Property Directed Self Composition

Ron Shemer, Arie Gurfinkel, Sharon Shoham, Yakir Vizel

Akshatha Shenoy TCS Research Pune

11th July 2021

Motivating Example

```
int doubleSquare(bool h, int x){
    int z, y=0;
    if(h) { z = 2*x; }
    else { z = x; }
    while (z>0) {
        Z--;
        y = y+x;
    }
    if(!h) { y = 2*y; }
    return y;
}
```

Figure: Program that computes $2x^2$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Double Square Program

- Need to talk about any 2 runs of the program.
- Instead 2 copies of the same program, 1st copy on variables x1, h1, z1... and 2nd copy on x2, h2, z2....

(ロ)、(型)、(E)、(E)、 E、のQの

assume(x1 == x2)
y1 = doubleSquare(x1, h1)
y2 = doubleSquare(x2, h2)
assert(y1 == y2)

Figure: Sequential composition of 2 doubleSquare program copies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
main(bool h1, int x1, bool h2, int x2) {
    int z1, z2, y1=0, y2=0;
    assume(x1 == x2);
    if (h1) { z1 = 2*x1; }
    else{ z1 = x1; }
    while (z1>0) {
     z1--;
       y1 = y1 + x1;
    if(!h1) { y1 = 2*y1; }
    if (h2) { z_2 = 2 \times z_2; }
    else\{ z^2 = x^2; \}
    while (z_{2>0}) {
     z2--;
       y^2 = y^2 + x^2;
    if(!h2) { y^2 = 2^*y^2; }
    assert(y1 == y2);
```

Figure: Sequential composition of 2 doubleSquare program copies

k-safety property

Properties that refer to *k* executions Example: Determinism is a 2-safety property

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

```
main(bool h1, int x1, bool h2, int x2){
    int z1, z2, y1=0, y2=0;
   assume(x1 == x2);
    if (h1) { z1 = 2*x1; }
    else{ z1 = x1; }
    while (z1>0) {
     z1--;
    y1 = y1 + x1;
    if(!h1) { y1 = 2*y1; }
    if (h2) { z^2 = 2 x^2; }
    else\{ z^2 = x^2; \}
    while (z2>0) {
     z2--;
       y^2 = y^2 + x^2;
    if (!h2) { y2 = 2*y2; }
   assert(y1 == y2);
```

Figure: Any composition

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

```
main(int x1, int x2){
    int z1, z2, y1=0, y2=0;
    assume(x1 == x2);
    z1 = 2*x1;
    while (z1>0) {
        z1--;
        y1 = y1 + x1;
    z^2 = x^2;
    while (z2>0) {
       z2--;
        y^2 = y^2 + x^2;
    y^2 = 2 * y^2;
    assert(y1 == y2);
}
```

Figure: Simplified version of sequential composition initialising h1 = True and h2 = False

Non trivial composition

```
main(int x1, int x2){
    int z1, z2, y1=0, y2=0;
     assume(x1 == x2);
     z1 = 2*x1;
     z^2 = x^2;
     while (z1>0 && z2>0) {
          z1--; y1 = y1+x1;
          z1--; y1 = y1+x1;
           z2 --;
          y^2 = y^2 + x^2;
      v^2 = 2*v^2;
     assert(y1 == y2);
}
```

Figure: Another composition for the version initialising h1 = True and h2 = False

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Non trivial composition with a "simple" proof

