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Concurrent Programs

…are mainstream

…are extremely hard to get right
- uncontrolled non-determinism

…”Heisenbugs” (hard to detect, hard to replay)

…are difficult to test using traditional techniques
- exponentially large space of possible behaviors
- stress-tests are ineffective 
- inability to deterministically replay bugs 



Controlled Concurrency Testing

Systematically explore space of program behaviors

…by serializing concurrent program executions

…using a scheduler which resolves control non-determinism



Example
public class TestThreads {

public static volatile int Value;

public static void T1Proc () {
Thread.Sleep(100);
Value = 3;

}

public static void T2Proc () {
Thread.Sleep(100);
Value = 5;

}

public static void main(String[] args) {

Thread t1 = new Thread(new ThreadStart(T1Proc));
Thread t2 = new Thread(new ThreadStart(T2Proc));

t1.Start();
t2.Start();
t1.Join();
t2.Join();

Assert(Value == 5);
}

}



Controlled Concurrency Testing

Stateful

- Zing [Andrews et al, 2004]
- SPIN [Holzmann, 1997]
- DFS
- BFS

Stateless

- Random
- PCT [Burckhardt et al, 2010]
- Delay Bounding [Emmi et al, 2011]
- Preemption bounding [Musuvathi et al, 2007]

 Requires full-program state  PCT and Random known to be effective on real-world programs

 Search heuristics based on empirical observations of bug patterns

…few context switches 
…few ordering constraints 
…few deviations from a deterministic scheduler

 What about unknown patterns?



Our Contributions

• Systematic exploration strategy based on Q-Learning
• …focus on coverage

• …strike a balance between exploration (randomly choose the next action)

• …and exploitation (learn from previously taken decisions)

• Highly customizable search strategy
• …that adapts to the program under test!

• Implemented in Coyote
• Evaluated on micro-benchmarks and production services from Azure



Reinforcement Learning

Environment
(a priori unknown)

- NextState
- Reward -NextAction

Agent



Reinforcement Learning

Environment
(a priori unknown)

- NextState
- Reward -NextAction

Agent

Goal of Agent: Learn an optimal policy, which maximizes expected reward



Learning-based CCT
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Learning-based CCT
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Learning-based CCT

- NextState
- Reward -NextAction

(Penalty)

Value Update QL Scheduler
(Agent)

Program under test (Environment)

User-defined abstraction of concrete state

Softmax
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Optimizing for Coverage

-5000 <= C.counter <= 5000



Optimizing for Coverage



Raft Consensus Protocol

• Nodes:
• Leader: receive and replicate client requests
• Follower: Track all requests received from leader
• Candidate: start leader election process at any time

• Invariant:
• At most one leader at any point in time.

• Buggy implementation: violates the invariant

• To increase likelihood of bug, increase:
• At least one leader must be elected
• Leader election round should have multiple candidates



Raft Consensus Protocol



QL

Controlled Concurrency Testing

Stateful

- Zing [Andrews et al, 2004]

- SPIN [Holzmann, 1997]

- DFS

- BFS

Stateless

- Random

- PCT [Burckhardt et al, 2010]

- Delay Bounding [Emmi et al, 2011]

- Preemption Bounding [Musuvathi et al, 2007]



Experimental Evaluation
Effectiveness at bug-finding
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Summary

➢Novel controlled concurrency testing, based on Q-Learning
• balance between taking random steps and informed decisions based on previous 

explorations

➢Evaluation: outperforms state-of-the-art strategies on production Azure 
services



Big Picture

➢Project Coyote: https://github.com/microsoft/coyote
• Making testing of concurrent programs as easy as testing sequential programs

• Used by many teams in Azure for writing distributed services

• Includes great learning material for teaching concurrency-related concepts

• Extending beyond .NET [ASE’21]
• Cross-platform solution for controlled-concurrency testing: 

https://github.com/microsoft/coyote-scheduler

https://github.com/microsoft/coyote
https://github.com/microsoft/coyote-scheduler

