
Learning-Based Controlled Concurrency Testing

Suvam Mukherjee, Microsoft 

Pantazis Deligiannis, Microsoft Research 

Arpita Biswas, Harvard

Akash Lal, Microsoft Research



Concurrent Programs

…are mainstream

…are extremely hard to get right
- uncontrolled non-determinism

…”Heisenbugs” (hard to detect, hard to replay)

…are difficult to test using traditional techniques
- exponentially large space of possible behaviors
- stress-tests are ineffective 
- inability to deterministically replay bugs 



Controlled Concurrency Testing

Systematically explore space of program behaviors

…by serializing concurrent program executions

…using a scheduler which resolves control non-determinism



Example
public class TestThreads {

public static volatile int Value;

public static void T1Proc () {
Thread.Sleep(100);
Value = 3;

}

public static void T2Proc () {
Thread.Sleep(100);
Value = 5;

}

public static void main(String[] args) {

Thread t1 = new Thread(new ThreadStart(T1Proc));
Thread t2 = new Thread(new ThreadStart(T2Proc));

t1.Start();
t2.Start();
t1.Join();
t2.Join();

Assert(Value == 5);
}

}



Controlled Concurrency Testing

Stateful

- Zing [Andrews et al, 2004]
- SPIN [Holzmann, 1997]
- DFS
- BFS

Stateless

- Random
- PCT [Burckhardt et al, 2010]
- Delay Bounding [Emmi et al, 2011]
- Preemption bounding [Musuvathi et al, 2007]

 Requires full-program state  PCT and Random known to be effective on real-world programs

 Search heuristics based on empirical observations of bug patterns

…few context switches 
…few ordering constraints 
…few deviations from a deterministic scheduler

 What about unknown patterns?



Our Contributions

• Systematic exploration strategy based on Q-Learning
• …focus on coverage

• …strike a balance between exploration (randomly choose the next action)

• …and exploitation (learn from previously taken decisions)

• Highly customizable search strategy
• …that adapts to the program under test!

• Implemented in Coyote
• Evaluated on micro-benchmarks and production services from Azure



Reinforcement Learning

Environment
(a priori unknown)

- NextState
- Reward -NextAction

Agent



Reinforcement Learning

Environment
(a priori unknown)

- NextState
- Reward -NextAction

Agent

Goal of Agent: Learn an optimal policy, which maximizes expected reward



Learning-based CCT

QL Scheduler
(Agent)

Program under test (Environment)

- NextState
- Reward -NextAction

User-defined abstraction of concrete state



Learning-based CCT

- NextState
- Reward -NextAction

User-defined abstraction of concrete state

QL Scheduler
(Agent)

Program under test (Environment) Softmax



Learning-based CCT

- NextState
- Reward -NextAction

(Penalty)

Value Update QL Scheduler
(Agent)

Program under test (Environment)

User-defined abstraction of concrete state

Softmax



Controlled Concurrency Testing

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Bug



Controlled Concurrency Testing

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Bug



Controlled Concurrency Testing

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Bug



Controlled Concurrency Testing

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Bug



Optimizing for Coverage

-5000 <= C.counter <= 5000



Optimizing for Coverage



Raft Consensus Protocol

• Nodes:
• Leader: receive and replicate client requests
• Follower: Track all requests received from leader
• Candidate: start leader election process at any time

• Invariant:
• At most one leader at any point in time.

• Buggy implementation: violates the invariant

• To increase likelihood of bug, increase:
• At least one leader must be elected
• Leader election round should have multiple candidates



Raft Consensus Protocol



QL

Controlled Concurrency Testing

Stateful

- Zing [Andrews et al, 2004]

- SPIN [Holzmann, 1997]

- DFS

- BFS

Stateless

- Random

- PCT [Burckhardt et al, 2010]

- Delay Bounding [Emmi et al, 2011]

- Preemption Bounding [Musuvathi et al, 2007]



Experimental Evaluation
Effectiveness at bug-finding



Experimental Evaluation
Effectiveness at bug-finding



Experimental Evaluation
Effectiveness at bug-finding



Summary

➢Novel controlled concurrency testing, based on Q-Learning
• balance between taking random steps and informed decisions based on previous 

explorations

➢Evaluation: outperforms state-of-the-art strategies on production Azure 
services



Big Picture

➢Project Coyote: https://github.com/microsoft/coyote
• Making testing of concurrent programs as easy as testing sequential programs

• Used by many teams in Azure for writing distributed services

• Includes great learning material for teaching concurrency-related concepts

• Extending beyond .NET [ASE’21]
• Cross-platform solution for controlled-concurrency testing: 

https://github.com/microsoft/coyote-scheduler

https://github.com/microsoft/coyote
https://github.com/microsoft/coyote-scheduler

