
Verification of
blockchains and  
smart contracts

Madhavan Mukund 
Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update, 2018
BITS Pilani Goa

http://www.cmi.ac.in/~madhavan

Outline

Introduction to blockchains

Smart contracts

Verification issues

Introduction to
blockchains

Banks and ledgers
Record of all
transactions

Maintained by a
trusted
authority

Each entry is
validated

Compute net
balance etc

Public ledgers

Ledgers are
private

Can we maintain
a public ledger?

Eliminate
trusted
authority

Challenges

Integrity of
individual
transactions

Consensus on
overall set of
transactions

A solution

Maintain a
distributed
ledger

Duplication
prevents
tampering

Cryptography for
authentication

A solution

A physical
ledger has pages

Distributed
version has
blocks of data

These blocks are
linked together

Blockchain!

Blocks

Each block is a
collection of
transactions

Each block
points to parent
block

Hash function

Compute random
summary of input

“Impossible” to
invert

Collisions rare

Different inputs
produce
different outputs

The quick brown
fox jumps over
the lazy dog.

0d7006cd055e94cf
614587e1d2ae0c8e

Blockchain integrity

Each block has a
hash of the
transactions it
contains

Each block
includes a hash
of parent block

parent

hash(parent)

hash(my
transactions)

Transactions

parent

hash(parent)

hash(my
transactions)

Transactions

Public key cryptography
Each person P has
a pUblic key U and
a pRivate key R

U and R are
inverses

To encrypt text t
for P to read,
send U(t)

R(U(t)) = t

The quick brown
fox jumps over
the lazy dog.

0d7006cd055e94cf
614587e1d2ae0c8e

The quick brown
fox jumps over
the lazy dog.

U

R

Digital signatures

U and R are
inverses

R(U(t)) = t

Also,  
U(R(t)) = t !!

Sign using R

Recipient can
verify using U

Madhavan Mukund

0d7006cd055e94cf
614587e1d2ae0c8e

Madhavan Mukund

R

U

Transactions

Who writes the
transactions in the
blockchain?

No centralised
authority

Transactions are
created by
originator

Transaction

From A

To B

Amount

Transactions
A digitally signs

Cannot
repudiate later

A uses B’s public
key to create a
challenge only B
can solve

Only B can claim
this amount

Transaction

From A

Dig Sig of A

To B

Challenge

Amount

Transactions

Where’s the money?

No centralised
authority to certify
the money A holds

Must refer to
previous
transactions where
A acquired the
money

Transaction

From A

Dig Sig of A

To B

Challenge

Amount

Sources of
funds

Adding blocks

Peer to peer
network

Transactions
broadcast to all
nodes

Periodically,
collect transactions
into a block and
add to chain

Mining blocks

Process of adding
a block is called
mining

Mining is
decentralised

Blockchain may
fork

Integrity of the
ledger is lost!

Distributed consensus

All nodes should
agree on blocks

Elegant solution
due to Satoshi
Nakomoto

Emerging
distributed
consensus

Proof of work

Adding a node
requires solving a
hashing problem

Brute force
search

Calibrated so that
it takes about 10
minutes to solve on
current hardware

Proof of work

After mining a
block, miner
broadcasts

Other miners
abandon efforts,
accept this block,
move to next block

Serial numbers

Blockchain forking

Two miners may
succeed in parallel

Variants of chain
may propagate

Mismatch between
your chain and new
block — keep longer
chain

Eventually converges

Incentive for mining

Why spend
computational
effort to mine?

Transaction fees
and other
incentives

Bitcoin!

Smart contracts

Transactions

A uses B’s public
key to create a
challenge only B
can solve

Only B can claim
this amount

How is this done?

Transaction

From A

Dig Sig of A

To B

Challenge

Amount

Challenge scripts
Simple stack based programming
language

Locking script
DUP HASH160 <PubKHash> EQUALVERIFY CHECKSIG

<PubKHash> — hash of B’s public key

Unlocking script
<Sig> <PubK>

<Sig> <PubK> — signature, public key of B

Challenge scripts …

Concatenate and execute on stack VM
<Sig> <PubK> DUP HASH160 <PubKHash>
EQUALVERIFY CHECKSIG

More general scripts

Multisignature

N public keys recorded in the
script

M must provide signatures to
unlock

Conditional

Three partners, majority must sign

Lawyer can access with one partner

Scripting language

Bitcoin

Scripting language is intentionally
Turing incomplete

Conditionals, but no loops

Ethereum

Richer language, Turing complete

High level language Solidity that
compiles down to stack language

Smart contracts

A script that executes when a
transaction is invoked

Ethereum contracts can express
objects with encapsulated state

Example: DAO

Decentralized Autonomous
Organisation

Verification

Blockchain convergence

Proof of work — eventually
convergent solution to distributed
consensus

Ensures blockchain does not fork

Need majority collusion to fabricate
alternate chain

Would allow double spending

Vulnerability

Hijacking Bitcoin: routing attacks on
cryptocurrencies, Apostolaki et al, IEEE Security
and Privacy 2017  

Structure of Internet is not uniform

Concentration of switches, routers
make partitioning possible

Can also delay packets

Model checking

Modeling and Verification of the Bitcoin
Protocol, Chaudhury et al, MARS Workshop 2015  

UPPAAl model of Bitcoin network

Investigate forking, double spending

Model checking of a very small
scale model, 4 nodes, 1 malicious

Smart contract
verification

Online Detection of Effectively Callback Free
Objects with Applications to Smart Contracts,
Grossman et al, POPL 2018

Decentralized Autonomous Organisation

DAO bug stole $150 million dollars

Reentrant code (callbacks)

Automatic verification of effectively
callback free objects

DAO Object Dao

 Map <Object,int> credit  
 int balance

 Invariant  
 (sum o: credit[o]) = balance

Method  
withdrawAll(Object o)

 if (credit[o] > 0)  
 this.balance -=  
 credit[o]  
 o.pay(credit[o])  
 credit[o] = 0

Method  
deposit(Object o,  
 int amount)

 credit[o] += amount  
 balance += amount

DAO attack
Method  
withdrawAll(Object o)

 if (credit[o] > 0)  
 this.balance -=  
 credit[o]  
 o.pay(credit[o])  
 credit[o] = 0

Method  
deposit(Object o,  
 int amount)

 credit[o] += amount  
 balance += amount

Object Attacker

 Object Dao  
 bool stop = false  
 int balance
Method pay(int profit)

 this.balance +=  
 profit

 if (!stop)
 stop = true  
 Dao.  
 withdrawAll(this)  
 stop = false

