
Verifying Asynchronous 
programs with nested locks

K Narayan Kumar 
CMI, Chennai

Joint work with 
• Ahmed Bouajjani 
• M.F. Atig 
• Prakash Saivasan



Programs with Locks:
A collection of processes executing 
concurrently. 

A finite set of Locks

Proc-1 Proc-2 Proc-3



Programs with Locks:
A collection of processes executing 
concurrently. 

A finite set of Locks

Processes may take locks that are 
available and release locks that they 
hold.  

Taking and releasing locks are atomic 
operations

Proc-1 Proc-2 Proc-3



Programs with Locks:

Our processes will be recursive 
processes (over finite data domains) 

Modelled as Pushdown Systems



Why Locks

Useful coordination mechanism.

Can be built with protocols over shared memory. Usually 
supported by hardware.

Available in many programming languages …



How good are they? 
 Can processes “synchronize” using just locks?

Why Locks

Useful coordination mechanism.

Can be built with protocols over shared memory. Usually 
supported by hardware.

Available in many programming languages …



Synchronizing via Locks

Proc-1

Proc-2



Synchronizing via Locks

Proc-1

Proc-2



Synchronizing via Locks

Proc-1

Proc-2



Synchronizing via Locks

Proc-1

Proc-2



Synchronizing via Locks

Proc-1

Proc-2 x



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x

Locks Exchanged.



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x x



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x

Locking not well-nested



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x



Synchronizing via Locks

Proc-1

Proc-2 x

x x

x

Chaining of locks. Unboundedly long chains.



The control state reachability problem asks if a 
given global state can be reached from the 

initial configuration

Reachability:

Reachability problem for a (even two) recursive 
programs (PDS) with locks is undecidable.

Ramalingam TOPLAS 2000,  
Kahlon,Ivancic,Gupta CAV05



What if we need all locks to be free at the 
beginning?

Initial Condition on Locks:

A somewhat more elaborate protocol with additional locks 
works.

Kahlon,Ivancic,Gupta CAV05



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

aa

a

bb

b



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

aa

a

bb

b

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

aa

a

bb

b

x

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a

a

bb

b

x

x

a



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a

a

b

b

x

x

a b



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a

b

b

x

x

a

a

b

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x

x

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x

x

x

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x

x

x

x

x



Initializing the Locks:

Kahlon,Ivancic,Gupta CAV05

a b

x

x

a

a

b

b

x x

x

x

x

x

simulation

simulation



Recursive Programs with Locks



Recursive Programs with Locks



Recursive Programs with Locks

Locks taken in procedure may be released after the procedure 
terminates



Recursive Programs with Locks

Procedures may return locks they did not take



Decidable Underapproximations:

Nested Locking 

Locks are taken and released by each process in well-nested (last 
in first out/stack-like) manner

Kahlon,Ivancic,Gupta CAV05



Decidable Underapproximations:

Nested Locking 

Locks are taken and released by each process in well-nested (last 
in first out/stack-like) manner

Kahlon,Ivancic,Gupta CAV05

x x

The well-nested assumption is per process (not global).



Decidable Underapproximations:

Nested Locking 

Locks are taken and released by each process in well-nested (last 
in first out/stack-like) manner

Kahlon,Ivancic,Gupta CAV05

x x

The well-nested assumption is per process (not global).

More on nested locking later …



Decidable Underapproximations:

Bounded Lock Chains 

Lock chaining is permitted but there is a priori bound on length of  
such chains.

Kahlon LICS09

x x

A length 4 lock-chained run



Contextual Locking

Contextual  Locking 

Locks taken by a procedure call are returned during the execution 
of that very procedure call.

