
Partial Order Reduction for Timed Systems

Frédéric Herbreteau? B Srivathsan? Igor Walukiewicz?

Govind R??

LaBRI, Université de Bordeaux
Chennai Mathematical Institute

10 July 2021
Formal Methods Update Meeting 2021

1/49



2/49

Networks of Timed automata: used to model several
safety-critical systems.

State-space explosion is a major
challenge in their verification!

s0

s1

s2

s0

s1

s2

· · ·

s0

s1

s2

a {x}

b

a {y}

b

a {z}

b

A1 A2 An

Our work

Algorithms for networks of timed automata motivated by
partial order reduction.



2/49

Networks of Timed automata: used to model several
safety-critical systems.

State-space explosion is a major
challenge in their verification!

s0

s1

s2

s0

s1

s2

· · ·

s0

s1

s2

a {x}

b

a {y}

b

a {z}

b

A1 A2 An

Our work

Algorithms for networks of timed automata motivated by
partial order reduction.



2/49

Networks of Timed automata: used to model several
safety-critical systems.

State-space explosion is a major
challenge in their verification!

s0

s1

s2

s0

s1

s2

· · ·

s0

s1

s2

a {x}

b

a {y}

b

a {z}

b

A1 A2 An

Our work

Algorithms for networks of timed automata motivated by
partial order reduction.



3/49

Overview of the talk

Partial order reduction

Timed automata and our problem

Local time semantics Local zone graph

Solution 1

Local time semantics
and aggregated zones

Sync-subsumption

Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



4/49

Reachability in networks of automata

A1 A2

p0

p1

p2

p3

q0

q1

q2

a1 b1

d d

e

e

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

a1 b1

b1 a1

d

A1 × A2

Synchronises on joint actions

State space explosion

due to multiple interleavings

of same actions

Can we do better than

exhaustively explore A1 × A2?

Sufficient to explore a

part of A1 × A2



5/49

Reachability in networks of automata

A1 A2 A3

p0

p1

p2

p3

q0

q1

q2

r0

r1

r2

a1 b1

d

e

d

c1

d

e

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d A1 × A2 × A3



5/49

Reachability in networks of automata

A1 A2 A3

p0

p1

p2

p3

q0

q1

q2

r0

r1

r2

a1 b1

d

e

d

c1

d

e

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d A1 × A2 × A3



6/49

Reachability in networks of automata

The graphs occuring in practice are very large, in general!

A network with 10 processes
5 states per process

→ 510 ≈ 10 million states.



6/49

Reachability in networks of automata

The graphs occuring in practice are very large, in general!

A network with 10 processes
5 states per process

→ 510 ≈ 10 million states.



7/49

Partial Order Reduction (POR)

Actions a and b are independent, if
for every state s from which they are
enabled:

Forward Diamond : If s
a−→ s1 and

s
b−→ s2, then b is enabled from s1 and

a is enabled from s2.

Diamond : If s
ab−→ s ′, then s

ba−→ s ′.

s

s1 s2

s ′

a b

b a

Actions a, b, are independent if they belong to different processes.



7/49

Partial Order Reduction (POR)

Actions a and b are independent, if
for every state s from which they are
enabled:

Forward Diamond : If s
a−→ s1 and

s
b−→ s2, then b is enabled from s1 and

a is enabled from s2.

Diamond : If s
ab−→ s ′, then s

ba−→ s ′.

s

s1 s2

s ′

a b

b a

Actions a, b, are independent if they belong to different processes.



7/49

Partial Order Reduction (POR)

Actions a and b are independent, if
for every state s from which they are
enabled:

Forward Diamond : If s
a−→ s1 and

s
b−→ s2, then b is enabled from s1 and

a is enabled from s2.

Diamond : If s
ab−→ s ′, then s

ba−→ s ′.

s

s1 s2

s ′

s ′1 s ′2

b a

a b

b a

Actions a, b, are independent if they belong to different processes.



7/49

Partial Order Reduction (POR)

Actions a and b are independent, if
for every state s from which they are
enabled:

Forward Diamond : If s
a−→ s1 and

s
b−→ s2, then b is enabled from s1 and

a is enabled from s2.

Diamond : If s
ab−→ s ′, then s

ba−→ s ′.

s

s1 s2

s ′

a b

b a

Actions a, b, are independent if they belong to different processes.



7/49

Partial Order Reduction (POR)

Actions a and b are independent, if
for every state s from which they are
enabled:

Forward Diamond : If s
a−→ s1 and

s
b−→ s2, then b is enabled from s1 and

a is enabled from s2.

Diamond : If s
ab−→ s ′, then s

ba−→ s ′.

s

s1 s2

s ′

a b

b a

Actions a, b, are independent if they belong to different processes.



