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Introduction

Fuzz testing is an automated testing technique that uncovers
software error by executing the target program with large number
of randomly generated test inputs.
Three main approaches.

» Black-box fuzzing : Random testing®.

» White-box fuzzing: SAGE 2.

» Grey-box fuzzing : American Fuzzy Lop 3.

1Mi||er et al, An empirical study of Unix utilities, CACM, 1990.
2Goefroid et al, Automated whitebox fuzz testing, NDSS, 2008.

3Za|ewski, http:/ /lcamtuf.coredump.cx/afl/.



Grey-box fuzzing

Black-Box Fuzzing — Open Loop Control System.
GreyBox Fuzzing — Closed Loop Control System.
Feedback Function H(s) ~ Branch-Pair Coverage (Pair of
consecutive nodes in a CFG)
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Grey-box fuzzing - Working example
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Grey-box fuzzing - Working example
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Grey-box fuzzing - Working example
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Grey-box fuzzing algorithm

Algorithm 1 Grey-box fuzzing algorithm

Require: Program P, Initial non-crashing seeds Is.
Ensure: Set of crashing inputs T¢ and a tree of test inputs T¢ for P.

1. Tg=1Is

2: Run P with /s and observe visit counts of branch pairs.

3: repeat

4: t = getNextlnput() >te Teg.
5: N = assignEnergy(t)

6: Tm = fuzzTestlnput(t,N) > Tm: {tg|ts € MUTATE(t)}
7: for all t; € T, do

8: Sg = run(P,tg)

o: if Sg = L then > Did t; caused a crash or hang ?
10: T(_xadd(tg)
11: else if isInterestingTestInput(tg,Sg) then
12: Tc.add(tg) > Retain interesting test input
13: end if
14: end for

15: until User interrupt received.
16: return (Tg, T¢)




N = assignEnergy(t)

Let N=100.

Let N1 be the N x a factor inversely proportional to tg's execution
time.

(Ranging from 0.1 for higher execution time to 3 times for lower execution times)
Let N, be Ny * a factor based on number of branch pairs covered
by tg.

(Ranging from 0.25 for lower coverage to 3 times for higher coverage)

Let N3 be N * a factor based on cycle of t;'s discovery and
number of time t fuzzed.

(Low = 1 to high = 4)

Let N4 be N3 x a factor based on depth of t,'s discovery.

(Low = 1 to high = 5)

return Ny



Problem Statement
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void crashme (char *s) {

Listing 1: Program crashes when
string s == "bad!"

BlackBox Fuzzing

> Assumption : 2% characters.

> Expected no. of testcase required
to catch the bug : 232,

Coverage-based GreyBox
Fuzzing (CGF)

» Markov Chain modeling of CGF
gives the expectation that 2'2 is
minimum test required to catch
the crash.

» Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.



Problem Statement

void crashme (char *s) {

Listing 2: Program crashes when
string s == "bad!"

Objective
Tune energy assignment scheme close

to ideal.

BlackBox Fuzzing

> Assumption : 28 characters.

> Expected no. of testcase required
to catch the bug : 252,

Coverage-based GreyBox
Fuzzing (CGF)

> Markov Chain modeling of CGF
gives the expectation that 212
tests are required to catch the
crash.

> Current CGF algorithms are
independent of judicious energy
assignment to interesting test
vectors for further fuzzing.



Some terminologies

Branch Pair Tuple BP; : <bp;,C;> where, bp; - Branch Pair i, C; -
Visit Count.

Path: Sequence of branch pair tuples [BP;, BP; .. .] visited during
the execution of the program P on a test vector t.



Basic Concepts : Probabilistic Modeling

Random Variable
Maps possible outcomes from Sample Space to a real valued

number.
X: Q=R

Conditional Probability

Calculates probability of an event happening, given a partial

information.
P(B|A) = P(BNA)/P(A)

Stochastic Process
Collection of Random Variables indexed by time.



