Program Synthesis as Dependency Quantified Formula Modulo Theory J

Priyanka Golia "2, Subhajit Roy ' and Kuldeep S. Meel 2

TIndian Institute of Technology Kanpur
2National University of Singapore

[JCAI 2021

116

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies
the specification. (Church, 1957)

fi(x1,x2) > 2 x x4 and
fi(x1,%) >2x xp and
(fi(x1,x2) ==2 X Xy or
fi (X1,X2) ==2X X2)

Sythesise a function f;
that satisfies the specification

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies

the specification.

fi(x1,x2) > 2 x x4 and
fi(x1,%) >2x xp and
(fi(x1,x2) ==2 X Xy or
fi (X1,X2) ==2X X2)

Sythesise a function f;
that satisfies the specification

\ 4

Synthesiser

(Church, 1957)

Program Synthesis

Program Synthesis: Given a specification as logical formula, synthesise a program that satisfies
the specification. (Church, 1957)

fi (input1, input2) {
fi(x1,x2) > 2 x x4 and If (input1 > input?2)

> .
fi(x1,%2) > 2 x x2 and o/ synthesiser d Return 2 x input1
(f1 (X1 ,X2) ==2 X X1 Or Else

fi(x1,%) == 2 X x2) Return 2 x input2 }

Sythesise a function f;
that satisfies the specification

2/16

Program Synthesis: T-Constrained Synthesis

e Given:
— A set of typed function symbols {f;, &, ... fi}.
— A background theory T.
— A specification ¢ over the vocabulary of TU{f;, f,...f}
e Find:
— A set of expressions {ey, €z, .. e} such that the formula @[f; /ey, f/ ez, ... fk/ex] is valid
modulo T.
fi (input1, input2) {
fi(x1,x2) = 2 x x; and If (input1 > input2)
fi(x1,X0) > 2 X x» and .]
1(x1,%2) > 2 » Synthesiser . Return 2 x input1
(fi(xq1,X%) ==2 X xq or Else
fi(x1,X%) ==2 X x2) Return 2 x input2 }
Function symbol:f;(arg1,arg2)

T: Linear Interger Arithmetic (LIA)
Specification ¢
3/16

Program Synthesis: T-Constrained Synthesis

e Program synthesis is an exceptionally difficult problem.

e Applied to various domains:
— program completion.

— program optimization.
— programming by example.

e Explored in pragmatic restrictions — reducing search space.

4/16

Program Synthesis: Syntax Guided Synthesis

e Given:
— A set of typed function symbols {fi, f, ... fi}.
— A background theory T, and a grammar {Ls,... L} over the vocabulary of T.
— A specification @ over the vocabulary of TU{f, f, ... fi}.
e Find:
— The set of expressions {e; € Ly,...ex € Lx} s. t. formula @[f; /ey, ... f/ex] is valid modulo T.

(Alur et al.,2013)

fi(x1,%) >2x x4 and
fi(x1,x2) > 2 X xp and
(f1 (X1,X2) ==2X Xq or
f1 (X1 ,Xg) ==2 % X2)

fi (input1, input2) {
If (input1 > input2)
Return input1 + input1

Synthesiser Else
Return input2 + input2 }

S: Tlif (C) then T else T

T0[1]x|x|T+T
C:T<T

5/16

Dependency Quantified Formula

e Given a quantified formula ¢ in theory T with universal (V) and existential (3) quantifiers.

e Existentially quantified variables have explicit dependencies on a subset of universally
quantified variables.

q) :ZVX1,...,Xn 3H1Y1 ---HH'"J/m (P(X1a---7Xn;Y1a-~'aYm)
Where each H; C {xq,...,Xp}.

e 3 is called Henkin quantifier, and H; is called Henkin dependencies.

6/16

Dependency Quantified Formula

0 :=Vxi, % 3My1 @(x1, %2, 1)
Where H; = {xy}, and @(x1,X2,¥1) := (x1 VX2 V y1)

e Does there exists a function y; := g1(x1) such that @(x1, x2, g1(x1)) is a tautology?

7116

Dependency Quantified Formula

0 :=Vxi, % 3My1 @(x1, %2, 1)
Where H; = {xy}, and @(x1,X2,¥1) := (x1 VX2 V y1)

e Does there exists a function y; := g1(x1) such that @(x1, x2, g1(x1)) is a tautology?

e With g1 (X1) = TXq:
(P(X17X27g1 (X1)) =X VXQV(_|X1)

X O(x1,X2,91(x1))
X1 = O,Xg =0 True
X;=0,x =1 True Dependency Quantified Formula ¢ is True.
X1:1,X2:0 True
Xy =1,x0=1 True

716

Dependency Quantified Formula

A formula ¢ is considered to be DQF(T), if it can be represented as
VX1, X, 3Py 3y (X, X VA Yim)

Variables X, ... X, Y1 ... Ymand ©(x1,...,Xn, ¥1,---,¥m) should be in underlying theory T.

