Verification of Concurrent
Programs under Release Acquire

S. Krishna

oequential Consistency

Processes

read from and write to shared memory

program order preserved by each process

classical interleaving semantics

Dekker Mutual Exclusion Protocol

Init: x=y=0

2. ry=y; Q. IX=X;
3. if (ry==0) { 3. if (rx==0) {

4. //csl; 4. [/ /cs&;
S.} 5.}

Process 1 Process 2

Specification S: not (csl &é& cs2)

An SC execution

/

~

Dekker Mutual Exclusion Protocol

An SC execution
Init: x=y=0 4 y @

1. x=1; 1. y=1;
Q. ry=y; Q. IX=X;
3. if (ry==0) { g 8. if (rx==0) {

4. [/ /cs&;
S.} S. }

Process 1 Process 2

v

Specification S: not (csl &é& cs2)

Weak Memory Models

- Modern processors and/or compilers:

(S (intel)
- Reorder instructions Java
AMD 1

« Use caches and buffers

Behaviors described by weak memory models:
« The Release-Aquire fragment of C11

read-aquire %

ite-releaset
S— T e

for efficiency
reasons

rite-releaset

——— ——

read-aquire ¥ .

e

W=

write-read

reordering

2. ry=y; Q. rX=X;
3. if (ry::O) { 3. if (rx==o) {

Potential Bad Behaviours

A RA execution

4 N

Init: x=y=0

Specification S: not (csl &é& cs2)

6

z. ry:y; 2. Y=1;
3. if (ry::O) { 3. if (I‘X::O) {

Potential Bad Behaviours

A RA execution

4 N

Init: x=y=0

Specification S: not (csl &é& cs2)

i

Potential Bad Behaviours

A RA execution

Init: x=y=0

1. x=1; 1. rX=X;
Q. ry=y; . y=1;
3. if (ry==0) { 3. if (rx==0) {

8

Potential Bad Behaviours

A RA execution @

Init: x=y=0

1. x=1; 1. rX=X;
Q. ry=y; . y=1;
3. if (ry==0) { 3. if (rx==0) {

Specification S: not (csl &é& cs2)

9

Problem of Interest

Given a program P and a (control + memory) state s

- State Reachability Problem (Safety)

Is s reachable in P under RA%

Decidability/ Complexity %

BEach process is finite-state

- For SC, the reachability problem is PSPACE-complete

- Nontrivial for RA since the set of paths is nonregular

Operational Model for RA

[J. Kang et al. POPL 2017, A. Podkopaev et al. 2016, Arxiv]

RA.: High Level Description

LL@

RA: High Level Description

logical logical
clock for x) " clock fory

RA: High Level Description

RA: High Level Description

| - — ~ ’-‘%P\\
| ==
=iyiv, -
—-— — =S e _—
——

\.2. variable time stamp_> yours__—~
3' ;.\’:%::_ I D

RA: High Level Description

Read

1. select view in memory

RA: High Level Description

Read
1. select view in memory

2. variable time stamp > yours
3. update local view

RA: High Level Description

a: =1
xr . — 2
b:—= vy

Read
1. select view in memory

2. variable time stamp > yours
3. update local view

RA: High Level Description

[[
N~ ~mmanda A

— _ Write

1. create new local view _—

e S

2. variable time stamp:

e

° C —— B
i. newer than yours

.-
— ——— —

.3, copy new view to me

RA: High Level Description

RA: High Level Description

P;: a:=1 Read
1. select view in memory
Pr: x:=2 2. variable time stamp> yours

3. update local view

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22

RA run

RA run

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22 _

RA run

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22 _

RA run

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22 _ -/

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22 _ -/

RA run

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

w(x,2)

M

Reachable: $rl =0, $r2 = 1 and $r3=22 _

(Register values: $rl1=0 $I’2=O)

Process 1 Process 2

Reachable: $rl =0, $r2 = 1 and $r3=22

RA run

r(x,0)

~
il

(Non parameterized) Reachability
under RA

PLDI 2019

Given a program P and a (control + memory) state s

» State Reachability Problem (Safety)
Is s reachable in P?
- The state reachability problem is undecidable for RA

Proof Idea:

By reduction from the Post’s correspondence Problem

@ Sequence of indices @

~Se
QUence Ofletteps

Se
@ Sequence of letters @

Context-bounded Analysis (CBA)

N

4+ BEfficient under-approximation technique for SC [Qadeer et
al. 2005, Lal et al. 2009, Torre et al. 2009]

« Several tools: CHESS, Corral, CSeq, etc.

