
Property Directed Self Composition

Ron Shemer, Arie Gurfinkel, Sharon Shoham, Yakir Vizel

Akshatha Shenoy
TCS Research

Pune

11th July 2021

Motivating Example

Figure: Program that computes 2x2

Double Square Program

I Need to talk about any 2 runs of the program.

I Instead 2 copies of the same program, 1st copy on variables x1,
h1, z1... and 2nd copy on x2, h2, z2....

Figure: Sequential composition of 2 doubleSquare program copies

main(bool h1, int x1, bool h2, int x2){
int z1, z2, y1=0, y2=0;
assume(x1 == x2);

assert(y1 == y2);
}

if(h1) { z1 = 2*x1; }
else{ z1 = x1; }
while (z1>0) {
 z1--;
 y1 = y1+x1;
}
if(!h1) { y1 = 2*y1; }

if(h2) { z2 = 2*x2; }
else{ z2 = x2; }
while (z2>0) {
 z2--;
 y2 = y2+x2;
}
if(!h2) { y2 = 2*y2; }

Figure: Sequential composition of 2 doubleSquare program copies

k-safety property

Properties that refer to k executions
Example: Determinism is a 2-safety property

main(bool h1, int x1, bool h2, int x2){
int z1, z2, y1=0, y2=0;
assume(x1 == x2);

assert(y1 == y2);
}

if(h1) { z1 = 2*x1; }
else{ z1 = x1; }
while (z1>0) {
 z1--;
 y1 = y1+x1;
}
if(!h1) { y1 = 2*y1; }

if(h2) { z2 = 2*x2; }
else{ z2 = x2; }
while (z2>0) {
 z2--;
 y2 = y2+x2;
}
if(!h2) { y2 = 2*y2; }

Figure: Any composition

Figure: Simplified version of sequential composition initialising h1 =
True and h2 = False

Non trivial composition

Figure: Another composition for the version initialising h1 = True and
h2 = False

Non trivial composition with a “simple” proof

Figure: Composition has simpler inductive invariants

Main ideas of the paper

I Every interleaving gives rise to a composition.

I Search for a composition that admits a simple proof.

Main ideas of the paper

I Every interleaving gives rise to a composition.
I Search for a composition that admits a simple proof.

Semantic Self Composition Function

I f : Sk → P(1..k)
I f(s1, ..., sk) = M ⇐⇒ (s1, ..., sk) |= CM

(NOTE: Syntactic Compositions only depend on control
locations of the copies.)

Composed Program

Given: CM for every set M ⊆ 1..k
Tf = (S||k,Rf , F||k)

Rf =
∨

φ 6=M⊆1..k

(CM ∧ ϕM)

where
ϕM =

∧
j∈M

R(ϑj, ϑj′) ∧
∧
j/∈M

ϑj = ϑj′

Examples : Semantic Self Composition Functions

I f(s1, .., sk) = {1..k}
LOCKSTEP COMPOSITION

I f(s1, .., sk) = {i} where i is minimal index of a non-terminal
state in {s1, ..., sk} and {k} otherwise
SEQUENTIAL COMPOSITION

Examples : Semantic Self Composition Functions

I f(s1, .., sk) = {1..k}
LOCKSTEP COMPOSITION

I f(s1, .., sk) = {i} where i is minimal index of a non-terminal
state in {s1, ..., sk} and {k} otherwise
SEQUENTIAL COMPOSITION

PDSC Algorithm - Key property

T has Inv in LP ⇐⇒ AP(T) is safe.

Algorithm

1. f ← lockstep, E← ∅, Unreach← false
2. res← Safe(AbstractP(Tf))

Counterexample

Algorithm

1. f ← lockstep, E← ∅, Unreach← false
2. res← Safe(AbstractP(Tf))

3. Update E(s)

Algorithm

1. f ← lockstep, E← ∅, Unreach← false
2. while true
3. res← Safe(AbstractP(Tf))

4. Update E(s)
5. if find next(f)
6. Update f()

cex has been fixed

I fnew(si) = M1
i

No solution in LP

Algorithm

1. f ← lockstep, E← ∅, Unreach← false
2. res← Safe(AbstractP(Tf))

3. Update E(s)
4. while true
5. if find next(f)
6. Update f()

7. repeat 2

8. return “no solution in LP”

1. Given : T, k - safety property, a finite P
Output : (f , Inv) in LP

Non trivial composition with a “simple” proof

Figure: Composition has simpler inductive invariants

S. No. Benchmark Source Safe/Unsafe
SyGuS(CVC 4.1.8)

(#pred, time)
Abduction(Z3)
(#preds, time)

1. sum to n crafted safe timeout 8, 1m30s
2. sum to n err crafted unsafe 0, 1.1s 0, 0.8s
3. inc-dec crafted safe 5, 39 s 8, 35.8 s
4. squareSum cav19 safe 0, 2.2 s 0, 1.1 s
5. sum-pc cav19 safe 5, 4m5.3s 1, 11.9 s
6. fig4 1 icse16 unsafe timeout 2, 7.63 s
7. fig4 2 icse16 unsafe timeout 2, 7.65 s
8. fig4 ref ref icse16 safe 0, 0.8 s 0, 0.6 s
9. subsume 1 icse16 unsafe timeout 3, 13 s
10. subsume 2 icse16 unsafe timeout 2, 8.8 s
11. subsume ref ref icse16 safe timeout 1, 3.9 s

12. puzzle 1
derived

from icse16
unsafe timeout 4, 26.8 s

13. puzzle 2
derived

from icse16
unsafe timeout 8, 2m25s

14. puzzle 3
derived

from icse16
safe timeout 2, 11.9s

15. halfSquare cav19 safe timeout 4, 1m10s

16. doubleSquare 1
derived

from cav19
safe timeout 6, 1m55s

17. doubleSquare 2
derived

from cav19
safe timeout 3, 43.8s

18. doubleSquare 3
derived

from cav19
safe timeout 5, 1m29s

Thank you!

shenoy.akshatha@tcs.com

	Motivating Example
	Introduction
	k-safety property verification by self composition

	Preliminaries
	Algorithm for inferring Composition-Invariant Pairs
	 Eliminating Candidate SC based on Abstract Counterexamples

	Refinement