Discrete Time Stochastic Process (DTSP)

Sequence of random variables Xp, Xi, X2, . . Denoted by { X, }.
Time:n=0,1,2,...

State Space: m-dimensional vector, s = (s1, 2, . . . , Sm)
Set of all values that the X,'s can take.

Also, X,, takes one of m values, so X, <> s.



Discrete Time Markov Chain (DTMC)

DTSP — Discrete time Markov Chain (DTMC) iff
P[Xnt1 =J | Xo =iny..., Xo = o] = P[Xns1 =1J |
Xn = in) = Pjj(n) (Markovian Property)

Markov Property

Future state is independent of the past given the present state is
fully known/observable.

Pij(n): Probability of transition from state i to state j, at time n.

This is also referred as one-step transition probability.



Rat Maze Problem as DTMC
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Homogeneous DTMC

DTMC — Homogeneous iff transition probabilities do not depend
on the time n, i.e.

P[Xni1 = j1Xn = i] = P[X, = jXo = /] = Py.

Transition matrix of Homogeneous DTMC P = [Pj]i jcE

P11 P12 P13 P14
P21 P22 P23 P24
P=\|p31 p32 P33 Pp3a
P41 P42 P43 P4,a



Coverage-Based Fuzzing as Homogeneous DTMC

Coverage-based Greybox fuzzing can modeled as Timed
homogeneous DTMC.

State Space S =St + S5~

ST - Paths already explored by seeds Tg.
S - Paths yet to be discovered by fuzzing t € Tg.

Assumptions :

Probability of exercising path i(undiscovered) from already
generated input t;, is same as probability of creating test input t;
from test vectors t;.



Coverage-based Greybox Fuzzing as Markov Chain

Example

1 void crashme (charx s) { 1,2—10
2 if (s[0] == ’b’)

3 if (s[1] == ’a’)

4 if (s[2] == ’d’)

5 if (s[3] == ’17)

6 abort () ;

7 }

Defining the coverage-based fuzzer:
 Start with seed that is a random 4-letter word.
* Given a seed, the fuzzer chooses a letter and substitutes it. 4

Presented by Marcel Bohme



Coverage-based Greybox Fuzzing as Markov Chain
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Markov chain describes the probability p; 5 that fuzzing the
input exercising path i generates an input exercising path j
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Coverage-based Greybox Fuzzing as Markov Chain )
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Coverage-ba;\gd Fuzzing
as Markov Chain

\u Pi = 1o

i J
= What is the minimum energy required
to expect discovery of new path 57 3

Presented by Marcel Bohme «O> «F>r «E>»



Coverage-based Greybox Fuzzing as Markov Chain
= oI\

Greybox 95 s
Challenges oCoverage-ba;éd Fuzzing

* AFLs power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

- ——Way too much energy

=1
Pii = 155
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Coverage-based Greybox Fuzzing as Markov Chain
= oI\

Greybox 95 s
Challenges oCoverage-ba;éd Fuzzing

* AFLs power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

not enough energy

o= 1
Pii = 150000
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Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S
Greybox O

Challenges oCoverage-ba;gd Fuzzing

* AFL’s power schedule is constant in the number of times s(i)
the seed has been chosen for fuzzing.

* AFLs power schedule always assigns high energy

| : Exercises a
high-frequency
path (rej. inv. PDF)

Too much enerqy assigned to
high-ﬁequa\r\cv Fo&ks!
A —— o ———— 5

Presented by Marcel Bohme «O> «<F>r «E)»



Stationary Distribution and Neighborhood Density

For a time homogeneous DTMC, the vector 7 is called stationary
distribution of MC.
VjES,OST[‘jS]..
i = Dlies Ti ¥ Py
Neighborhood Density of 7
» High Density Region :- Set of neighborhood of paths | , where

picl(mi) > pgete(mg)-
» Low Density Region :- Set of neighborhood of paths | , where

piel(mi) < HtgeTg (Wg)-
4 - Arithmetic Mean



-
Coverage-based Greybox Fuzzing as Markov Chain
EBINUS
GrEjbox t;\;n‘-‘\;:lpltl‘.v.:u«n‘

Challenges oCoverage-ba;gd Fuzzing

* AFL spends too much energy on high-frequency paths.