8/49

Partial Order Reduction (POR)

Equivalence relation between paths

u ∼ w - when w can be obtained from
u by permuting adjacent independent
actions.

a1b1c1d

b1a1c1d

Strategy

I Classify paths into equivalence
classes and explore only one path
from each equivalence class.

I Avoid exploring multiple
interleavings of independent
actions.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



8/49

Partial Order Reduction (POR)

Equivalence relation between paths

u ∼ w - when w can be obtained from
u by permuting adjacent independent
actions.

a1b1c1d

b1a1c1d

Strategy

I Classify paths into equivalence
classes and explore only one path
from each equivalence class.

I Avoid exploring multiple
interleavings of independent
actions.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



8/49

Partial Order Reduction (POR)

Equivalence relation between paths

u ∼ w - when w can be obtained from
u by permuting adjacent independent
actions.

a1b1c1d

b1a1c1d

Strategy

I Classify paths into equivalence
classes and explore only one path
from each equivalence class.

I Avoid exploring multiple
interleavings of independent
actions.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



8/49

Partial Order Reduction (POR)

Equivalence relation between paths

u ∼ w - when w can be obtained from
u by permuting adjacent independent
actions.

a1b1c1d

b1a1c1d

Strategy

I Classify paths into equivalence
classes and explore only one path
from each equivalence class.

I Avoid exploring multiple
interleavings of independent
actions.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



9/49

Partial Order Reduction (POR)

Goal

To compute a subset of successors from
each state seen during exploration.

Challenges

I Completeness.

I Computing subsets should be
“much more efficient” than testing
reachability.

I Subset should be as small as
possible.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



9/49

Partial Order Reduction (POR)

Goal

To compute a subset of successors from
each state seen during exploration.

Challenges

I Completeness.

I Computing subsets should be
“much more efficient” than testing
reachability.

I Subset should be as small as
possible.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d



10/49

Partial Order Reduction (POR)

Partial order reduction methods
I Extensively studied.

I Still an active research field.

I Several known variants.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d

Variants
I Stubborn sets [Valmari ’89]

I Ample sets [Godefroid ’90]

I Persistent sets [Peled ’93]

I Source sets [Abdulla et al. ’16]

Similar ideas, but differ in
the choice of the subset of
actions to be played.



10/49

Partial Order Reduction (POR)

Partial order reduction methods
I Extensively studied.

I Still an active research field.

I Several known variants.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1 c1a1 c1 b1 a1

c1
a1

b1

d

Variants
I Stubborn sets [Valmari ’89]

I Ample sets [Godefroid ’90]

I Persistent sets [Peled ’93]

I Source sets [Abdulla et al. ’16]

Similar ideas, but differ in
the choice of the subset of
actions to be played.



11/49

Overview of the talk

X Partial order reduction

Timed automata and our problem

Local time semantics Local zone graph

Solution 1

Local time semantics
and aggregated zones

Sync-subsumption

Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



12/49

Our focus

Reachability in networks of timed automata



13/49

Timed automaton [Alur Dill ’94]

p q r

a

b

c

x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}

Clocks: X = {x , y}

Guard

Reset

Configuration: (q, v)

State Valuation
v : X 7→ R≥0



13/49

Timed automaton [Alur Dill ’94]

p q r

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}

Clocks: X = {x , y}

Guard

Reset

Configuration: (q, v)

State Valuation
v : X 7→ R≥0



13/49

Timed automaton [Alur Dill ’94]

p q r

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}

Clocks: X = {x , y}

Guard

Reset

Configuration: (q, v)

State Valuation
v : X 7→ R≥0



13/49

Timed automaton [Alur Dill ’94]

p q r

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}

Clocks: X = {x , y}

Guard

Reset

Configuration: (q, v)

State Valuation
v : X 7→ R≥0



14/49

Timed automaton [Alur Dill ’94]

p q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}

Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

p q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

pp q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0)

(p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

pp q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5)

(q, x = 5, y = 0) (r , x = 0, y = 3)

Delay

Action

5

a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

p qq r

Timed automaton

aa

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0)

(r , x = 0, y = 3)

Delay Action

5 a

a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

p q rr

Timed automaton

a

bb

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 bb

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

p q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



14/49

Timed automaton [Alur Dill ’94]

p q r

Timed automaton

a

b

c
x ≥ 4

y ≥ 3

x ≤ 2
{y}

{x}

{y}
Run of the timed automaton

(p, x = 0, y = 0) (p, x = 5, y = 5) (q, x = 5, y = 0) (r , x = 0, y = 3)

Delay Action

5 a 3 b

Reachability Problem

Decide if a given timed automaton has a run reaching a green
state.