Chadha,Madhusudan,Vishwanathan 
TACAS12

Reachability is decidable for 2 processes under 
contextual locking

Chadha, Madhusudan, Vishwanathan 
TACAS12 
Bonnet, Chadha, Madhusudan, Viswanathan  
LMCS 2013



Sequentializing the runs:

x xx x

1

2

x x x xx x x x

x xx x



Sequentializing the runs:

x xx x

1

2

L L

x x x xx x x x

x xx x



Sequentializing the runs:

x xx x

1

2

L LAt least L

x x x xx x x x

x xx x



Sequentializing the runs:

x xx x

1

2

L LAt least L

x x x x

x x x x

x xx x



Sequentializing the runs:

x xx x

1

2

L LAt least L

x x x x

x x x x

x xx x



Sequentializing the runs:

x xx x

1

2

L LAt least L

x x x x

x x x x

x xx x

More locks Available



Sequentializing the runs:

x xx x

1

2

L LAt least L

x x x x

x x x x

x xx x

More locks Available More locks Available



Contextual Locking: 2 processes

Contextual  Locking with 2 processes 

It suffices to consider runs where the procedure calls of the two 
processes are also well-nested. Can be simulated by a single PDS.

This does not work if there are 3 processes or more.

Chadha,Madhusudan,Vishwanathan 
TACAS12



Contextual Locking: >2 processes

The reachability problem for any number of pushdown systems 
synchronising via contextual locks is decidable.

Lammich, Muller-Olm, Seidl, Werner SAS13

Stack height bounding argument.



m

m - |L| (|Q||𝚪|)2  

Last time First time 

m-i

Stack height bounding:



m

m-i
p

qp

q
m - |L| (|Q||𝚪|)2  

Stack height bounding…



m

m-i
p,X q,X

m - |L| (|Q||𝚪|)2  

Stack height bounding…



m

m-i
p,X

q,Xp,X

q,X
m - |L| (|Q||𝚪|)2  

Stack height bounding…



m

m-i
p,X

q,Xp,X

q,X
m - |L| (|Q||𝚪|)2  

Stack height bounding…

Contextual Locking



m

m-i
p,X

q,Xp,X

q,X
m - |L| (|Q||𝚪|)2  

_.X
_.X

_.X

Stack height bounding…

Contextual Locking



m

m-i
p,X

q,Xp,X

q,X
m - |L| (|Q||𝚪|)2  

_.X
_.X

_.X _.X

_.X
_.X

Stack height bounding…

Contextual Locking



m

p,X

q,Xp,X

q,X

Stack height bounding…

m - |L| (|Q||𝚪|)2  



p q

Stack height bounding…



m

p,X

q,Xp,X

q,X

Stack height bounding…

m - |L| (|Q||𝚪|)2  



m

p,X

q,Xp,X

q,X

Stack height bounding…

m - |L| (|Q||𝚪|)2  



m

p,X

q,Xp,X

q,X

Stack height bounding…

More locks available for other processes below

m - |L| (|Q||𝚪|)2  



Contextual Locking: >2 processes

The reachability problem for any number of pushdown systems 
synchronising via contextual locks is decidable.

Exponential (in states, stack alphabet, locks) length paths suffice. 
In PSPACE.

Lammich, Muller-Olm, Seidl, Werner SAS13

Extends to systems with Dynamic thread creation. 



Proc one() 
{ 
         < …. > 
          call function(); 
          async-call function(); 

}

Asynchronous programs:
Sen and Vishwanathan CAV06, Ganty and Majumdar TOPLAS12 …,



Proc one() 
{ 
         < …. > 
          call function(); 
          async-call function(); 

}

Asynchronous programs:

Recursive programs with option to 
invoke asynchronous calls.

The asynchronous calls are stored as 
tasks that can be retrieved later and 
executed
The stored tasks have no specific 
order.

The tasks are executed atomically 
when there are no other pending 
calls.

Sen and Vishwanathan CAV06, Ganty and Majumdar TOPLAS12 …,



Proc one() 
{ 
         < …. > 
          call function(); 
          async-call function(); 

}

Asynchronous programs:

Recursive programs with option to 
invoke asynchronous calls.