A DQF(T) formula is True, if there exists function a vector g : (g1(H1),...,9gm(Hm)) such
that @(x4,...,Xn, g1(H1),--.,9m(Hm)) is a tautology.

When T = Boolean: DQF(T) formula is considered as DQBF.

8/16

Our Contributions

e Reduction of program synthesis to DQF(T).

e Reduction of DQF(BV) to DQBF — allows us to simply plug-in the state of the art DQBF
solvers for BV-constrained synthesis.

9/16

Program synthesis as DQF(T)

f1 (X1,X2) > 2 X Xq and
fi(x1,%) > 2 x x2 and
(f1 (X1 ,Xz) ==2X Xxq or
f1 (X1,X2) ==2X X2)

e Sythesise functions fi, f, that
satisfies the specification.

f2(X3,X4) <2 X x3 and
f>(x3,X%4) <2 X x4 and
(fg(Xg,X4) ==2 X X3 Or
(X3, X4) == 2 X X4)

10/16

Program synthesis as DQF(T)

fi(x1,x2) > 2 x x; and
fi (X1,X2) > 2 X x» and
(fi(x1,x2) ==2 X Xy or
fi(x1,%2) == 2 X X2)

f(x3,x4) <2 x x3 and
f(x3,Xs) < 2 X x4 and
(fg(X3,X4) ==2 X X3 Or
f2(X3,X4) ==2X X4)

y1 > 2 X% x; and
¥1 > 2 X X2 and
(y1 ==2X xy or
Y1 ==2Xxp)

yo <2 X x3 and
Yo < 2 X x4 and
(Yo ==2X X3 0Or
Yo == 2 X Xa)

e Sythesise functions fi, f, that
satisfies the specification.

e Replace every call of functions
fi, > by new variables y1, y» in
specification.

10/16

Program synthesis as DQF(T)

y1 > 2 X xq and
)4 > 2 X x» and
(y1 ==2xxq1 Or Where H; .= {X1,X2} and H, := {X3,X4}.
Y1 ==2xXx)

O 1= Vxi, %2, X3, X437 y1 3%y 0 (31, X2, X3, X4, ¥1, y2)

yo <2 X x3and
Yo <2 X x4 and
(Yo ==2 X x3 or
Yo == 2 X Xq)

11/16

Program synthesis as DQF(T)

y1 > 2 X xq and
)4 > 2 X x» and
(y1 ==2xxq1 Or Where H; .= {X1,X2} and H, := {X3,X4}.
Y1 ==2xXx)

O 1= x1, X2, X3, X4 3™ y1 32y 9 (X1, X2, X3, X4, Y1, ¥2)

e DQF(T) solvers find function vector (g1 (x1,X2), 92(x3,Xs))

such that @(xy, X2, X3, X4, 91 (X1, X2), 92(X3, X4)) is a tautology.
Yo <2 X X3 and

yo <2 X x4 and
(Yo ==2 X x3 or
Yo ==2 X X4)

11/16

Program synthesis as DQF(T)

y1 > 2 X xq and
)4 > 2 X x» and
(y1 ==2xxq1 Or Where H; .= {X1 ,Xg} and H, := {X3,X4}.
Y1 ==2xXx)

O 1= x1, X2, X3, X4 3™ y1 32y 9 (X1, X2, X3, X4, Y1, ¥2)

e DQF(T) solvers find function vector (g1 (x1,X2), 92(x3,Xs))

such that @(xy, X2, X3, X4, 91 (X1, X2), 92(X3, X4)) is a tautology.
Yo <2 X X3 and

Y2 <2X X4 and e g1(x1,X2) required set of expression for f; (input1, input2).
(Yo==2Xxx30r
Yo == 2 X X4) e 9-(x3,x4) required set of expression for £ (input1, input2).

11/16

Multiple CallSign: Program synthesis as DQF(T)

e Henkin dependencies for y; are x; and xo.

f1(X17X2)22><X1 and ¢Z=VX1,XZEIH1y1 (P(X1’X2’y1)
fi(x1,x2) > 2 x x2 and

(fi(x1,x2) ==2X x4 or Where H; := {x{, X2 }.

fi(x1,X) == 2 X Xp)

e DQF(T) solvers find function vector (g (x1,X2)) such that
©(x1,x2,91(x1,X2)) is a tautology.