This problem is PSPACE-complete
[Alur Dill ’94]



15/49

Standard Reachability Algorithm [Daws Tripakis ’98]

Based on explicit enumeration of

sets of valuations called zones

Zone graph

Directed graph with nodes of the
form (state, zone).

q0, Z0

q1, Z1 q2, Z2 q3, Z3· · · · · ·

· · · · · · · · ·

Used in tools like

UPPAAL, TChecker, PAT, KRONOS



15/49

Standard Reachability Algorithm [Daws Tripakis ’98]

Based on explicit enumeration of

sets of valuations called zones

Zone graph

Directed graph with nodes of the
form (state, zone).

q0, Z0

q1, Z1 q2, Z2 q3, Z3· · · · · ·

· · · · · · · · ·

Used in tools like

UPPAAL, TChecker, PAT, KRONOS



15/49

Standard Reachability Algorithm [Daws Tripakis ’98]

Based on explicit enumeration of

sets of valuations called zones

Zone graph

Directed graph with nodes of the
form (state, zone).

q0, Z0

q1, Z1 q2, Z2 q3, Z3· · · · · ·

· · · · · · · · ·

Used in tools like

UPPAAL, TChecker, PAT, KRONOS



16/49

Standard Reachability Algorithm

Zone graphs are infinite in general!

How do we ensure termination?



16/49

Standard Reachability Algorithm

Zone graphs are infinite in general!

How do we ensure termination?



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2 q3, Z

′
3

q2, Z2 q3, Z3

Z2 ⊆ a(Z ′
2 )?Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2q2, Z
′
2 q3, Z

′
3

q2, Z2q2, Z2 q3, Z3

Z2 ⊆ a(Z ′
2 )?

Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2q2, Z
′
2 q3, Z

′
3

q2, Z2q2, Z2 q3, Z3

Z2 ⊆ a(Z ′
2 )?Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2 q3, Z

′
3q3, Z
′
3

q2, Z2 q3, Z3q3, Z3

Z2 ⊆ a(Z ′
2 )?Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?

Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2 q3, Z

′
3q3, Z
′
3

q2, Z2 q3, Z3q3, Z3

Z2 ⊆ a(Z ′
2 )?Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



17/49

Standard Reachability Algorithm

Idea

For each newly seen node (q,Z ),
check if there exists an already
visited node (q,Z ′) such that Z
is subsumed by Z ′.

I If yes, no need to explore
further from that node.

I If not, add (q,Z ) to the set
of visited nodes and
continue exploration.

q0, Z0

q1, Z1 q2, Z
′
2 q3, Z

′
3

q2, Z2 q3, Z3

Z2 ⊆ a(Z ′
2 )?Z2 ⊆ a(Z ′
2 )?

YES

Stop exploration
from this node

Z3 ⊆ a(Z ′
3 )?Z3 ⊆ a(Z ′
3 )?

NO

Continue exploration

· · · · · ·

· · · · · · · · ·

Subsumptions used to ensure finiteness for zone graphs

Well-studied subsumptions: aLU , aM [BBLP 06, HSW12]



18/49

Network of timed automata

A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 4

c c

No shared clocks

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

ax ≤ 3 b y ≥ 4

by ≥ 4 a x ≤ 3

c

Synchronized

product

(p0, q0)
x = 0, y = 0

(p0, q0)
x = 1, y = 1

(p1, q0)
x = 1, y = 1

(p1, q1)
x = 4, y = 4

δ = 1

a

δ = 3
b

Run of the network

Time elapses synchronously for all processes



18/49

Network of timed automata

A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 4

c c

No shared clocks

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

ax ≤ 3 b y ≥ 4

by ≥ 4 a x ≤ 3

c

Synchronized

product

(p0, q0)
x = 0, y = 0

(p0, q0)
x = 1, y = 1

(p1, q0)
x = 1, y = 1

(p1, q1)
x = 4, y = 4

δ = 1

a

δ = 3
b

Run of the network

Time elapses synchronously for all processes



18/49

Network of timed automata

A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 4

c c

No shared clocks

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

ax ≤ 3 b y ≥ 4

by ≥ 4 a x ≤ 3

c

Synchronized

product

(p0, q0)
x = 0, y = 0

(p0, q0)
x = 1, y = 1

(p1, q0)
x = 1, y = 1

(p1, q1)
x = 4, y = 4

δ = 1

a

δ = 3
b

Run of the network

Time elapses synchronously for all processes



18/49

Network of timed automata

A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 4

c c

No shared clocks

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

ax ≤ 3 b y ≥ 4

by ≥ 4 a x ≤ 3

c

Synchronized

product

(p0, q0)
x = 0, y = 0

(p0, q0)
x = 1, y = 1

(p1, q0)
x = 1, y = 1

(p1, q1)
x = 4, y = 4

δ = 1

a

δ = 3
b

Run of the network

Time elapses synchronously for all processes



18/49

Network of timed automata

A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 4

c c

No shared clocks

p0, q0

p1, q0 p0, q1

p1, q1

p2, q2

ax ≤ 3 b y ≥ 4

by ≥ 4 a x ≤ 3

c

Synchronized

product

(p0, q0)
x = 0, y = 0

(p0, q0)
x = 1, y = 1

(p1, q0)
x = 1, y = 1

(p1, q1)
x = 4, y = 4

δ = 1

a

δ = 3
b

Run of the network

Time elapses synchronously for all processes



19/49

Zone Graph of a network of timed automata

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

(p0, q0, r0)