```
main(int x1, int x2){
    int z1, z2, y1=0, y2=0;
    assume(x1 == x2);
     z1 = 2*x1;
     z_2 = x_2;
                                   v1 = 2*v2
     while (z1>0 && z2>0) {
         z1--; y1 = y1+x1;
         z1--; y1 = y1+x1;
         z2 --;
        y^2 = y^2 + x^2;
     y^2 = 2*y^2;
```

assert(y1 == y2);

}

Figure: Composition has simpler inductive invariants

Main ideas of the paper

• Every interleaving gives rise to a composition.

Main ideas of the paper

- Every interleaving gives rise to a composition.
- Search for a composition that admits a simple proof.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Semantic Self Composition Function

▶
$$f: S^k \to \mathbb{P}(1..k)$$

▶ $f(s_1, ..., s_k) = M \iff (s_1, ..., s_k) \models C_M$

(NOTE: Syntactic Compositions only depend on control locations of the copies.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Composed Program

Given: C_M for every set $M \subseteq 1..k$ $T^f = (S^{||k}, R^f, F^{||k})$

$$R^f = igvee_{\phi
eq M \subseteq 1..k} (C_M \wedge arphi_M)$$

where

$$arphi_M = igwedge_M R(artheta^j, artheta^{j'}) \wedge igwedge_{j
otin M} artheta^j = artheta^{j'}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples : Semantic Self Composition Functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

►
$$f(s_1, .., s_k) = \{1..k\}$$

LOCKSTEP COMPOSITION

Examples : Semantic Self Composition Functions

►
$$f(s_1, ..., s_k) = \{1..k\}$$

LOCKSTEP COMPOSITION

► f(s₁,..,s_k) = {i} where i is minimal index of a non-terminal state in {s₁,...,s_k} and {k} otherwise SEQUENTIAL COMPOSITION

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

PDSC Algorithm - Key property

T has *Inv* in $\mathcal{L}_{\mathcal{P}} \iff A_{\mathcal{P}}(T)$ is safe.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Algorithm

1. $f \leftarrow \text{lockstep}, E \leftarrow \emptyset, Unreach \leftarrow false$ 2. $res \leftarrow \text{Safe}(Abstract_{\mathcal{P}}(T^f))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Counterexample

fold

fold

・ロト・母ト・ヨト・ヨト ヨー めへぐ

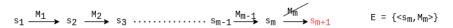
Algorithm

1. $f \leftarrow \text{lockstep}, E \leftarrow \emptyset, Unreach \leftarrow false$ 2. $res \leftarrow \text{Safe}(Abstract_{\mathcal{P}}(T^f))$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

3. Update E(s)

fnew in progress



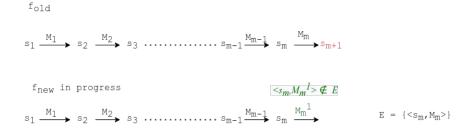
▲□▶▲□▶▲□▶▲□▶ = のへで

Algorithm

1. $f \leftarrow \text{lockstep}, E \leftarrow \emptyset, Unreach \leftarrow false$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2. while *true*
- 3. *res* \leftarrow Safe(*Abstract*_{\mathcal{P}}(T^f))
- 4. $Update_E(s)$
- 5. if find_next(f)
- 6. Update_f()



$$s_1 \xrightarrow{M_1} s_2 \xrightarrow{M_2} s_3 \dots s_{m-1} \xrightarrow{s_{m-1}} s_m \xrightarrow{M_m} \xrightarrow{s_{m+1}}$$

f_{new} in progress

 $s_1 \xrightarrow{M_1} s_2 \xrightarrow{M_2} s_3 \dots s_{m-1} \xrightarrow{M_{m-1}} s_m \qquad E = \{< s_m, M_m > \}$

Unreach = $\{s_m\}$

f_{old}

 $s_1 \xrightarrow{M_1} s_2 \xrightarrow{M_2} s_3 \cdots s_{m-1} \xrightarrow{S_{m-1}} s_m \xrightarrow{M_m} s_{m+1}$

f_{new} in progress

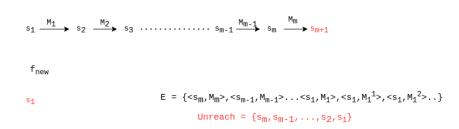
 $s_1 \xrightarrow{M_1} s_2 \xrightarrow{M_2} s_3 \cdots s_i \xrightarrow{M_i^1}$

E = {<sm,Mm>,<sm-1,Mm-1>,..,<si+1,Mi+1>} Unreach = {sm,sm-1,..,si+1}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

cex has been fixed

$$\blacktriangleright f_{new}(s_i) = M_i^1$$



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

No solution in $\mathcal{L}_{\mathcal{P}}$

f_{old}

Algorithm

1. $f \leftarrow \text{lockstep}, E \leftarrow \emptyset, Unreach \leftarrow false$

(ロ) (同) (三) (三) (三) (○) (○)

- 2. *res* \leftarrow Safe(*Abstract*_P(*T*^{*f*}))
- **3.** Update E(s)
- 4. while *true*
- 5. if find_next(f)
- 6. Update_f()
- 7. repeat 2
- 8. return "no solution in $\mathcal{L}_{\mathcal{P}}$ "

1. Given : *T*, k - safety property, a finite \mathcal{P} Output : (f, Inv) in $\mathcal{L}_{\mathcal{P}}$

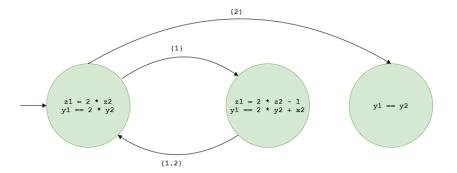
Non trivial composition with a "simple" proof

