
Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Race Detection for Interrupt-Driven
Kernels

Nikita Chopra, Deepak D’Souza and Rekha Pai

Indian Institute of Science Bangalore

July 20, 2018



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Overview

Problem Definition

Interrupt-Driven Programs

Data-Races and Happens-Before Relation

Analyzing FreeRTOS Kernel

Conclusion



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Problem Definition

Given an “interrupt-driven kernel program” detect data races in
the program.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Interrupt-Driven Programs

Application:

main()

{

createTask(f1);

.

.

createTask(fn);

startScheduler();

}

f1() f2() fn()

{ { {

... ... .. ...

} } }

==============================================

Kernel:

startScheduler() kAPI1() kAPIn()

{ { {

... ... .. ... <==

} } }



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Interrupt-Driven Programs

- finite number of threads

- disableint-enableint, suspendsch-resumesch, and
synchronization flags

- “task” threads and “ISR” threads



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Interrupt-Driven Programs

main:

1. x := 0;

2. y := 0;

3. t := 0;

4. create(t1);

5. create(t2);

6.

t1: t2:

7. x := x + 1; 9. disableint;

8. 10. y := t;

11. t := x;

12. if(t > 0) {

13. y := y + 1;

14. }

15. else {

16. t := t + 1;

17. }

18. enableint;

19.

Figure: Example program



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Claim

Given an interrupt-driven program, we proposed a sound
algorithm to detect data-races in the program.

- key insight is the notion of “disjoint blocks”



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

Motivation:

Give a definition of data-race based on the operational
semantics of the class of interrupt-driven programs, that
capture what a programmer typically tries to avoid.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

Conflicting accesses:

Two accesses are conflicting accesses if they are
read/write accesses to the same variable, and at least one
of them is a write.

Data-race:

For classical concurrent programs, define a race as
consecutive occurrences of conflicting accesses in an
execution.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

Conflicting accesses:

Two accesses are conflicting accesses if they are
read/write accesses to the same variable, and at least one
of them is a write.

Data-race:

For classical concurrent programs, define a race as
consecutive occurrences of conflicting accesses in an
execution.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

main:

1. x := 0;

2. y := 0;

3. t := 0;

4. create(t1);

5. create(t2);

6.

t1: t2:

7. x := x + 1; 9. disableint;

8. 10. y := t;

11. t := x;

12. if(t > 0) {

13. y := y + 1;

14. }

15. else {

16. t := t + 1;

17. }

18. enableint;

19.

Figure: Example program - race between Lines 7 and 11



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

Proposed Definition:

Two statements s and t in a program P are involved in a
data-race if the following is true:

Consider the program P ′ which is obtained from P by
replacing the statement s with “skip; s; skip”, and
similarly for statement t. Then there is an execution of P ′

in which the two blocks containing s and t are involved in
a high-level race.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Data-Races

t;
s;

skip;

s;

skip;

skip;

t;

skip;

t1: t2: t1: t2:
t1 t2

P′P

Figure: Illustrating the definition of a data-race on statements s and t. A
program P, its transformation P′, and an execution of P′ in which the blocks
overlap.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

In the classical setting of lock-based synchronization,

happens-before relation is a partial order on the
instructions in an execution, that is the union of
the program-order relation between two instructions in the
same thread, and
the synchronizes-with relation which relates a release of a
lock in a thread to the next acquire of the same lock in
another thread.

How does one define synchronizes-with relation in
interrupt-driven programs?



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

In the classical setting of lock-based synchronization,

happens-before relation is a partial order on the
instructions in an execution, that is the union of
the program-order relation between two instructions in the
same thread, and
the synchronizes-with relation which relates a release of a
lock in a thread to the next acquire of the same lock in
another thread.

How does one define synchronizes-with relation in
interrupt-driven programs?



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

Disjoint blocks:

Disjoint blocks are syntactically identifiable pairs of code
blocks in different threads, which are guaranteed by the
execution semantics of the class of programs never to
overlap in any execution of a program.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

Proposed Definitions

Synchronizes-with relation:

for every pair (A,B) of disjoint blocks in the program, the
end of block A synchronizes-with the beginning of the
succeeding occurrence of block B in the execution; and
vice-versa.