x = y = z ≥ 0

(p1, q0, r0)

y = z ≥ x ≥ 0

(p0, q1, r0)

x = z ≥ y ≥ 0

(p0, q0, r1)

x = y ≥ z ≥ 0

(p1, q1, r0)

z ≥ x ≥ y ≥ 0

(p1, q0, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r0)

z ≥ y ≥ x ≥ 0

(p0, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q0, r1)

y ≥ z ≥ x ≥ 0

(p0, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r1)

y ≥ z ≥ x ≥ 0

(p1, q1, r1)

z ≥ x ≥ y ≥ 0

(p1, q1, r1)

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a

Different interleavings of independent actions lead to different nodes!



19/49

Zone Graph of a network of timed automata

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

(p0, q0, r0)

x = y = z ≥ 0

(p1, q0, r0)

y = z ≥ x ≥ 0

(p0, q1, r0)

x = z ≥ y ≥ 0

(p0, q0, r1)

x = y ≥ z ≥ 0

(p1, q1, r0)

z ≥ x ≥ y ≥ 0

(p1, q0, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r0)

z ≥ y ≥ x ≥ 0

(p0, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q0, r1)

y ≥ z ≥ x ≥ 0

(p0, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r1)

y ≥ z ≥ x ≥ 0

(p1, q1, r1)

z ≥ x ≥ y ≥ 0

(p1, q1, r1)

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a

Different interleavings of independent actions lead to different nodes!



19/49

Zone Graph of a network of timed automata

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

(p0, q0, r0)

x = y = z ≥ 0

(p1, q0, r0)

y = z ≥ x ≥ 0

(p0, q1, r0)

x = z ≥ y ≥ 0

(p0, q0, r1)

x = y ≥ z ≥ 0

(p1, q1, r0)

z ≥ x ≥ y ≥ 0

(p1, q0, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r0)

z ≥ y ≥ x ≥ 0

(p0, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q0, r1)

y ≥ z ≥ x ≥ 0

(p0, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

x ≥ y ≥ z ≥ 0

(p1, q1, r1)

x ≥ z ≥ y ≥ 0

(p1, q1, r1)

y ≥ x ≥ z ≥ 0

(p1, q1, r1)

y ≥ z ≥ x ≥ 0

(p1, q1, r1)

z ≥ x ≥ y ≥ 0

(p1, q1, r1)

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a

Different interleavings of independent actions lead to different nodes!



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



20/49

Our problem: State-space explosion due to interleavings

for networks of timed automata

Explosion is even worse than for untimed networks as

different interleavings lead to different nodes!

Our contribution:

Two algorithms for alleviating effects of this explosion

? Modified zone graph that merges different interleavings into one node

? Applying POR on this modified zone graph, technical challenges, solutions

Main idea: local time semantics



21/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

Local time semantics Local zone graph

Solution 1

Local time semantics
and aggregated zones

Sync-subsumption

Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



22/49

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x ≤ 3 b y ≥ 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a

δ1 = 1

Idea: Allow each process to
elapse time independently

t1 t2
Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the

value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value



22/49

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x ≤ 3 b y ≥ 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a

δ1 = 1

Idea: Allow each process to
elapse time independently

t1 t2
Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the

value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value



22/49

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x ≤ 3 b y ≥ 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a

δ1 = 1

c

Idea: Allow each process to
elapse time independently

t1 t2
Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the

value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value



22/49

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x ≤ 3 b y ≥ 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a

δ1 = 1

c

Idea: Allow each process to
elapse time independently

t1 t2
Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the

value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value



22/49

Local time semantics [Bengtsson et al. ’98]

p0

p1

p2

q0

q1

q2

A1 A2

a x ≤ 3 b y ≥ 4

c c

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p0, q1)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 3, x = 3

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 4, y = 4

(p2, q2)

t1 = 4, x = 4

t2 = 4, y = 4

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a

δ1 = 1

cc

Idea: Allow each process to
elapse time independently

t1 t2
Reference clocks to measure
time elapsed in each process

Shared actions only executed
from valuations in which
processes agree on the

value of reference clocks

Synchronized valuations: reference clocks
of all the processes have the same value



23/49

p0

p1

p2

q0

q1

q2

a x ≤ 3

c

b y ≥ 4

c

Global time semantics
(Standard)

