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Formal methods in Biology

● Computationally hard problems in Biology
○ Examples: Determining future mutations of cancer, brain models

● Formal methods may help

● We present a novel application of formal methods in biology namely,

INFERENCE OF GLYCAN PRODUCTION RULES
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Why are glycans important?

● Glycans are molecules that are used to identify cell types like IP addresses

● Any drug given must not interfere with the glycan processes

● Even though they are so important, we do not know how they are produced
○ Limited and expensive research

● Maybe formal methods can find the production processes

9



Assembling complex molecules

● Well known examples:
○ synthesis of linear DNA from nucleotide building blocks  
○ synthesis of linear proteins from amino-acid building blocks
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Complex sugars: Glycans
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Complex sugars: Glycans

● Glycans
○ Tree-like polymers made up of sugar monomers
○ Set of which are found on the surface of all living cells; the set identifies the cell type
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Assembling glycans

● Enzymes
○ Proteins which assemble glycans via successive additions, process known as glycosylation
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Properties of Glycosylation I

● Enzymes have to work with limited resources
○ Specificity: Attachment of a monomer happens at a specific point on the tree
○ Intra-cell variability: Produce a given set of glycans using a few enzymes
○ Inter-cell variability: Different cell types have different types of glycans
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Properties of Glycosylation II

● Other issues
○ Microheterogeneity and stochastic operation of enzymes
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Properties of Glycosylation II

● Other issues
○ Microheterogeneity and stochastic operation of enzymes
○ Nevertheless, the glycan profiles of individual proteins are typically narrow and reproducible

How can this stochastic and heterogeneous biosynthetic process 
generate narrow and reproducible glycan profiles?
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Wang tiles: An analogy

● A central inverse problem in self-assembly is to design building blocks that assemble into a target 
shape
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Wang tiles: An analogy

● A central inverse problem in self-assembly is to design building blocks that assemble into a target 
shape

● Glycans may be considered a natural realization of the Wang construct, with monomers acting like 
tiles whose stickiness is encoded by GTase enzymes.
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The CS problem
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Complex tree-like 
sugar polymers
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Program
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Output

Find a program that 
produces the output 
i.e program synthesis



State-of-the-art for finding production rules

● Biologists’ identification of production rules
○ Manual
○ Uses prior knowledge
○ Previous work: Algorithmic construct in special situations without stochasticity
○ Can we do better?
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State-of-the-art for finding production rules

● Biologists’ identification of production rules
○ Manual
○ Uses prior knowledge
○ Previous work: Algorithmic construct in special situations without stochasticity
○ Can we do better?

● Search space is large: 1070 rules sets possible ! 

● Need for automated synthesis
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Our method for production rule synthesis

Rule 
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Our method for production rule synthesis

First of 
its kind

CEGIS

Template 
mechanism

Iterative
SMT solver 
based
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Rule 
synthesis



Our method

● Synthesis query: constraints to the solver
○ Unsatisfiable: No production rules in the current template’s search space
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Our method

● Synthesis query: constraints to the solver
○ Unsatisfiable: No production rules in the current template’s search space
○ Satisfiable

■ Counterexample query: check that no extra molecules are produced than the input set
■ Add constraints for the same

○ Variations: Coming up!

● Implemented in our tool, GlySynth!
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Formal model: input glycan molecules
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Molecule 1 Molecule 2

Input glycan molecules



Formal model: Monomers
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Set of monomers = { }



Formal model: candidate production rules

● Intuitively, we feel that there are 4 rules which can make this set of molecules
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Rule 1 Rule 2 Rule 3 Rule 4

*Thick border on the circles represent the monomer being added



Formal model: counterexample molecules

● However, can these rules produce a molecule which is not in the set?
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Extra Molecule 1 Extra Molecule 2

● Correct rules produced by GlySynth, coming up shortly!