```
main(int x1, int x2){
    int z1, z2, y1=0, y2=0;
    assume(x1 == x2);
     z1 = 2*x1;
     z_2 = x_2;
                                   v1 = 2*v2
     while (z1>0 && z2>0) {
         z1--; y1 = y1+x1;
         z1--; y1 = y1+x1;
         z2 --;
        y^2 = y^2 + x^2;
     y^2 = 2*y^2;
```

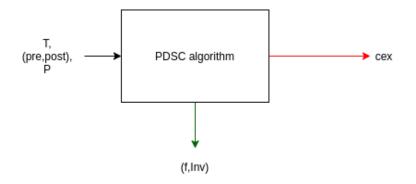
assert(y1 == y2);

}

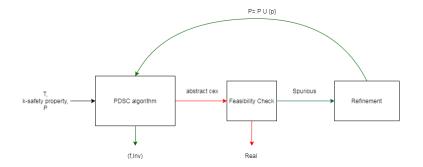
Figure: Composition has simpler inductive invariants



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

S. No.	Benchmark	Source	Safe/Unsafe	SyGuS(CVC 4.1.8) (#pred, time)	Abduction(Z3) (#preds, time)
1.	sum_to_n	crafted	safe	timeout	8, 1m30s
2.	sum_to_n_err	crafted	unsafe	0, 1.1s	0, 0.8s
3.	inc-dec	crafted	safe	5, 39 s	8, 35.8 s
4.	squareSum	cav19	safe	0, 2.2 s	0, 1.1 s
5.	sum-pc	cav19	safe	5, 4m5.3s	1, 11.9 s
6.	fig4_1	icse16	unsafe	timeout	2, 7.63 s
7.	fig4_2	icse16	unsafe	timeout	2, 7.65 s
8.	fig4_ref_ref	icse16	safe	0, 0.8 s	0, 0.6 s
9.	subsume_1	icse16	unsafe	timeout	3, 13 s
10.	subsume_2	icse16	unsafe	timeout	2, 8.8 s
11.	subsume_ref_ref	icse16	safe	timeout	1, 3.9 s
12.	puzzle_1	derived from icse16	unsafe	timeout	4, 26.8 s
13.	puzzle_2	derived from icse16	unsafe	timeout	8, 2m25s
14.	puzzle_3	derived from icse16	safe	timeout	2, 11.9s
15.	halfSquare	cav19	safe	timeout	4, 1m10s
16.	doubleSquare_1	derived from cav19	safe	timeout	6, 1m55s
17.	doubleSquare_2	derived from cav19	safe	timeout	3, 43.8s
18.	doubleSquare_3	derived from cav19	safe	timeout	5, 1m29s

Thank you!

shenoy.akshatha@tcs.com

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●