
Program Synthesis as Dependency Quantified Formula Modulo Theory

Priyanka Golia 1,2, Subhajit Roy 1 and Kuldeep S. Meel 2

1Indian Institute of Technology Kanpur
2National University of Singapore

IJCAI 2021

1/16

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies
the specification. (Church, 1957)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

Sythesise a function f1
that satisfies the specification

Synthesiser

f1(input1, input2) {
If (input1≥ input2)

Return 2× input1
Else

Return 2× input2 }

2/16

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies
the specification. (Church, 1957)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

Sythesise a function f1
that satisfies the specification

Synthesiser

f1(input1, input2) {
If (input1≥ input2)

Return 2× input1
Else

Return 2× input2 }

2/16

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies
the specification. (Church, 1957)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

Sythesise a function f1
that satisfies the specification

Synthesiser

f1(input1, input2) {
If (input1≥ input2)

Return 2× input1
Else

Return 2× input2 }

2/16

Program Synthesis: T-Constrained Synthesis

• Given:
– A set of typed function symbols {f1, f2, . . . fk}.
– A background theory T.
– A specification ϕ over the vocabulary of T∪{f1, f2, . . . fk}

• Find:
– A set of expressions {e1,e2, . . .ek} such that the formula ϕ[f1/e1, f2/e2, . . . fk/ek] is valid

modulo T.

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

Function symbol:f1(arg1,arg2)
T: Linear Interger Arithmetic (LIA)
Specification ϕ

Synthesiser

f1(input1, input2) {
If (input1≥ input2)

Return 2× input1
Else

Return 2× input2 }

3/16

Program Synthesis: T-Constrained Synthesis

• Program synthesis is an exceptionally difficult problem.

• Applied to various domains:
– program completion.

– program optimization.

– programming by example.

• Explored in pragmatic restrictions — reducing search space.

4/16

Program Synthesis: Syntax Guided Synthesis

• Given:
– A set of typed function symbols {f1, f2, . . . fk}.
– A background theory T, and a grammar {L1, . . .Lk} over the vocabulary of T.
– A specification ϕ over the vocabulary of T∪{f1, f2, . . . fk}.

• Find:
– The set of expressions {e1 ∈ L1, . . .ek ∈ Lk} s. t. formula ϕ[f1/e1, . . . fk/ek] is valid modulo T.

(Alur et al.,2013)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

S: T|if (C) then T else T
T: 0 | 1 | x1 | x2 | T + T
C: T ≤ T

Synthesiser

f1(input1, input2) {
If (input1≥ input2)

Return input1+ input1
Else

Return input2+ input2 }

5/16

Dependency Quantified Formula

• Given a quantified formula φ in theory T with universal (∀) and existential (∃) quantifiers.

• Existentially quantified variables have explicit dependencies on a subset of universally
quantified variables.

φ := ∀x1, . . . ,xn ∃H1y1 . . .∃Hm ym ϕ(x1, . . . ,xn,y1, . . . ,ym)

Where each Hi ⊆ {x1, . . . ,xn}.

• ∃Hi is called Henkin quantifier, and Hi is called Henkin dependencies.

6/16

Dependency Quantified Formula

φ := ∀x1,x2 ∃H1y1 ϕ(x1,x2,y1)

Where H1 = {x1}, and ϕ(x1,x2,y1) := (x1∨ x2∨ y1)

• Does there exists a function y1 := g1(x1) such that ϕ(x1,x2,g1(x1)) is a tautology?

• With g1(x1) = ¬x1:
ϕ(x1,x2,g1(x1)) := x1∨ x2∨ (¬x1)

X ϕ(x1,x2,g1(x1))

x1 = 0,x2 = 0 True
x1 = 0,x2 = 1 True
x1 = 1,x2 = 0 True
x1 = 1,x2 = 1 True

Dependency Quantified Formula φ is True.

7/16

Dependency Quantified Formula

φ := ∀x1,x2 ∃H1y1 ϕ(x1,x2,y1)

Where H1 = {x1}, and ϕ(x1,x2,y1) := (x1∨ x2∨ y1)

• Does there exists a function y1 := g1(x1) such that ϕ(x1,x2,g1(x1)) is a tautology?

• With g1(x1) = ¬x1:
ϕ(x1,x2,g1(x1)) := x1∨ x2∨ (¬x1)

X ϕ(x1,x2,g1(x1))

x1 = 0,x2 = 0 True
x1 = 0,x2 = 1 True
x1 = 1,x2 = 0 True
x1 = 1,x2 = 1 True

Dependency Quantified Formula φ is True.

7/16

Dependency Quantified Formula

• A formula φ is considered to be DQF(T), if it can be represented as
∀x1, . . .xn,∃H1y1 . . .∃Hm ymϕ(x1, . . . ,xn,y1, . . . ,ym)

• Variables x1, . . .xn,y1 . . .ym and ϕ(x1, . . . ,xn,y1, . . . ,ym) should be in underlying theory T.

