Coverage-based Greybox Fuzzing as Markov Chain

Marcel Bohme, Van-Thuan Pham, Abhik Roychoudhury

School Of Computing, NUS, Singapore

FM Update 2018

Presented by - Raveendra Kumar M, Animesh Basak Chowdhury
TCS Research

July 27, 2018

Some of the slides are adapted from Author's presentation.

Introduction

Fuzz testing is an automated testing technique that uncovers
software error by executing the target program with large number
of randomly generated test inputs.
Three main approaches.

» Black-box fuzzing : Random testing®.

» White-box fuzzing: SAGE 2.

» Grey-box fuzzing : American Fuzzy Lop 3.

1Mi||er et al, An empirical study of Unix utilities, CACM, 1990.
2Goefroid et al, Automated whitebox fuzz testing, NDSS, 2008.

3Za|ewski, http:/ /lcamtuf.coredump.cx/afl/.

Grey-box fuzzing

Black-Box Fuzzing — Open Loop Control System.
GreyBox Fuzzing — Closed Loop Control System.
Feedback Function H(s) ~ Branch-Pair Coverage (Pair of
consecutive nodes in a CFG)

Target > Instrumented

Program P Program P'
Generate New i

Execute P' Monitor

(——> Inputsfrom —> ~ o g) Coverage.

teTg.
Retain 7.
Te=TgUt,

t Yes B i
Interesting
behaviour?

Grey-box fuzzing - Working example

o

[l | o s [ac | oa | ca | oo | co | oe | or |
L e ©)

Grey-box fuzzing - Working example
@

"b" v ®"ab" v "c"

[l | o s [ac | oa | ca | o0 | co | oe | or |
1 "a" 1 1 1

2 v (D
3 “ab” 1 1 @ @

1
1
1

Grey-box fuzzing - Working example

@
@")b" v ®"ab" v "c"x
Cia | o oo [ac | oa | ca | o0
1 "a" 1 1
2 “b” 1
3 “ab”

1
1 1 1
acr

0

Grey-box fuzzing - Working example

1

2
3
4
5

"c¢"x "bb"/ ..."x "aba'y "abb"

o a0 | ac | oa | ca | o | co | o
"a" 1 1

“pr
“ab”

“bhy”

«. ”

aba

“3bb”

1
1
2
1
2

Oy,

®,

N

@

=

a

1
1
1

N = e e A

Grey-box fuzzing algorithm

Algorithm 1 Grey-box fuzzing algorithm

Require: Program P, Initial non-crashing seeds Is.
Ensure: Set of crashing inputs T¢ and a tree of test inputs T¢ for P.

1. Tg=1Is

2: Run P with /s and observe visit counts of branch pairs.

3: repeat

4: t = getNextlnput() >te Teg.
5: N = assignEnergy(t)

6: Tm = fuzzTestlnput(t,N) > Tm: {tg|ts € MUTATE(t)}
7: for all t; € T, do

8: Sg = run(P,tg)

o: if Sg = L then > Did t; caused a crash or hang ?
10: T(_xadd(tg)
11: else if isInterestingTestInput(tg,Sg) then
12: Tc.add(tg) > Retain interesting test input
13: end if
14: end for

15: until User interrupt received.
16: return (Tg, T¢)

N = assignEnergy(t)

Let N=100.

Let N1 be the N x a factor inversely proportional to tg's execution
time.

(Ranging from 0.1 for higher execution time to 3 times for lower execution times)
Let N, be Ny * a factor based on number of branch pairs covered
by tg.

(Ranging from 0.25 for lower coverage to 3 times for higher coverage)

Let N3 be N * a factor based on cycle of t;'s discovery and
number of time t fuzzed.

(Low = 1 to high = 4)

Let N4 be N3 x a factor based on depth of t,'s discovery.

(Low = 1 to high = 5)

return Ny

Problem Statement

O ~NO O WN

11
12

void crashme (char *s) {

Listing 1: Program crashes when
string s == "bad!"

BlackBox Fuzzing

> Assumption : 2% characters.

> Expected no. of testcase required
to catch the bug : 232,

Coverage-based GreyBox
Fuzzing (CGF)

» Markov Chain modeling of CGF
gives the expectation that 2'2 is
minimum test required to catch
the crash.

» Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.

Problem Statement

void crashme (char *s) {

Listing 2: Program crashes when
string s == "bad!"

Objective
Tune energy assignment scheme close

to ideal.

BlackBox Fuzzing

> Assumption : 28 characters.

> Expected no. of testcase required
to catch the bug : 252,

Coverage-based GreyBox
Fuzzing (CGF)

> Markov Chain modeling of CGF
gives the expectation that 212
tests are required to catch the
crash.

> Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.

