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Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts

1. p :=17;
about the program state at each 2. q =105
. 3. while (p > @) {
program point. 4. p:i=p+1;
@ Use abstract states to represent the 2' y 1 *2
concrete state. 7. print p, q;

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

@ Interpret execution along a path by
transforming the abstract state.
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Data-Flow Analysis / Abstract Interpretation
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Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.
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Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.
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Data Flow Analysis

Computing JOP/LFP

C
@ We usually further over-approximate the JOP by L IE I F
computing the least fixpoint (LFP) (least solution) o +
of data-flow equations. L
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of
abstract lattice Gé |

print p, @
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Concurrent Programs

Multi-Threaded Programs

Standard interleaving semantics

main:
x := 0;

e *
spawn (t2) ;

tl: t2:
if (x < 10) . if (x < 10)
X++; X++;

1

2.
y++ 3.

4

g W N

S W N -



Concurrent Programs

Product Control Flow Graph

main: x = 0
1. x := 0;
2.y :=0;
3. spawn(tl); y - 0
4. spawn(t2);
5.
spawn (tl)
tl: t2:
1. if (X < 10) 1. if (X < 10) assume (x<10) spawn (t2)
2. X++; 2. X++; \
3. y++ 3. y++

spawn (t2) assume (x<10)

assume (x<10)




Concurrent Programs

Data Flow Analysis for a Concurrent Program

Naive approach:
@ Construct Product CFG
@ Carry out analysis on this graph

Approach is precise, but too expensive! Problem: If number of
threads is k, height of lattice is h, and number of program points
in a thread is n, then

@ Number of program points in product CFG is n.

@ Number of iterations is bounded by

h x n*

@ Time taken can be exponential in number of threads.

Can we be more efficient for some class of programs, maybe at the
cost of precision?



Race-Free Programs

Happens-Before Race

@ Happens-Before ordering on instructions in an execution:

e synchronizes-with relation: Two instructions / and J in an
execution are sync-with related if / is a release (like
unlock(1)) and J is the next corresponding acquire (like
lock(1)).

o Program-Order relation.

o HB order is the reflexive transitive closure of the union of
program-order and sync-with relations.

@ Two instructions in an execution are involved in a HB-race if they
are conflicting accesses and are unordered by the the HB order.



Race-Free Programs

lllustrating Happens-Before Race

S W N e

DO WN -

main:
x := 0;
y := 0;

spawn(t1);
spawn(t2) ;

tl:

t = x;

lock(1l);

if (x < 10)
x++;

yH++;

unlock(1);

O W N

t2:

lock(1l);

if (x < 10)
X++;

y++;

unlock(1);

main: tl: 2
lx =0
IS
+ spawn (

@

| 'spawn (

| lock (1)
[ ]
assume (x<10)

assume (x<10)



Sync-CFG Analysis

Sync-CFG Analysis for HB-Race-Free Programs [De, D, Nasre 2011]

Given a HB-Race-Free program

Build a Sync-CFG for the program
o Union of CFG's of each thread
o May-Sync-With edges to conservatively capture sync-with
relation.

Perform a Value-Set analysis.

@ LFP values for a variable are guaranteed to be sound at points
where the variable is owned by the thread.



Sync-CFG Analysis

Example Sync-CFG

main:

1. x = y :=0;
2. spawn(tl);

3. spawn(t2);

tl: 2:

0. t :=0; 1. lock(l);
1. lock(l); 2. 1f (x < 10)
2. if (x < 10) 3 xHE;

3. x++; 4.yt

4. y++; 5. unlock(1l);
5. unlock(1l);



Sync-CFG Analysis

Example Sync-CFG with Value-Set Analysis

main:

1. x := y = 0;
x=y=0 2 spawn(tl);

3. spawn(t2);

tl t2:
AR R 1. lock(1); g=3 ="
1. lock(1l); 2. 1f (x < 10)7
0<x<10 2, if (x < 10) 3. X++;
0=y 3. x++; 4. y++;
4. y++; 5. unlock (1); 831;210
5. unlock (1l);



Soundess Claim and Proof

Claim: Let P be a HB-race-free
program. Consider the final
data-flow facts in the Value-Set
analysis for P. Suppose variable x is
owned by thread t at point N.
Consider an execution reaching N
with x having value v. Then v
belongs to the value set of x at .