The asynchronous calls are stored as 
tasks that can be retrieved later and 
executed
The stored tasks have no specific 
order.

The tasks are executed atomically 
when there are no other pending 
calls.

Sen and Vishwanathan CAV06, Ganty and Majumdar TOPLAS12 …,

Modeled as a PDS augmented with a multi-set. (MPDS)



Decidability:

Control state reachability for  pushdown systems 
equipped with a multi-set is EXPSPACE-Complete



Decidability:

Control state reachability for  pushdown systems 
equipped with a multi-set is EXPSPACE-Complete

Sen and Vishwanathan CAV06 
Atig, Bouajjani, Touili FSTTCS08 
Ganty and Majumdar TOPLAS12 



Multi-threaded version:

Thread-1 Thread-2

Thread-4Thread-3



Multi-threaded version:

Thread-1 Thread-2

Thread-4Thread-3

Programs with multiple 
threads running in parallel



Multi-threaded version:

Thread-1 Thread-2

Thread-4Thread-3

Task

Task

Task
Task

Programs with multiple 
threads running in parallel

Threads can either make a 
synchronous call or an 
asynchronous call by 
delegating it to a thread



Multi-threaded version:

Thread-1 Thread-2

Thread-4Thread-3

Task

Task

Task
Task

Programs with multiple 
threads running in parallel

Threads can either make a 
synchronous call or an 
asynchronous call by 
delegating it to a thread

Threads have unbounded  
unordered buffers to store the 
tasks



Communication:

Communication via shared 
memory and locks. 

Shared memory

Locks

Thread-1 Thread-2

Thread-4Thread-3

Task

Task

Task
Task



Communication:

Communication via shared 
memory and locks. 

Shared memory

Locks Shared memory is difficult to 
handle. 

Thread-1 Thread-2

Thread-4Thread-3

Task

Task

Task
Task



Communication:

Communication via shared 
memory and locks. 

Shared memory

Locks Shared memory is difficult to 
handle. 

We consider in asynchronous programs synchronising only through 
locks

Thread-1 Thread-2

Thread-4Thread-3

Task

Task

Task
Task



Asynchronous programs + Locks:

Pushdown systems with

Multi-sets to hold tasks

A finite set of global locks

1 2

Multi set Multi set



Configuration:

0 1 2 0 0
q

0 0 3 2 0

p

Content of the stack

Content of the multi-set

Set of locks held

1

2

State



Configuration:

0 1 2 0 0
q

0 0 3 2 0

p

Content of the stack

Content of the multi-set

Set of locks held

per thread

1

2

State



0 1 2 0 0

q

0 0 3 2 0

p

1

2

Move:



0 1 2 0 0

q

0 0 3 2 0

p

1

2

0 1 2 0 0

q

0 1 3 2 0

p

1

2

q q’
2

Move:



\

)

1 2 3 4

Pushdown 
over ⌃

Pushdown 
over ⌃

Reduce intersection of two pushdown 
systems

Undecidability under nested locking

4 threads along with two locks and set 
of tasks

l1 l2

= ⌃ [ {l, r}+

The set of tasks is the alphabet of 
pushdown systems along with two 
additional tasks

1 2 3 4



Simulation of a move:

1

2

We will show how to simulate a single 
move of each of the pushdown systems

0 0 0

0 0 0

0 0 0

0 0 0

l1 l1



Simulation of a move:

1

2

0 0 0

0 0 0

0 0 0

0 0 0

l1 l1

The Simulation starts with process 3 holding l1



Simulation of a move:

1

2

0 0 0

0 0 0

0 0 0

0 0 0

l1 l1

l2 l2

l2 l2

Process 1 and 2 test lock l2



Simulation of a move:

1

2

0 0 0

0 0 0

0 0 0

0 0 0

l1 l1

l2 l2

l2 l2

Process 1 and 2 guess an letter and simulate the move



Simulation of a move:

1

2

0 0 0

0 0 0

0 0

0 0 0

l1 l1

l2 l2

l2 l2

2

Process 1 and 2 sends the guessed letter to 3



Simulation of a move:

1

2

0 0 0

0 0 0

0 0

0 0 0

l1 l1

l2 l2

l2 l2

0

Process 3 reads and verifies that the letters match



Simulation of a move:

1

2

0 0 0

0 0 0

0 0

0 0

l1 l1

l2 l2

l2 l2

0

1

Process 3 requests 4 to hold lock l2



Simulation of a move:

1

2

0 0 0

0 0 0

0 0

0 0

l1 l1

l2
l2

l2 l2

l2 l2

0

0

Process 4 reads the request and holds lock l2



Simulation of a move:

1

2

0 0 0

0 0 0

0

0 0

l1 l1

l2
l2

l2 l2

l2 l2

0

0

1

Process 4 reads the request and holds lock l2



Simulation of a move:

1

2

0 0 0

0 0 0

0

0 0

l1

l2
l2

l1

l2 l2

l2 l2

0

0

0

Process process 3 releases l1 on learning l2 is taken



Simulation of a move:

1

2

0 0 0

0 0 0

0

0 0

l1

l2
l2

l1

l2 l2

l2 l2

l1 l1

l1 l1

0

0

0

Process 1 and 2 tests lock l1



Simulation of a move:

1

2

0 0 0

0 0 0

0

0 0

l1

l2
l2

l1

l2 l2

l2 l2

l1 l1

l1 l1

l1 0

0

l10

Process 3 retakes lock l1 and asks 4 to release l2



Simulation of a move:

1

2

0 0 0

0 0 0

0

0 0

l1

l2

l1

l2 l2

l2 l2

l1 l1

l1 l1

l1

l2

0

0

l10

Process 3 retakes lock l1 and asks 4 to release l2



Locks can be held only by task. That is, locks are 
held only when the stack is not empty 

Task locking restriction:



Phases of a thread:



Phases of a thread:

Task Phases: Complete execution of one task



Phases of a thread:

Task Phases: Complete execution of one task

Boundary Phase: Initial part of a nonterminating task where all 
locks are returned



Phases of a thread:

Task Phases: Complete execution of one task

Boundary Phase: Initial part of a nonterminating task where all 
locks are returned

Lock phases: Part of a nonterminating task that begins with a lock 
that is never returned, until the next such action.



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

1



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5

6



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5

6

7



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5

6

7 8



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5

6

7 8

9



Sequentialisation Lemma:
Every reachable configuration can be reached 
via a run that is a sequence of phases (of the 
different threads). That is, phases can be 
executed atomically.

2

1 3

4 5

6

7 8

9

Order in which their first events occur suffices



N-threads to 1-thread:

(Guess and) Simulate the phases of all the 
threads using a single thread.



N-threads to 1-thread:

States have to be consistent across phases of a thread.



N-threads to 1-thread:

Tasks picked for thread i have to be “available” at thread i.

States have to be consistent across phases of a thread.



N-threads to 1-thread:

Tasks picked for thread i have to be “available” at thread i.

Easy. Use single multiset, but now tasks are tagged with the 
associated thread.

States have to be consistent across phases of a thread.



N-threads to 1-thread:

Tasks picked for thread i have to be “available” at thread i.

Locks should be handled correctly (taken only when available …)

Easy. Use single multiset, but now tasks are tagged with the 
associated thread.

States have to be consistent across phases of a thread.



N-threads to 1-thread:

Tasks picked for thread i have to be “available” at thread i.

Locks should be handled correctly (taken only when available …)

Handle multiple pushdown stores 

Easy. Use single multiset, but now tasks are tagged with the 
associated thread.

States have to be consistent across phases of a thread.



N-threads to 1-thread: locks



N-threads to 1-thread: locks

Lock phases impose restrictions on availability of locks to future 
phases.