Input and Output

SugarSynth
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High-level Algorithm

GlySynth
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Initialize 
constraints that 
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production rules 
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Revisiting our previous example

● Input molecules
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Molecule 1 Molecule 2

● Number of rules to be synthesized = 4
● Maximum rule depth = 2



Revisiting our previous example

● Rules synthesized
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Rule 1 Rule 2 Rule 4Rule 3

● No extra molecule!

*Thick border on the circles represent the monomer being added



Variations: life is not that simple!

● Fast and slow reactions
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Variations: life is not that simple!

● Fast and slow reactions
○ Example coming up!

● Runaway reactions

● Compartments

● Incomplete and noisy data
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Another example

● Inputs
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Another example

● Inputs

Max depth = 2
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Another example

● Inputs

Max depth = 2 Number of rules to learn = 1
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Another example

● Inputs

Max depth = 2 Number of rules to learn = 1

compartments = 1
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Another example

● First iteration

Slow rule
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Another example

● First iteration

Slow rule

However, produces a 

negative molecule

Negative molecule

❌
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Another example

● Second iteration

Fast rule

69



Another example

● Second iteration

Fast rule

Termination

✅
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Our tool GlySynth

● Written in C++, uses z3
● Experiments data: skimming from literature
● Open Source
● Available on github: https://github.com/ashutosh0gupta/sugar-synth
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https://github.com/ashutosh0gupta/sugar-synth


Results

D1: Respiratory mucins of a cystic fibrosis patient   D2: Horse chorionic gonadotropin
D3: SARS-CoV-2 spike protein T323/S325              D4: Human chorionic gonadotropin from a cancer cell line 72



Future Work

● Full end-to-end interpretation of the data from the wet experiments
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Future Work

● Full end-to-end interpretation of the data from the wet experiments

● Check viability of the solutions found by our method

● Few more variants of the synthesis problem
○ Flexible compartment boundaries
○ Other stay models

● Modeling of the synthesis problem as minimization of a modified version of tree automaton
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Conclusion

● This talk
○ Glycans and glycosylation: Need for automated synthesis
○ Formal modeling of the glycan synthesis problem: Algorithm & example
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Conclusion

● This talk
○ Glycans and glycosylation: Need for automated synthesis
○ Formal modeling of the glycan synthesis problem: Algorithm & example

● In the paper CMSB’21
○ Details on the related work and the algorithms
○ (Abstract) modeling and formal justifications
○ More experiments and results

● Impact
○ Data analysis allows us to infer the causes of microheterogeneity and species-specific 

diversity in real glycan datasets
○ Novel synthesis method for discovering the production rules of glycan molecules from the 

output of the rules
○ Identification of a new area of application for formal methods in biology
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Appendix
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Glycosylation

● Grown without templates - unlike DNAs
● Carried out by large collection of GTase enzymes
● Final glycan structure is determined by the behavior of the enzymes themselves
● Stochastic
● Promiscuous
● Biological experiment

○ produces a spectrum of glycan trees
○ previous work: a method to infer the production rules when a single glycan is produced

Given a set of glycan trees produced by a cell, can we infer the set of 
enzymes that produce the glycans?
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Single Vs Multiple compartments
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● Rules template correctness
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Constraints

● Rules template correctness
● Molecule template correctness
● Constraints for the rules to produce the given molecule set
● Constraints for the rules to not produce additional molecules
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Properties of SugarSynth

● Soundness
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Properties of SugarSynth

● Soundness
● Completeness
● Generated rule set

○ Not unique
○ Not minimal
○ First set satisfying constraints is returned
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How large is the search space?

● Revisiting the earlier number, 1070

● For a problem having 10 monomers, 10 rules, 3 as rule size, 3 compartments and fast-slow 
reactions, the search space is ≈ 1074 rules (210 ∗ (10+3-1)C(3-1)  ∗ 10(2^3 - 1)*10)

fast / slow

Distribute 10 rules in 
3 compartments

10 monomers in 2^3 -1 
nodes of a tree with 
depth 3
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