Sync-CFG Analysis




Sync-CFG Analysis

Shortcomings and Extensions

@ Can be imprecise due to following reasons:

o No relational information (like x < y).
e Spurious loops (y is unbounded).
@ Some extensions

o Use regions of variables (like {x,y}) which are similarly
protected, and compute a value-set for the region (can get
x <y).

o Define a relational sync-cfg based semantics which is sound
and complete (Mukherjee et al 2017). This gives us a variety
of relational analyses.

o Can handle programs with races (havoc reads of variables
involved in a race)



Sync-CFG Analysis

Shortcomings and Extensions

@ Can be imprecise due to following reasons:

o No relational information (like x < y).
e Spurious loops (y is unbounded).
@ Some extensions

o Use regions of variables (like {x,y}) which are similarly
protected, and compute a value-set for the region (can get
x <y).

o Define a relational sync-cfg based semantics which is sound
and complete (Mukherjee et al 2017). This gives us a variety
of relational analyses.

o Can handle programs with races (havoc reads of variables
involved in a race)

How do we extend this Sync-CFG based analysis to programs with
non-standard concurrency? What is the notion of a race, sync-with
relation, HB order, etc?



Sync-CFG Analysis

Abstracted version of Send/ReceivelSR Methods

main: gsend: grec_ISR:
msgw := 0; 10 disableint; 41 1if (msgw > 0) {
2 len := 10; 11 if (msgw < len) { 42  msgw--—;
3 wtosend := 0; 12 msgwit; 43 if (RxLock = 0) {
4 wtorec 13 if (wtorec > 0) 44 if (wtosend > 0)
5 RxLock 14 wtorec——; 45 wtosend-—;
6 create(gsend); 15 enableint; 46}
7 create(grec_ISR); 16 } 47 else
17 else { 48 RxLock++;
18 enableint; 49 '}

19 suspendsch;

20 disableint;

21 RxLock++;

22 enableint;

23 wtosend++;

24 disableint;

25 while (RxLock > 1) {

26 if (wtosend > 0)
27 wtosend——;

28 RxLock-—;

29 }

30 RxLock := 0;

31 enableint;
31 resumesch;
31}



Sync-CFG Analysis

Disjoint blocks with locks

main:

1. x := y := 0;
2. spawn(tl);

3. spawn(t2);

tl: t2:

0. t :=0; 1. lock(l);

1. lock(l); 2. 1f (x < 10)
2. 1f (x < 10) 3 xt+;

3. x++; 4.yt

4. y++; 5. unlock (1) ;
5. unlock(l);



Disjoint Blocks

Sync-CFG Analysis

task: task:

disableint; disableint;

enableint enableint
(a)

task: t :

disableint; suspendsch;

enableint resumesch;

(@

task: ISR:
disableint; // begin
enableint // end
(b)
task: task:
suspendsch; suspendsch;
resumesch; resumesch;
(e

ISR: ISR:

// begin // begin

// end // end
(©

main: t:

// begin // begin

create(t) // end

®



Disjoint Blocks

task: [SR:

E r
i)

resumesch;

}

(&)

Sync-CFG Analysis




Analysis

Sync-CFG induced by FreeRTOS kernel

main:

taskys”




Analysis

Sync-CFG and the Value-Set analysis on it

1

2 len :

3 wtosend := 0;
4 wtorec := 0;
5 RxLock := 0;

0 = RxLock = msgw < len =10 ; create (gsend) ;

©7 create(qgrec_ISR);

gsend: ~ IR qrec_ISR:

. . msgw < len, 0 < RxLock
msgw < len, 0 < RxLock 10 disableint; '/1‘7‘ if (msgw > 0) 0 é wtorec, 0 < wtosend
0 < worec, 0 < wrosend - if(msgw < len) {42/ msgw—;

msgw++; o743 if (RxLock = 0) {

. : msgw < len, 0 < RxLock
if (wtorec > 0) 44 A if (wtosend > 0) 0o < wrorec, 0 < wtosend

wtorec——; 1 v 45 / wtosend--—;
v /

enableint; ‘46 1} msgw < len, 0 < RxLock
0 < wtorec, 0 < wtosend

msgw < len, 0
0 < wtorec, 0 <

16 } '47 1 else
1 else { 8 RxLock++;
enableint; 20oag ) msgw < len, 0 < RxLock
suspendsch; 0 < wtorec, 0 < wtosend
disableint;
RxLock++; .~
enableint; f
wtosend++; A
disableint; '
while (RxLock > 1) {
if (wtosend > 0)
wtosend-—; 1
RxLock——;

msgw < len, 0 < RxLock
0 < wtorec, 0 < Wtosend

msgw < len, 0 < RxLock
0 < wtorec, 0 < wtosend N
2

msgw < len, 0 < RxLock )

