3) > 2 \times x_3$ and $(f_1(x_1, x_3) = 2 \times x_1 \text{ or }$ $f_1(x_1, x_3) == 2 \times x_3$ If $(x_1 == a)$ and $(x_2 == b)$ then $f_1(x_1, x_2) == f_1(a, b)$ If $(x_2 == a)$ and $(x_3 == b)$ then $f_1(x_2, x_3) == f_1(a, b)$ If $(x_1 == a)$ and $(x_3 == b)$ then $f_1(x_1, x_3) == f_1(a, b)$

- Introduce function arity many new variables.
- Here a,b are newly introduced variables.

 $v_1 > 2 \times x_1$ and $v_2 > 2 \times x_3$ and $(v_3 = 2 \times x_1 \text{ or }$ $v_3 = 2 \times x_3$ If $(x_1 == a)$ and $(x_2 == b)$ then $V_1 == V_4$ If $(x_2 == a)$ and $(x_3 == b)$ then $y_2 == y_4$ If $(x_1 == a)$ and $(x_3 == b)$ then $y_3 == y_4$

• Have different *Y* variables for every function instances.

$$y_1 := f_1(x_1, x_2), y_2 := f_1(x_2, x_3), y_3 := f_1(x_1, x_3), y_4 := f_1(a, b)$$

$$\forall X \exists^{H_1} y_1 \exists^{H_2} y_2 \exists^{H_3} y_3 \exists^{H_4} y_4 \varphi(X, Y)$$

Where $H_1 = \{x_1, x_2\}, H_2 = \{x_2, x_3\}, H_3 = \{x_1, x_3\}, H_4 = \{a, b\}$

• g₄(a, b) required set of expression for f₁(*input*1, *input*2).

- Objective: Does DQBF solvers perform on par with state-of-the-art program synthesis tools?
- We compared Syntax guided synthesis tools (SyGuS) tools, DQBF tools over 645 instances from SyGuS competitions.

Syntax-Guided	DQBF-based	
CVC4,ESolver	CADET, DCAQE	
EUSolver,DryadSynth	Manthan, DepQBF	
Stochpp	DQBDD	

- Number of SyGuS instances solved using different techniques.
- Timeout. 900s.

	Total	SyGuS-tools	DQBF-based
SyGuS Instances	645	513	610

- Number of SyGuS instances solved using different techniques.
- Timeout. 900s.

	Total	SyGuS-tools	DQBF-based
SyGuS Instances	645	513	610

• DQBF solvers performs better than the syntax-guided synthesis.

- Reduction of program synthesis to $DQF(\mathbb{T})$.
- The special case, $\mathbb{T} = BV$ can further be converted to DQBF instances.
- The general purpose DQBF solvers performs better than the syntax guided synthesis.

https://github.com/meelgroup/DeQuS

Thanks!