Time is synchronized

(p0, q0)

x = 0, y = 0

(p1, q0)

x = 3, y = 3

(p0, q1)

x = 4, y = 4

(p1, q1)

x = 4, y = 4

δ = 3
a

δ = 4
b

δ = 1

b

aX

Time elapses independently

for each process

Local time semantics
[Bengtsson et al. ’98]

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p1, q0)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 3, y = 3

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a



23/49

p0

p1

p2

q0

q1

q2

a x ≤ 3

c

b y ≥ 4

c

Global time semantics
(Standard)

Time is synchronized

(p0, q0)

x = 0, y = 0

(p1, q0)

x = 3, y = 3

(p0, q1)

x = 4, y = 4

(p1, q1)

x = 4, y = 4

δ = 3
a

δ = 4
b

δ = 1

b

aX

Time elapses independently

for each process

Local time semantics
[Bengtsson et al. ’98]

(p0, q0)

t1 = 0, x = 0

t2 = 0, y = 0

(p1, q0)

t1 = 3, x = 3

t2 = 0, y = 0

(p1, q0)

t1 = 0, x = 0

t2 = 4, y = 4

(p1, q1)

t1 = 4, x = 4

t2 = 3, y = 3

δ1 = 3
a

δ2 = 4
b

δ2 = 4
b

δ1 = 3
a



24/49

Local time semantics

Independence [Bengtsson et al. ’98]

If (q0, v0)
σ1−→lt (q, v) and σ1 ∼ σ2, then (q0, v0)

σ2−→lt (q, v).

Correctness [Bengtsson et al. ’98]

I Every global run is a local time run.

I If there is a local time run to a (q, v), where v is a
synchronized valuation, then there is a global run to (q, v).



25/49

Local Zone Graph

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

t1 = x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

a

b

c

b

a

c

c

b

a

c

a

b

Local zone graph

x = y = z ≥ 0

y = z ≥ x ≥ 0

x = z ≥ y ≥ 0

x = y ≥ z ≥ 0

z ≥ x ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

z ≥ y ≥ x ≥ 0

x ≥ y ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

x ≥ z ≥ y ≥ 0

x ≥ y ≥ z ≥ 0

x ≥ z ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

z ≥ x ≥ y ≥ 0

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a
Global zone graph



25/49

Local Zone Graph

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

t1 = x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

a

b

c

b

a

c

c

b

a

c

a

b

Local zone graph

x = y = z ≥ 0

y = z ≥ x ≥ 0

x = z ≥ y ≥ 0

x = y ≥ z ≥ 0

z ≥ x ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

z ≥ y ≥ x ≥ 0

x ≥ y ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

x ≥ z ≥ y ≥ 0

x ≥ y ≥ z ≥ 0

x ≥ z ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

z ≥ x ≥ y ≥ 0

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a
Global zone graph



25/49

Local Zone Graph

p0

p1

q0

q1

r0

r1

a

{x}
b
{y}

c

{z}

t1 = x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 = z ≥ 0

t1 = x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 = y ≥ 0

t3 ≥ z ≥ 0

t1 ≥ x ≥ 0
t2 ≥ y ≥ 0

t3 ≥ z ≥ 0

a

b

c

b

a

c

c

b

a

c

a

b

Local zone graph

x = y = z ≥ 0

y = z ≥ x ≥ 0

x = z ≥ y ≥ 0

x = y ≥ z ≥ 0

z ≥ x ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

z ≥ y ≥ x ≥ 0

x ≥ y ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

x ≥ z ≥ y ≥ 0

x ≥ y ≥ z ≥ 0

x ≥ z ≥ y ≥ 0

y ≥ x ≥ z ≥ 0

y ≥ z ≥ x ≥ 0

z ≥ x ≥ y ≥ 0

z ≥ y ≥ x ≥ 0

a

b

c

b

c

a

c

a

b

c

b

c

a

b

a
Global zone graph



26/49

Local zone graphs

Challenge: Local zone graphs are not finite in general!



27/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics X Local zone graph

Solution 1

Local time semantics
and aggregated zones

Sync-subsumption

Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



28/49

Local zone graphs

Challenge: Local zone graphs are not finite in general!

Current attempts at finiteness for local zone graphs

I Catchup equivalence
[Bengtsson et al. ’98]

I Extrapolation operator
[Minea ’99]

Not efficiently computable.



28/49

Local zone graphs

Challenge: Local zone graphs are not finite in general!

Current attempts at finiteness for local zone graphs

I Catchup equivalence
[Bengtsson et al. ’98]

I Extrapolation operator
[Minea ’99]

Not efficiently computable.



28/49

Local zone graphs

Challenge: Local zone graphs are not finite in general!