* We suggest to spend more energy on low-frequency paths
and less energy on high-frequency paths.

* We suggest to spend the minimum energy required
to discover a new state.

A power schedule manages the
energy spent on each state.

Presented by Marcel Bohme «O> «<F>r «E)»



Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S
Power Schedules

* Constant: p(i) = (i)
* AFL uses this schedule (fuzzing ~| minute)

* a(7)..how AFL judges fuzzing time for the test exercising path i

0 if £(i) > p

¢ Cut-off Exponential: p(i) = in <a(,-) '2S(i),M> otherwise.

B
* energy increases exponentially

* but spend no energy on states in high-density region

e B3> 1..isaconstant

* s(2) .. #times the input exercising path i has been chosen for fuzzing

o f(i) .. #fuzz exercising path i (path-frequency)

* (4 ..mean #fuzz exercising a discovered path (avg. path-frequency)

* M..maximum energy expendable on a state 8

Presented by Marcel Bohme «O> «<F>r «E)»



Coverage-based Greybox Fuzzing as Markov Chain B8 @ N U S

Kational University
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Power Schedules

a(i) 250
afi) 20
B )

* Instead of spending no energy on states in high-density region,
* spend energy proportional to the density for the state’s region

' 0 if f(i) > p
/)(l> - (»(1 (z) e

min <250 M otherwise.

* energy increases exponentially
* but spend no energy on states in high-density region

* Exponential: p(i) = min (

* Cut-off Exponential:

e 3> 1..is a constant

* s(i) .. #times the input exercising path i has been chosen for fuzzing
» f(i) .. #fuzz exercising path i (approx. the page rank of i)

* 1t ..mean #fuzz exercising a discovered path

e M ..maximum energy expendable on a state 8

Presented by Marcel Bohme



Coverage-based Greybox Fuzzing as Markov Chain

Experiments

* Binutils (nm, objdump, strings, size, cxxfilt)

it is a difficult subject because it takes program binaries as input.

vulnerabilities exist in GDB,Valgrind, Gecov and other libbfd-based tools.

attacker might modify a binary such that it becomes malicious upon analysis!
* e.g., during scan for malicious software or during reverse engineering.

Vulnerability

Type

CVE-2016-2226
CVE-2016-4487
CVE-2016-4488
CVE-2016-4489
CVE-2016-4490
CVE-2016-4491
CVE-2016-4492
CVE-2016-4493
CVE Requested

Exploitable Buffer Overflow

Invalid Write due to a Use-After-Free
Invalid Write due to a Use-After-Free
Invalid Write due to Integer Overflow
Write Access Violation

Various Stack Corruptions

Write Access Violation

Write Access Violation

Stack Corruption

Bug 1 Buffer Overflow (Invalid Read)
Bug 2 Buffer Overflow (Invalid Read)
Bug 3 Buffer Overflow (Invalid Read)

Kational University
ol Singapore

= NUS
%

we ’?0‘*”"‘5‘ and

ed these vulns.
e them %OT
QLuQELOV\q

re OTE
AND us
our eV

10

Presented by Marcel Bohme



Coverage-based Greybox Fuzzing as Markov Chain N U S
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AFLFast @ DARPA Cyber Grand
Challenge

* An independent evaluation by team Codejitsu found that
AFLFast exposes errors in the benchmark binaries of the
DARPA Cyber Grand Challenge |9x faster than AFL.

* In the CGC finals, team Codejitsu placed 5th overall
but placed 2nd in terms of Vulnerability Detection
(i.e., 2nd highest evaluation score).

Presented by Marcel Bohme
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Questions 7



Thank You !