N-threads to 1-thread: locks

Lock phases impose restrictions on availability of locks to future 
phases.

Maintain information on availability of locks



N-threads to 1-thread: stacks



N-threads to 1-thread: stacks



N-threads to 1-thread: stacks

Multiple stacks have to be maintained simultaneously.



Segments of phases:
i

i

A task phase of thread i

A lock phase of thread i with lock
i Boundary phase of thread i

1 2 3 3 1 2 3 1 2 23 1 134 3 3

0 1 2 3 4 5

Segment 0 — only task phases

Segment i+1 — begins with boundary or lock phase, rest are task 
phases.



Segments of phases:
i

i

A task phase of thread i

A lock phase of thread i with lock
i Boundary phase of thread i

1 2 3 3 1 2 3 1 2 23 1 134 3 3

0 1 2 3 4 5

Segment 0 — only task phases

Segment i+1 — begins with boundary or lock phase, rest are task 
phases.

Number of segments is bounded by locks + threads



Guiding Sequences:

1 2 3 3 1 2 3 1 2 23 1 134 3 3

0 1 2 3 4 5

2 2 2 1 2



Guiding Sequences:

1 2 3 3 1 2 3 1 2 23 1 134 3 3

0 1 2 3 4 5

2 2 2 1 2

A sequence identifying the first element of each segment



Simulation with a single stack:

2 2 2 1 2

Seg No = 0



Simulation with a single stack:

2 2 2 1 2

any task phase

Seg No = 0



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

a phase of 2 that 
takes lock 

a phase of 2 that 
takes lock 

a phase of 2 that 
takes lock 

Seg No = 1



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

a phase of 2 that 
takes lock 

a phase of 2 that 
takes lock 

Seg No = 1



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock       prohibited

a phase of 2 that 
takes lock 

a phase of 2 that 
takes lock 

Seg No = 2



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock       prohibited

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock           prohibited

a phase of 2 that 
takes lock 

Seg No = 3



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock       prohibited

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock           prohibited

 a boundary phase 
of thread 1 

a phase of 2 that 
takes lock 

Seg No = 4



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock       prohibited

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock           prohibited

 a boundary phase 
of thread 1 

task phases, other 
than thread 2,1 

Lock           prohibited

a phase of 2 that 
takes lock 

Seg No = 4



Simulation with a single stack:

2 2 2 1 2

any task phase

 a boundary phase 
of thread 2 

task phases, other 
than thread 2

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock       prohibited

a phase of 2 that 
takes lock 

task phases, other 
than thread 2. 

Lock           prohibited

 a boundary phase 
of thread 1 

task phases, other 
than thread 2,1 

Lock           prohibited

a phase of 2 that 
takes lock 

task phases, other than 
thread 2,1 

                    prohibited

Seg No = 5



Complexity:
For a given guiding sequence 

Exponential blow up due to product of state spaces



Complexity:
For a given guiding sequence 

Exponential blow up due to product of state spaces

Maintain the local states in the multiset



Complexity:
For a given guiding sequence 

Exponential blow up due to product of state spaces

Maintain the local states in the multiset

Reachability via runs consistent with a given guiding 
sequence reduces to a polynomially larger 1-Thread system.



Complexity …
For a given guiding sequence 

There are only exponentially many guiding sequences



Complexity …
For a given guiding sequence 

Reachability via runs consistent with a given guiding 
sequence is in EXPSPACE.

There are only exponentially many guiding sequences

Theorem: Reachability for Asynchronous programs 
with locks under well-nested, task locking is 

EXPSPACE-Complete



Complexity: underapproximation
What if we also want to verify that the system uses nested 
locking?

Exponential blow up due to set of locks to be maintained.

Locks are accessed when the stack is not empty, so can’t be 
simply moved to the multi-set.

Using Parikh’s theorem transform this into FA with multi-sets 
with 2-EXP number of states, but same multi-set alphabet as 
in the input. 