0 < wtorec, 0 < wtosend RxLock := 0;
msgw < /en 0 = RxLock~ lei .
JrEw = e B2 Xoch31 enableint;




Analysis

Octagon/Polyhedral Analysis on FreeRTOS sync-CFG

Assertion Interval Region Analysis
Analysis | (Octagon/Polyhedra)

xTickCount < xNextTaskUnblockTime
head(pxDelayedTaskList) = xNextTaskUnblockTime
head(pxDelayedTaskList) > TickCount
uxMessagesWaiting < uxLength
uxMessagesWaiting > 0
uxCurrentNumberOfTasks > 0
lenpxReadyTasksLists > 0
uxTopReadyPriority > 0
lenpxDelayed TaskList > 0
lenxPendingReadyList > 0
lenxSuspendedTaskList > 0
cRxLock > -1
cTxLock > -1
lenxTasksWaitingToSend > 0
lenxTasksWaiting ToReceive > 0

S S S S X X X X
S S S S




Analysis

Why a lock translation does not work

Why not

@ Translate interrupt-driven program P to classical lock-based
PL. which captures interleaved executions of P.

@ Now do race-detection and sync-CFG analysis on PL.



Analysis

Races may not be preserved

main: main:
1. x:=y :=1t :=0; 1. x :=y =1t :=0;
2. create(tl); 2. spawn(tl);
3. create(t2); 3. spawn(t2);
t1: t2: tl: t2
4, x :=x + 1; 8. disableint; 4. lock(E) 10. lock(E);
5. disableint; 9. t := x; 5. x :=x + 1; 11. t := x;
6. x :=y; 10. enableint; 6. unlock(E) 12. unlock(E);
7. enableint; 7. lock(E)
8. x :=y;
Program P 9. unlock(E)

Execution preserving translation Pt



Analysis

Sync-CFG may be too imprecise



Analysis

Our Translation

Our approach can be viewed as giving a weak lock-based traslation
P to PY which:

@ Does not attempt to preserve execution semantics (allows
more executions than original program)

@ Preserves disjoint blocks, hence race-detection.

@ Produces a lean sync-CFG with more precise data-flow facts.



Our “Weak” Translation

main:

1. x :=y =1t :=0;
2. create(tl);

3. create(t2);

Program P

tl: t2:

4., x :=x + 1; 8. disableint;
5. disableint; 9. t = x;

6. x :=y; 10. enableint;
7. enableint;

main:

1. x :=y =1t :=0;
2. spawn(tl);

3. spawn(t2);

tl: t2

4. x :=x + 1; 8. lock(A);
5. lock(A); 9. t := x;
6. x 1= y; 10. unlock(A)
7. unlock(A);

Lightweight translation PV

Analysis

’
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Sync-CFGs produced by the two translations

Translation
PL

Translation
PW

0 -1 o Ul

main:
1 x =y =t :=0;
2 create(tl);
3 create (t2);

’ RN
v - © 0< x,y,t
lock (E); 0 lock(E);
y o= v+ T ALt o= kg
‘12 // assert (t<=1)
lock (E); "’f’”/*/*\ 13 unlock(E); 0<x,y,t

X 1= yi ,
unlock (E);’

main:
1 x =y =t :=0;
2 create(tl);
create (t2);

V4
tl: N 2
0<x,y,t<1
y = y+l; 8 lock(a);
lock () ; N ot = kg
X 1=y LA, 10 // assert (t<=1)
unlock (A); ~~ 11 unlock(n); 0< x,y,t<1



Conclusion and Future Directions

Sync-CFG based analysis of race-free programs.

Lays foundation for extending to other non-standard
concurrency.
Future directions:
o Implement other analyses (Null dereference, points-to, shape
analysis).
o Explore Sync-CFG as a proof technique for concurrent
programs.

Analysis
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