Some terminologies

Branch Pair Tuple BP; : <bp;,C;> where, bp; - Branch Pair i, C; -
Visit Count.

Path: Sequence of branch pair tuples [BP;, BP; .. .] visited during
the execution of the program P on a test vector t.

Basic Concepts : Probabilistic Modeling

Random Variable
Maps possible outcomes from Sample Space to a real valued

number.
X: Q=R

Conditional Probability

Calculates probability of an event happening, given a partial

information.
P(B|A) = P(BNA)/P(A)

Stochastic Process
Collection of Random Variables indexed by time.

Discrete Time Stochastic Process (DTSP)

Sequence of random variables Xp, Xi, X2, . . Denoted by { X, }.
Time:n=0,1,2,...

State Space: m-dimensional vector, s = (s1, 2, . . . , Sm)
Set of all values that the X,'s can take.

Also, X,, takes one of m values, so X, <> s.

Discrete Time Markov Chain (DTMC)

DTSP — Discrete time Markov Chain (DTMC) iff
P[Xnt1 =J | Xo =iny..., Xo = o] = P[Xns1 =1J |
Xn = in) = Pjj(n) (Markovian Property)

Markov Property

Future state is independent of the past given the present state is
fully known/observable.

Pij(n): Probability of transition from state i to state j, at time n.

This is also referred as one-step transition probability.

Rat Maze Problem as DTMC

1/2 3 2 1/3
|

1/3 1/2

1 2 3 172 J 13 13 l T 1/4 112 l 13
4 5 6 1/3 1/4

4 15 s
7 8 9 1/4 1/3
_ J

1/3 1/2 1/4 1/3 1/3 1/2

Figure : A rat maze. Allowed 112 13
P B > 8

transitions are horizontal and — ’
1 1/2

vertical neighbors.

Figure : Markov Chain Modeling of Rat
Maze Problem

Homogeneous DTMC

DTMC — Homogeneous iff transition probabilities do not depend
on the time n, i.e.

P[Xni1 = j1Xn = i] = P[X, = jXo = /] = Py.

Transition matrix of Homogeneous DTMC P = [Pj]i jcE

P11 P12 P13 P14
P21 P22 P23 P24
P=\|p31 p32 P33 Pp3a
P41 P42 P43 P4,a

Coverage-Based Fuzzing as Homogeneous DTMC

Coverage-based Greybox fuzzing can modeled as Timed
homogeneous DTMC.

State Space S =St + S5~

ST - Paths already explored by seeds Tg.
S - Paths yet to be discovered by fuzzing t € Tg.

Assumptions :

Probability of exercising path i(undiscovered) from already
generated input t;, is same as probability of creating test input t;
from test vectors t;.

Coverage-based Greybox Fuzzing as Markov Chain

Example

1 void crashme (charx s) { 1,2—10
2 if (s[0] == ’b’)

3 if (s[1] == ’a’)

4 if (s[2] == ’d’)

5 if (s[3] == ’17)

6 abort () ;

7 }

Defining the coverage-based fuzzer:
 Start with seed that is a random 4-letter word.
* Given a seed, the fuzzer chooses a letter and substitutes it. 4

Presented by Marcel Bohme

Coverage-based Greybox Fuzzing as Markov Chain

B8 &

Gretjbox @ NUS
N
Coverage-based Fuzzing

as Markov Chain }

}\ - /
—-" O°(
energy = #fuzz \ &high energy

W (high #fuzz

low energy
(low #fuzz)

Markov chain describes the probability p; 5 that fuzzing the
input exercising path i generates an input exercising path j

Presented by Marcel Bohme «O> «<F>r «E)»

Coverage-based Greybox Fuzzing as Markov Chain)

N
Gretjbox @ US

Coverage-ba;\gd Fuzzing
as Markov Chain

\u Pi = 1o

i J
= What is the minimum energy required
to expect discovery of new path 57 3

Presented by Marcel Bohme «O> «F>r «E>»

Coverage-based Greybox Fuzzing as Markov Chain
= oI\

Greybox 95 s
Challenges oCoverage-ba;éd Fuzzing

* AFLs power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

- ——Way too much energy

=1
Pii = 155

Presented by Marcel Bohme «O> «<F>r «E)»

Coverage-based Greybox Fuzzing as Markov Chain
= oI\

Greybox 95 s
Challenges oCoverage-ba;éd Fuzzing

* AFLs power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

not enough energy

o= 1
Pii = 150000

Presented by Marcel Bohme «O> «<F>r «E)»

Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S
Greybox O

Challenges oCoverage-ba;gd Fuzzing

* AFL’s power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

* AFLs power schedule always assigns high energy

| : Exercises a
high-frequency
path (rej. inv. PDF)

Too much enerqy assigned to
high-ﬁequa\r\cv Fo&ks!
A —— o ———— 5

Presented by Marcel Bohme «O> «<F>r «E)»