Current attempts at finiteness for local zone graphs

I Catchup equivalence
[Bengtsson et al. ’98]

I Extrapolation operator
[Minea ’99]

Not efficiently computable.



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations

Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations

Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations
Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations
Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations
Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations
Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



29/49

Our solution: Sync-subsumption

Idea: Focus on synchronized valuations
Synchronized valuations

all reference clocks are equal

sync operator when applied to a local
zone gives a standard zone.

Sync-subsumption

Z ⊆sync Z ′ if
sync(Z ) ⊆ aLU(sync(Z ′))

Allows use of subsumption techniques
for standard zones.

Z′

Z

sync(Z′)

sync(Z)

⊆sync ⊆a

Local sync graph - local zone graph with sync-subsumption



30/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



31/49

Aggregated zones in local zone graph

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

Global zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

Z1 ∪ Z2 ∪ · · · ∪ Zl = sync(Z )



31/49

Aggregated zones in local zone graph

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

Global zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

Z1 ∪ Z2 ∪ · · · ∪ Zl = sync(Z )



31/49

Aggregated zones in local zone graph

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

Global zone graph

(q0,Z0)

(q,Z)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

Z1 ∪ Z2 ∪ · · · ∪ Zl = sync(Z )



31/49

Aggregated zones in local zone graph

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

Global zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

Z1 ∪ Z2 ∪ · · · ∪ Zl = sync(Z )



32/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

X Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



33/49

Experimental Results

Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.

CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71

Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55

Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20

Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

CSMACD 4 258 258 0.03 258 258 0.04 258 258 0.04
CSMACD 5 850 850 0.04s 850 850 0.07 850 850 0.11

Timeout is set to 90 seconds.

TChecker: an open-source model-checker for timed systems.
Available at https://github.com/ticktac-project/tchecker

https://github.com/ticktac-project/tchecker


33/49

Experimental Results

Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.

CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71

Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55

Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20

Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

CSMACD 4 258 258 0.03 258 258 0.04 258 258 0.04
CSMACD 5 850 850 0.04s 850 850 0.07 850 850 0.11

Timeout is set to 90 seconds.

TChecker: an open-source model-checker for timed systems.
Available at https://github.com/ticktac-project/tchecker

https://github.com/ticktac-project/tchecker


33/49

Experimental Results

Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.

CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71

Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55

Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20

Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

CSMACD 4 258 258 0.03 258 258 0.04 258 258 0.04
CSMACD 5 850 850 0.04s 850 850 0.07 850 850 0.11

Timeout is set to 90 seconds.

TChecker: an open-source model-checker for timed systems.
Available at https://github.com/ticktac-project/tchecker

https://github.com/ticktac-project/tchecker


34/49

Results
Local-sync graph implementation

Reachability algorithm based on local time semantics.

Merges interleavings into a single node.

Good experimental results

I Very good performance on some examples.

I At least as good as the standard algorithm on every example.



34/49

Results
Local-sync graph implementation

Reachability algorithm based on local time semantics.

Merges interleavings into a single node.

Good experimental results

I Very good performance on some examples.

I At least as good as the standard algorithm on every example.



34/49

Results
Local-sync graph implementation

Reachability algorithm based on local time semantics.

Merges interleavings into a single node.

Good experimental results

I Very good performance on some examples.

I At least as good as the standard algorithm on every example.



34/49

Results
Local-sync graph implementation

Reachability algorithm based on local time semantics.

Merges interleavings into a single node.

Good experimental results

I Very good performance on some examples.

I At least as good as the standard algorithm on every example.



35/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

X Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

X Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



36/49

Global zone graph (q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

So far: All interleavings of a sequence

of actions merged into a single node.

Next: Explore only one interleaving

per sequence of actions.

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph + POR



36/49

Global zone graph (q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

So far: All interleavings of a sequence

of actions merged into a single node.

Next: Explore only one interleaving

per sequence of actions.

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph + POR



36/49

Global zone graph (q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

So far: All interleavings of a sequence

of actions merged into a single node.

Next: Explore only one interleaving

per sequence of actions.

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Local zone graph + POR



37/49

Current object: Local sync graph

All interleavings of a sequence of actions

are merged into a single node.

Can we directly apply an existing POR

technique on local sync graphs?

NO!

Sync-subsumption does not preserve enabled actions

Local sync graph does not have diamonds!



37/49

Current object: Local sync graph

All interleavings of a sequence of actions

are merged into a single node.

Can we directly apply an existing POR

technique on local sync graphs?

NO!

Sync-subsumption does not preserve enabled actions

Local sync graph does not have diamonds!



37/49

Current object: Local sync graph

All interleavings of a sequence of actions

are merged into a single node.

Can we directly apply an existing POR

technique on local sync graphs?

NO!

Sync-subsumption does not preserve enabled actions

Local sync graph does not have diamonds!