• A DQF(T) formula is True, if there exists function a vector g : 〈g1(H1), . . . ,gm(Hm)〉 such
that ϕ(x1, . . . ,xn,g1(H1), . . . ,gm(Hm)) is a tautology.

• When T= Boolean: DQF(T) formula is considered as DQBF.

8/16

Our Contributions

• Reduction of program synthesis to DQF(T).

• Reduction of DQF(BV) to DQBF — allows us to simply plug-in the state of the art DQBF
solvers for BV-constrained synthesis.

9/16

Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

f2(x3,x4)≤ 2× x3 and
f2(x3,x4)≤ 2× x4 and
(f2(x3,x4) == 2× x3 or
f2(x3,x4) == 2× x4)

y1 ≥ 2× x1 and
y1 ≥ 2× x2 and
(y1 == 2× x1 or
y1 == 2× x2)

y2 ≤ 2× x3 and
y2 ≤ 2× x4 and
(y2 == 2× x3 or
y2 == 2× x4)

• Sythesise functions f1, f2 that
satisfies the specification.

• Replace every call of functions
f1, f2 by new variables y1,y2 in
specification.

10/16

Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

f2(x3,x4)≤ 2× x3 and
f2(x3,x4)≤ 2× x4 and
(f2(x3,x4) == 2× x3 or
f2(x3,x4) == 2× x4)

y1 ≥ 2× x1 and
y1 ≥ 2× x2 and
(y1 == 2× x1 or
y1 == 2× x2)

y2 ≤ 2× x3 and
y2 ≤ 2× x4 and
(y2 == 2× x3 or
y2 == 2× x4)

• Sythesise functions f1, f2 that
satisfies the specification.

• Replace every call of functions
f1, f2 by new variables y1,y2 in
specification.

10/16

Program synthesis as DQF(T)

y1 ≥ 2× x1 and
y1 ≥ 2× x2 and
(y1 == 2× x1 or
y1 == 2× x2)

y2 ≤ 2× x3 and
y2 ≤ 2× x4 and
(y2 == 2× x3 or
y2 == 2× x4)

φ := ∀x1,x2,x3,x4∃H1y1∃H2y2 ϕ(x1,x2,x3,x4,y1,y2)

Where H1 := {x1,x2} and H2 := {x3,x4}.

• DQF(T) solvers find function vector 〈g1(x1,x2),g2(x3,x4)〉
such that ϕ(x1,x2,x3,x4,g1(x1,x2),g2(x3,x4)) is a tautology.

• g1(x1,x2) required set of expression for f1(input1, input2).

• g2(x3,x4) required set of expression for f2(input1, input2).

11/16

Program synthesis as DQF(T)

y1 ≥ 2× x1 and
y1 ≥ 2× x2 and
(y1 == 2× x1 or
y1 == 2× x2)

y2 ≤ 2× x3 and
y2 ≤ 2× x4 and
(y2 == 2× x3 or
y2 == 2× x4)

φ := ∀x1,x2,x3,x4∃H1y1∃H2y2 ϕ(x1,x2,x3,x4,y1,y2)

Where H1 := {x1,x2} and H2 := {x3,x4}.

• DQF(T) solvers find function vector 〈g1(x1,x2),g2(x3,x4)〉
such that ϕ(x1,x2,x3,x4,g1(x1,x2),g2(x3,x4)) is a tautology.

• g1(x1,x2) required set of expression for f1(input1, input2).

• g2(x3,x4) required set of expression for f2(input1, input2).

11/16

Program synthesis as DQF(T)

y1 ≥ 2× x1 and
y1 ≥ 2× x2 and
(y1 == 2× x1 or
y1 == 2× x2)

y2 ≤ 2× x3 and
y2 ≤ 2× x4 and
(y2 == 2× x3 or
y2 == 2× x4)

φ := ∀x1,x2,x3,x4∃H1y1∃H2y2 ϕ(x1,x2,x3,x4,y1,y2)

Where H1 := {x1,x2} and H2 := {x3,x4}.

• DQF(T) solvers find function vector 〈g1(x1,x2),g2(x3,x4)〉
such that ϕ(x1,x2,x3,x4,g1(x1,x2),g2(x3,x4)) is a tautology.

• g1(x1,x2) required set of expression for f1(input1, input2).

• g2(x3,x4) required set of expression for f2(input1, input2).

11/16

Multiple CallSign: Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x1,x2)≥ 2× x2 and
(f1(x1,x2) == 2× x1 or
f1(x1,x2) == 2× x2)

• Henkin dependencies for y1 are x1 and x2.

φ := ∀x1,x2∃H1y1 ϕ(x1,x2,y1)

Where H1 := {x1,x2}.

• DQF(T) solvers find function vector 〈g1(x1,x2)〉 such that
ϕ(x1,x2,g1(x1,x2)) is a tautology.