The state reachability problem is still undecidable for RA
with a bounded number (3) of context switches
(context: only one “active” process)

Pl runs; P2 runs; P3 runs; P4 runs

Context-bounded Analysis (CBA)

o

4+ BEfficient under-approximation technique for SC [Qadeer et
al. 2005, Lal et al. 2009, Torregt al. 2009]

« Several toq

Need a different under approximation for RA

The state reachability prolicin is l undecidable for RA
with a bounded number (3) of context switches
(context: only one “active” process)

Pl runs; P2 runs; P3 runs; P4 runs

A view-switch happens when
a process reads a value

written by another process,
and changes its view

A T E E E E T T T T Y y
X

View switch

2-bounded run

View switch

- = & - - - -- -

l No View switch

A view-switch happens when
8 process reads a value

written by another process,
and changes its view

Bounding the number of
essential views in the memory

>

View switch

/

- Em O .. -

A view-switch happens when
8 process reads a value
written by another process, | = \

and changes itSaiii

; N
Bound
essenti

>
]
|
|
|
|
|
|
|
|
|
|
|
|
4

View switch

K-bounded Reachability Problem

Reachability problem restricted to K-bounded runs \

Code-to-code
translation

The K-bounded reachability for RA is reducible to
K+n bounded context reachability under SC
R RO OO ERRNRRNRRAWRRRH™®

Corollary

The K-bounded reachability for RA is decidable
for finite-state programs

Key Ideas

Two steps:

[Loca,lity}

| Validation |

---------'

View switch

| Locality | [Validation|

| Locality | [Validation|

[Va,lida,tion)

| Locality |

Interface

(X

v TN N W =" EEEEEEE.EN

lllllllllllllllll

1

x=0 y

’--------------.

tmmmmmmmmmmsY

=1

X=2 Y

=1

RY

X

Interface =

| Locality | [Validation|

Simulate P1 under SC

'------
& E E _E _E E E - - - -

| Interface]\Fr

¥ E = E = E =E = = = =l = = = = = = =m =E = N
‘---------'

é Interface ‘

[Va,lida,tion)

| Locality |

Simulate P2 under SC

lllllllllllllllll

=1

tmmmmmmmmmmY

X=2 Y

y
1

_y=

X

v TN N W =" EEEEEEE.EN
- EmEEEEE """ ..

(X

[Locality) (Va,lidation)

View Bounded Model Checker (VBMOC)

e Using CBMC as backend model checker

(C/Pthread

program \

K-bounded /
reachability

_

Instrumented
program <

~
S

View Bounded Model Checker (V.

3MC)

4+ Tested with 4004 litmus tests [Sarkar et al. 2011]:

e Same results as Herd [Alglave et al. 2014]

4+ Tested on concurrent benchmarks:
 Few number of contexts sufficient for bug detection under RA

e (Catches isolated bugs faster than state of the art SMC tools
Tracer, RCMC and CDSChecker

Parameterized Reachability

Inherent Undecidability

Arxiv. 2021

L 8

Unboundedly many

I
S
Q

m e 6 6 06 0 O

1l
S
Q

Identical threads

Allowing CAS operations render state reachability
undecidable for parameterized RA, even with acyclic,
identical threads

P W awm

QBF Sat

unbounded, identical
no CAS

acyclic, distinguished
W
<

Query evaluation in linear Datalog

PSPACE completeness

unbounded, identical acyclic, distinguished unrestricted
no CAS has CAS

NEXPTIME completeness

no CAS

unbounded. identical acyclic, distinguished unrestricted

no CAS has CAS

Non primitive recursive

...... ..+ B

unrestricted

unbounded, identical acyclic, distinguished unrestricted

no CAS has CAS