37/49

Current object: Local sync graph

All interleavings of a sequence of actions

are merged into a single node.

Can we directly apply an existing POR

technique on local sync graphs?

NO!

Sync-subsumption does not preserve enabled actions

Local sync graph does not have diamonds!



37/49

Current object: Local sync graph

All interleavings of a sequence of actions

are merged into a single node.

Can we directly apply an existing POR

technique on local sync graphs?
NO!

Sync-subsumption does not preserve enabled actions

Local sync graph does not have diamonds!



38/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

X Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

X Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

X Local sync graphs + POR ?

No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



39/49

Challenge: To obtain a finite version of local zone graph

that allows application of POR.

What do we need?

I Finiteness

I Soundness

I Preservation of enabled actions



39/49

Challenge: To obtain a finite version of local zone graph

that allows application of POR.

What do we need?

I Finiteness

I Soundness

I Preservation of enabled actions



39/49

Challenge: To obtain a finite version of local zone graph

that allows application of POR.

What do we need?

I Finiteness

I Soundness

I Preservation of enabled actions



39/49

Challenge: To obtain a finite version of local zone graph

that allows application of POR.

What do we need?

I Finiteness

I Soundness

I Preservation of enabled actions



39/49

Challenge: To obtain a finite version of local zone graph

that allows application of POR.

What do we need?

I Finiteness

I Soundness

I Preservation of enabled actions



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems: Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems: Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems: Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems: Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems:

Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



40/49

Our Results

No subsumption that is finite, sound and preserves enabled actions.

A new subsumption a∗M that guarantees soundness and preservation
of enabled actions, but not finiteness.

Subclass of networks where a modification of a∗M also guarantees
finiteness.

Spread-bounded systems: Networks for which every run can be
converted to a run with only a bounded divergence between
reference clocks.



41/49

Finite subsumption for spread-bounded systems

aMD subsumption

Theorem

Local zone graph + aMD subsumption is finite, sound and preserves
enabled actions for a D-spread-bounded system.



41/49

Finite subsumption for spread-bounded systems

aMD subsumption

Theorem

Local zone graph + aMD subsumption is finite, sound and preserves
enabled actions for a D-spread-bounded system.



41/49

Finite subsumption for spread-bounded systems

aMD subsumption

Theorem

Local zone graph + aMD subsumption is finite, sound and preserves
enabled actions for a D-spread-bounded system.



42/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

X Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

X Interleavings in local sync graphs

Solution 2

Local time semantics
and POR

X Local sync graphs + POR ?

X No finite subsumption for LZG

that allows POR

POR for spread-bounded systems



43/49

Can we directly apply an off-the-shelf POR technique

on local zone graphs with aMD subsumption?

q0,Z0

q2,Z2q1,Z1

a b

q0,Z0

q2,Z2q1,Z1

a b

b
X

a
X

Problem: a and b are enabled, but neither
ab nor ba are feasible

No forward diamonds!



43/49

Can we directly apply an off-the-shelf POR technique

on local zone graphs with aMD subsumption?

q0,Z0

q2,Z2q1,Z1

a b

q0,Z0

q2,Z2q1,Z1

a b

b
X

a
X

Problem: a and b are enabled, but neither
ab nor ba are feasible

No forward diamonds!



43/49

Can we directly apply an off-the-shelf POR technique

on local zone graphs with aMD subsumption?

q0,Z0

q2,Z2q1,Z1

a b

q0,Z0

q2,Z2q1,Z1

a b

b
X

a
X

Problem: a and b are enabled, but neither
ab nor ba are feasible

No forward diamonds!



43/49

Can we directly apply an off-the-shelf POR technique

on local zone graphs with aMD subsumption?

q0,Z0

q2,Z2q1,Z1

a b

q0,Z0

q2,Z2q1,Z1

a b

b
X

a
X

Problem: a and b are enabled, but neither
ab nor ba are feasible

No forward diamonds!



43/49

Can we directly apply an off-the-shelf POR technique

on local zone graphs with aMD subsumption?

q0,Z0

q2,Z2q1,Z1

a b

q0,Z0

q2,Z2q1,Z1

a b

b
X

a
X

Problem: a and b are enabled, but neither
ab nor ba are feasible

No forward diamonds!



44/49

We cannot directly apply an off-the-shelf POR technique on finite
zone graph.

We give specialized partial order reduction algorithms for
spread-bounded systems.

I Global-local POR

I Client-server POR



44/49

We cannot directly apply an off-the-shelf POR technique on finite
zone graph.

We give specialized partial order reduction algorithms for
spread-bounded systems.

I Global-local POR

I Client-server POR



44/49

We cannot directly apply an off-the-shelf POR technique on finite
zone graph.

We give specialized partial order reduction algorithms for
spread-bounded systems.