Treat as a VASS with 2-EXP number of states and polynomial 
number of places.

Yen-Rosier show that coverability for VASS can be solved 
space logarithmic in the number of states and exponential in 
the number of places.



Stateless task scheduling:

Each thread may schedule a new task only from  
a fixed local state.

Tasks cannot “communicate” via local state of threads

A thread is just schedules and runs  tasks. 



Stateless task scheduling:

Theorem: Reachability for Asynchronous programs 
with locks under state-less scheduling,  well-nested 

locks and  task locking is NP-Complete



Stateless task scheduling:

Theorem: Reachability for Asynchronous programs 
with locks under state-less scheduling,  well-nested 

locks and  task locking is NP-Complete

A polynomial bound on the number of tasks that need to be 
scheduled  to reach any (reachable) state.



Bounding the number of tasks



Bounding the number of tasks



Bounding the number of tasks



Bounding the number of tasks

Number of branching points bounded by threads



Bounding Path length

Path length bounded by Poly(threads, tasks)
Width also bounded by threads.



Bounding Path length

No Branching

Path length bounded by Poly(threads, tasks)
Width also bounded by threads.



Bounding Path length

Path length bounded by Poly(threads, tasks)
Width also bounded by threads.



Stateless task scheduling:



Stateless task scheduling:

Only a polynomial bound on the number of tasks that need to 
be scheduled.



Stateless task scheduling:

Only a polynomial bound on the number of tasks that need to 
be scheduled.

1-Thread simulation can work with the same number of tasks.



Stateless task scheduling:

Only a polynomial bound on the number of tasks that need to 
be scheduled.

1-Thread simulation can work with the same number of tasks.

Complexity of emptiness of Asynchronous Programs with at most polynomial 
number of operations on the multi-set.



Stateless task scheduling:

Only a polynomial bound on the number of tasks that need to 
be scheduled.

1-Thread simulation can work with the same number of tasks.

Complexity of emptiness of Asynchronous Programs with at most polynomial 
number of operations on the multi-set.

Guess and write down a consistent sequence of Multi-set 
operations (consistent: add >= remove at each point for each 
task)



Stateless task scheduling:

Only a polynomial bound on the number of tasks that need to 
be scheduled.

1-Thread simulation can work with the same number of tasks.

Complexity of emptiness of Asynchronous Programs with at most polynomial 
number of operations on the multi-set.

Guess and write down a consistent sequence of Multi-set 
operations (consistent: add >= remove at each point for each 
task)

Simulate the Asynchronous program as a pushdown on this 
input. 



Stateless task scheduling:

Theorem: Reachability for Asynchronous programs 
with locks under state-less scheduling,  well-nested 

locks and  task locking is NP-Complete



Stateless task scheduling:

Theorem: Reachability for Asynchronous programs 
with locks under state-less scheduling,  well-nested 

locks and  task locking is NP-Complete

Lower-bound —- reduction from SAT. 

Take locks to decide on valuation (taking lock x if x = False) 

Cycle through clauses and check that at least one literal is 
true.



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.

Stateless scheduling is decidable in NP.



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.

Stateless scheduling is decidable in NP.

Possible Extensions



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.

Stateless scheduling is decidable in NP.

Possible Extensions
Locks + Shared memory. Reasonable restrictions for decidability?



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.

Stateless scheduling is decidable in NP.

Possible Extensions
Locks + Shared memory. Reasonable restrictions for decidability?

Other locking subclasses: bounded lock chains, contextual 
locking



Conclusion:
Asynchronous programs with nested locks: reachability is 
undecidable.

Decidable under a further task locking restriction. EXPSPACE-
Complete.

Stateless scheduling is decidable in NP.

Thank you

Possible Extensions
Locks + Shared memory. Reasonable restrictions for decidability?

Other locking subclasses: bounded lock chains, contextual 
locking