Stationary Distribution and Neighborhood Density

For a time homogeneous DTMC, the vector 7 is called stationary
distribution of MC.
VjES,OST[‘jS]..
i = Dlies Ti ¥ Py
Neighborhood Density of 7
» High Density Region :- Set of neighborhood of paths | , where

picl(mi) > pgete(mg)-
» Low Density Region :- Set of neighborhood of paths | , where

piel(mi) < HtgeTg (Wg)-
4 - Arithmetic Mean

-
Coverage-based Greybox Fuzzing as Markov Chain
EBINUS
GrEjbox t;\;n‘-‘\;:lpltl‘.v.:u«n‘

Challenges oCoverage-ba;gd Fuzzing

* AFL spends too much energy on high-frequency paths.

* We suggest to spend more energy on low-frequency paths
and less energy on high-frequency paths.

* We suggest to spend the minimum energy required
to discover a new state.

A power schedule manages the
energy spent on each state.

Presented by Marcel Bohme «O> «<F>r «E)»

Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S
Power Schedules

* Constant: p(i) = (i)
* AFL uses this schedule (fuzzing ~| minute)

* a(7)..how AFL judges fuzzing time for the test exercising path i

0 if £(i) > p

¢ Cut-off Exponential: p(i) = in <a(,-) '2S(i),M> otherwise.

B
* energy increases exponentially

* but spend no energy on states in high-density region

e B3> 1..isaconstant

* s(2) .. #times the input exercising path i has been chosen for fuzzing

o f(i) .. #fuzz exercising path i (path-frequency)

* (4 ..mean #fuzz exercising a discovered path (avg. path-frequency)

* M..maximum energy expendable on a state 8

Presented by Marcel Bohme «O> «<F>r «E)»

Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S

Kational University
ol Singapore

Power Schedules

a(i) 250
afi) 20
B)

* Instead of spending no energy on states in high-density region,
* spend energy proportional to the density for the state’s region

' 0 if f(i) > p
/)(l> - (»(1 (z) e

min <250 M otherwise.

* energy increases exponentially
* but spend no energy on states in high-density region

* Exponential: p(i) = min (

* Cut-off Exponential:

e 3> 1..is a constant

* s(i) .. #times the input exercising path i has been chosen for fuzzing
» f(i) .. #fuzz exercising path i (approx. the page rank of i)

* 1t ..mean #fuzz exercising a discovered path

e M ..maximum energy expendable on a state 8

Presented by Marcel Bohme

Coverage-based Greybox Fuzzing as Markov Chain

Experiments

* Binutils (nm, objdump, strings, size, cxxfilt)

it is a difficult subject because it takes program binaries as input.

vulnerabilities exist in GDB,Valgrind, Gecov and other libbfd-based tools.

attacker might modify a binary such that it becomes malicious upon analysis!
* e.g., during scan for malicious software or during reverse engineering.

Vulnerability

Type

CVE-2016-2226
CVE-2016-4487
CVE-2016-4488
CVE-2016-4489
CVE-2016-4490
CVE-2016-4491
CVE-2016-4492
CVE-2016-4493
CVE Requested

Exploitable Buffer Overflow

Invalid Write due to a Use-After-Free
Invalid Write due to a Use-After-Free
Invalid Write due to Integer Overflow
Write Access Violation

Various Stack Corruptions

Write Access Violation

Write Access Violation

Stack Corruption

Bug 1 Buffer Overflow (Invalid Read)
Bug 2 Buffer Overflow (Invalid Read)
Bug 3 Buffer Overflow (Invalid Read)

Kational University
ol Singapore

= NUS
%

we ’?0‘*”"‘5‘ and

ed these vulns.
e them %OT
QLuQELOV\q

re OTE
AND us
our eV

10

Presented by Marcel Bohme

Coverage-based Greybox Fuzzing as Markov Chain N U S

Kational University
ol Singapore

Power Schedules

1250 -
3
< Schedule
& 1000~
o — afl-fast
O
% 750 - T
c ==+ exploit (afl)
-}
+— 500- - = explore
o
® - linear
2 250-
IS --- quad
=)
Z

0 -

Presented by Marcel Bohme

-
Coverage-based Greybox Fuzzing as Markov Chain =3 N U S
O siogapore
AFLFast @ DARPA Cyber Grand
Challenge

* An independent evaluation by team Codejitsu found that
AFLFast exposes errors in the benchmark binaries of the
DARPA Cyber Grand Challenge |9x faster than AFL.

* In the CGC finals, team Codejitsu placed 5th overall
but placed 2nd in terms of Vulnerability Detection
(i.e., 2nd highest evaluation score).

Presented by Marcel Bohme

«4O0>» 4F»>» 4>

Questions 7

Thank You !