12/16

Multiple CallSign: Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x2,x3)≥ 2× x3 and
(f1(x1,x3) == 2× x1 or
f1(x1,x3) == 2× x3)

• Multiple CallSigns: Not every call of function f1 have same set
of arguments.

f1(input1, input2) {
If (input1≥ input2)

Return 2× input1
Else

Return 2× input2 }

12/16

Multiple CallSign: Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x2,x3)≥ 2× x3 and
(f1(x1,x3) == 2× x1 or
f1(x1,x3) == 2× x3)

• Replace every instance of f1 by same variable: y1 := f1(x1,x2)
and y1 := f1(x2,x3)...
H1 = {x1,x2,x3} Not Correct!!

12/16

Multiple CallSign: Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x2,x3)≥ 2× x3 and
(f1(x1,x3) == 2× x1 or
f1(x1,x3) == 2× x3)

• Replace every instance of f1 by same variable: y1 := f1(x1,x2)
and y1 := f1(x2,x3)...
H1 = {x1,x2,x3} Not Correct!!

• Different variable y variables for every instance of f1 ?

y1 := f1(x1,x2),y2 := f1(x2,x3),y3 := f1(x1,x3)

• But, we want to synthesise a Single function that satisfies All
constraints.

12/16

Multiple CallSign: Program synthesis as DQF(T)

f1(x1,x2)≥ 2× x1 and
f1(x2,x3)≥ 2× x3 and
(f1(x1,x3) == 2× x1 or
f1(x1,x3) == 2× x3)

• Replace every instance of f1 by same variable: y1 := f1(x1,x2)
and y1 := f1(x2,x3)...
H1 = {x1,x2,x3} Not Correct!!

• Different variable y variables for every instance of f1 ?

y1 := f1(x1,x2),y2 := f1(x2,x3),y3 := f1(x1,x3)

• But, we want to synthesise a Single function that satisfies All
constraints.

We need to take care of Multiple CallSign instances to reduce to DQF(T)

12/16

Multiple CallSign: Program synthesis as DQF(T)

• Introduce function arity many new variables.

• Here a,b are newly introduced variables.

f1(x1,x2)≥ 2× x1 and
f1(x2,x3)≥ 2× x3 and
(f1(x1,x3) == 2× x1 or
f1(x1,x3) == 2× x3)

If (x1 == a) and (x2 == b) then
f1(x1,x2) == f1(a,b)
If (x2 == a) and (x3 == b) then
f1(x2,x3) == f1(a,b)
If (x1 == a) and (x3 == b) then
f1(x1,x3) == f1(a,b)

• Have different Y variables for every function
instances.
y1 := f1(x1,x2),y2 := f1(x2,x3),
y3 := f1(x1,x3),y4 := f1(a,b)

∀X ∃H1y1∃H2y2∃H3y3∃H4y4ϕ(X ,Y)

Where H1 = {x1,x2},H2 = {x2,x3},
H3 = {x1,x3},H4 = {a,b}

• g4(a,b) required set of expression for
f1(input1, input2).

13/16

Multiple CallSign: Program synthesis as DQF(T)

• Introduce function arity many new variables.

• Here a,b are newly introduced variables.

y1 ≥ 2× x1 and
y2 ≥ 2× x3 and
(y3 == 2× x1 or
y3 == 2× x3)

If (x1 == a) and (x2 == b) then
y1 == y4

If (x2 == a) and (x3 == b) then
y2 == y4

If (x1 == a) and (x3 == b) then
y3 == y4

• Have different Y variables for every function
instances.
y1 := f1(x1,x2),y2 := f1(x2,x3),
y3 := f1(x1,x3),y4 := f1(a,b)

∀X ∃H1y1∃H2y2∃H3y3∃H4y4ϕ(X ,Y)

Where H1 = {x1,x2},H2 = {x2,x3},
H3 = {x1,x3},H4 = {a,b}

• g4(a,b) required set of expression for
f1(input1, input2).

13/16

Experimental Evaluations

• Objective: Does DQBF solvers perform on par with state-of-the-art program synthesis
tools?

• We compared Syntax guided synthesis tools (SyGuS) tools, DQBF tools over 645 instances
from SyGuS competitions.

Syntax-Guided DQBF-based

CVC4,ESolver CADET, DCAQE
EUSolver,DryadSynth Manthan, DepQBF

Stochpp DQBDD

14/16

Experimental Evaluations

• Number of SyGuS instances solved using different techniques.

• Timeout. 900s.

Total SyGuS-tools DQBF-based

SyGuS Instances 645 513 610

• DQBF solvers performs better than the syntax-guided synthesis.

15/16

Experimental Evaluations

• Number of SyGuS instances solved using different techniques.

• Timeout. 900s.

Total SyGuS-tools DQBF-based

SyGuS Instances 645 513 610

• DQBF solvers performs better than the syntax-guided synthesis.

15/16

Conclusion

• Reduction of program synthesis to DQF(T).

• The special case, T= BV can further be converted to DQBF instances.

• The general purpose DQBF solvers performs better than the syntax guided synthesis.

https://github.com/meelgroup/DeQuS

Thanks!

16/16

https://github.com/meelgroup/DeQuS