I Global-local POR

I Client-server POR



45/49

Experiments for POR implementation

Global-local POR

Models Global ZG Local Sync Graph POR -LZG
(# processes) visited stored time visited stored time visited stored time

GL Toy 4 257 257 1.745s 257 257 2.295s 14 14 0.062s

GL Toy 5 1,025 1,025 10.264s 1,025 1,025 10.159s 17 17 0.091s

GL Toy 8 65,537 65,537 14m51s 65,537 65,537 14m52s 26 26 0.113s

Fire-alarm 4 271 271 2.269s 271 271 0.114s 17 17 0.299s

Fire-alarm 5 1,055 1,055 0.102s 1,055 1,055 0.123s 21 21 0.085s

Fire-alarm 8 65,791 65,791 7.752s 65,791 65,791 29.622s 33 33 1.740s
Fire-alarm 10 1mil 1mil > 1hr 1mil 1mil > 1hr 41 41 1.8s

CSMA CD 3 70 70 0.03s 70 70 0.03s 76 76 0.04s

CSMA CD 4 258 258 0.07s 258 258 0.12s 306 306 0.14s

CSMA CD 5 850 850 0.24s 850 850 0.46s 1100 1100 0.6s

Good results for Fire-alarm

Implemented in TChecker.
Available at https://github.com/ticktac-project/tchecker

https://github.com/ticktac-project/tchecker


46/49

Experiments for POR implementation

Client-server POR

Models Global ZG Local Sync Graph POR -LZG
(# processes) visited stored sec. visited stored sec. visited stored sec.

CS Toy 3 216 216 1.3s 216 216 1.3s 56 56 0.2s

CS Toy 4 1296 1296 9.8s 1296 1296 9.6s 144 144 0.4s

CS Toy 5 7776 7776 1m27s 7776 7776 1m15s 352 352 4.2s

CS Toy 8 1.6M 1,6M 98m 1,6M 1,6M 95m 4352 4352 25.2s

WCET 1 138 138 2.2s 138 138 2.3s 113 101 2.3s

WCET 2 9,379 9,379 1m5s 8,803 8,803 53s 6260 4520 1m5s

WCET 3 647,338 647,338 > 1hr 524,650 524,650 > 1hr 168,463 168,463 11m
WCET 4 47mil 47mil > 1,027m 29mil 29mil > 472m 3mil 2.2mil 200m

Good results for WCET

Implemented in TChecker.
Available at https://github.com/ticktac-project/tchecker

https://github.com/ticktac-project/tchecker


47/49

Overview of the talk

X Partial order reduction

X Timed automata and our problem

X Local time semantics Local zone graph

X Solution 1

Local time semantics
and aggregated zones

X Sync-subsumption

X Interleavings in local sync graphs

X Solution 2

Local time semantics
and POR

X Local sync graphs + POR ?

X No finite subsumption for LZG

that allows POR

X POR for spread-bounded systems



48/49

Conclusion

Challenge: State-space explosion
in networks of timed automata.

Reachability algorithm based on
exploration of local zone graph.
Already better than the standard
reachability algorithm.

Partial order reduction algorithm
for some classes of networks of
timed automata.

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Evaluation of a prototype of the implementation of these methods
using the tool TChecker.



48/49

Conclusion

Challenge: State-space explosion
in networks of timed automata.

Reachability algorithm based on
exploration of local zone graph.
Already better than the standard
reachability algorithm.

Partial order reduction algorithm
for some classes of networks of
timed automata.

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Evaluation of a prototype of the implementation of these methods
using the tool TChecker.



48/49

Conclusion

Challenge: State-space explosion
in networks of timed automata.

Reachability algorithm based on
exploration of local zone graph.
Already better than the standard
reachability algorithm.

Partial order reduction algorithm
for some classes of networks of
timed automata.

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Evaluation of a prototype of the implementation of these methods
using the tool TChecker.



48/49

Conclusion

Challenge: State-space explosion
in networks of timed automata.

Reachability algorithm based on
exploration of local zone graph.
Already better than the standard
reachability algorithm.

Partial order reduction algorithm
for some classes of networks of
timed automata.

(q0,Z0)

(q,Z1) (q,Z3) (q,Zl−1) (q,Zl)

σ1 σ2

X
σ3 σl−2

X
σl−1 σl· · ·

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

(q0,Z0)

(q,Z)

σ1 σ2 σ3 σl−2 σl−1 σl· · ·

sync(Z)

Evaluation of a prototype of the implementation of these methods
using the tool TChecker.



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!



49/49

Open problems and future directions

Local sync graphs

Extending our algorithm to other models

I Timed automata with diagonal constraints.

I Updatable timed automata.

POR-reachability algorithm

I Improving our POR-technique.

I Combining our techniques with other solutions for state-space
explosion such as symmetry reduction.

Thank you!