12/16

Multiple CallSign: Program synthesis as DQF(T)

e Multiple CallSigns: Not every call of function f; have same set
of arguments.

fi(x1,x2) > 2 x x; and
fi (X27X3) > 2 X x3 and
(fi(x1,x3) ==2x Xy or
fi (X1,X3) ==2X X3)

fy (input1, input2) {
If (input1 > input2)
Return 2 x input1
Else
Return 2 x input2 }

12/16

Multiple CallSign: Program synthesis as DQF(T)

fi(x1,x2) > 2 x x; and
fi (Xg,X3) > 2 X x3 and
(fi(x1,x3) ==2 X Xy or
f1 (X1,X3) ==2X X3)

» Replace every instance of f; by same variable: y; := f;(x1, x2)
and = fi (X2,X3)...
H; = {x1,X2,x3} Not Correct!!

12/16

Multiple CallSign: Program synthesis as DQF(T)

» Replace every instance of f; by same variable: y; := f;(x1, x2)
and = fi (X2,X3)...
H; = {x1,X2,x3} Not Correct!!

fi(x1,%) >2x x4 and

fi(x2,x3) > 2 x x3 and e Different variable y variables for every instance of f; ?
(fi(x1,x3) ==2 X Xy or
fi(x1,x3) == 2 X X3) v = f(x1,%2), ¥2 := fi(X2,X3), y3 := f1(x1,X3)

e But, we want to synthesise a Single function that satisfies All
constraints.

12/16

Multiple CallSign: Program synthesis as DQF(T)

» Replace every instance of f; by same variable: y; := fi(x1,x2)
and = fi (Xg,Xg)...
H; = {x1,X2,x3} Not Correct!!

fi(x1,x2) > 2 x x; and

fi(x2,x3) > 2 x x3 and e Different variable y variables for every instance of f; ?
(f1 (X1 ,Xg) ==2X Xy or
fi(x1,X3) == 2 X X3) yi = f(x1,%),y2 = fi(X2,X3),¥3 := fi(x1,x3)

e But, we want to synthesise a Single function that satisfies All
constraints.

We need to take care of Multiple CallSign instances to reduce to DQF(T)

12/16

Multiple CallSign: Program synthesis as DQF(T)

¢ Introduce function arity many new variables.

e Here a,b are newly introduced variables.

fi(x1,x2) > 2 x x4 and
fi (X2,X3) > 2 X x3 and
(fi(x1,x3) ==2 X Xy or
f1 (X1,X3) ==2X X3)

If (xy == a) and (x == b) then
fy (X1,X2) ==f (a b)
If (x2 == a) and (x3 == b) then
fi(x2,x3) == fi(a,b)
If (xy == a) and (x3 == b) then
fy (X1,X3) == (a b)

13/16

Multiple CallSign: Program synthesis as DQF(T)

e Introduce function arity many new variables.

e Here a,b are newly introduced variables.

y1 > 2 X xy and e Have different Y variables for every function
Yo > 2 X x3 and instances.

(Ya==2xxy or y1 = f(x1,%2),y2 := fi(Xe, X3),

Y8 ==2 X X3) ya := fi(x1,x3), ya := fi(a,b)

If (xy == a) and (x, == b) then VX 3y 33 s 3 ya(X, V)
N==Vy4

If (xo == a) and (x3 == b) then Where H; = {X1 7Xg}7 Hy, = {X2,X3}7

Yo ==Y Hs = {x1,x3},Hs = {a,b}

If (xy == a) and (x3 == b) then

V3 ==Vya e g4(a,b) required set of expression for

fi (input1, input2).

13/16

Experimental Evaluations

e Objective: Does DQBF solvers perform on par with state-of-the-art program synthesis
tools?

e We compared Syntax guided synthesis tools (SyGuS) tools, DQBF tools over 645 instances
from SyGuS competitions.

Syntax-Guided DQBF-based

CVC4,ESolver CADET, DCAQE
EUSolver,DryadSynth Manthan, DepQBF
Stochpp DQBDD

14/16

Experimental Evaluations

e Number of SyGuS instances solved using different techniques.

e Timeout. 900s.

Total SyGuS-tools DQBF-based
SyGusS Instances 645 513 610

15/16

Experimental Evaluations

e Number of SyGuS instances solved using different techniques.

e Timeout. 900s.

Total SyGuS-tools DQBF-based
SyGusS Instances 645 513 610

e DQBF solvers performs better than the syntax-guided synthesis.

15/16

Conclusion

e Reduction of program synthesis to DQF(T).
e The special case, T = BV can further be converted to DQBF instances.

e The general purpose DQBF solvers performs better than the syntax guided synthesis.

OO
[=] i https://github.com/meelgroup/DeQusS

Thanks!

16/16

https://github.com/meelgroup/DeQuS