Happens-Before relation:

defined, as before, in terms of the program order and the
synchronizes-with order.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

Proposed Definitions

Synchronizes-with relation:

for every pair (A,B) of disjoint blocks in the program, the
end of block A synchronizes-with the beginning of the
succeeding occurrence of block B in the execution; and
vice-versa.

Happens-Before relation:

defined, as before, in terms of the program order and the
synchronizes-with order.



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Happens-Before Relation

(a) (b) (c)

(f)(d) (e)

(g) (h)

task: task: task: ISR:

// begin

// end

ISR:

// begin

// end

ISR:

// begin

// end

main:

// begin

t:

// begin

// end

task: task: task:task:

ISR:

if(f = 0){

}

}

task:

else {

ISR:

if(ssflag = 0){

}

}

else {

f := 1;

f := 0;

task:

enableint

disableint; disableint;

enableint

disableint;

enableint

create(t)

suspendsch;

resumesch;

disableint;

enableint

suspendsch; suspendsch;

resumesch; resumesch;

suspendsch;

resumesch;

Figure: Disjoint blocks in interrupt-driven programs



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Analyzing FreeRTOS Kernel Library

Table: Potential Races

Variable Functions Remark

1 pcQueueName
vQueueDelete(w)
vQueueDelete(w)

Two tasks attempting to write into pcQueueName while
unregistering a queue in vQueueDelete

2 pcQueueName
vQueueDelete(w)

vQueueAddToRegistry(r)
A read of pcQueueName in vQueueAddToRegistry is attempted
while it is written into during unregistering a queue in vQueueDelete

3 pcQueueName
vQueueDelete(w)

vQueueAddToRegistry(w)
The queue name is reset while unregistering a queue in vQueueDelete and
a queue name is written by vQueueAddToRegistry for a new queue

4 pcQueueName
vQueueDelete(w)

pcQueueGetName(r)
A read of pcQueueName in pcQueueGetName is attempted while it
is written into during unregistering a queue in vQueueDelete

5 pcQueueName
vQueueAddToRegistry(r)
vQueueAddToRegistry(w)

A read of pcQueueName in vQueueAddToRegistry is attempted while it
is set in vQueueAddToRegistry by another task

6 pcQueueName
vQueueAddToRegistry(w)
vQueueAddToRegistry(w)

Simultaneous writes to pcQueueName is attempted

7 pcQueueName
vQueueAddToRegistry(w)

pcQueueGetName(r)
The write in vQueueAddToRegistry happens simultaneously with
read in pcQueueGetName

8 xHandle
vQueueDelete(r)
vQueueDelete(w)

An attempt to read the xHandle while it is written into simultaneously

9 xHandle
vQueueDelete(r)

vQueueAddToRegistry(w)
The read in vQueueDelete during unregistering a queue happens
simultaneously with write in vQueueAddToRegistry

10 xHandle
vQueueDelete(w)

vQueueAddToRegistry(w)
A task attempting to delete a queue while another tries to register a
new queue simultaneously

11 xHandle
vQueueDelete(w)

pcQueueGetName(r)
A task attempting to delete a queue while another tries to
get the queue name

12 xHandle
vQueueAddToRegistry(w)
vQueueAddToRegistry(w)

Two tasks attempting to register queues simultaneously

13 xHandle
vQueueAddToRegistry(w)

pcQueueGetName(r)
A task attempts to read queue name while another tries to
register a new queue

14 xHandle
vQueueDelete(w)
vQueueDelete(w)

Two tasks attempting to delete a queue



Overview

Problem
Definition

Interrupt-
Driven
Programs

Data-Races
and Happens-
Before

Analyzing
FreeRTOS
Kernel Library

Conclusion

Conclusion

- proposed definition of data-races

- proposed definition for synchronizes-with relation, based
on disjoint blocks

- proposed a sound algorithm to detect data-races in the
program

- detected 14 real races in the FreeRTOS kernel library


	Overview
	Problem Definition
	Interrupt-Driven Programs
	Data-Races and Happens-Before
	Analyzing FreeRTOS Kernel Library
	Conclusion

