Static Analysis of Race-Free Interrupt-Driven
Programs

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

FM Update, BITS Goa, 19 July 2018.

Joint work with Nikita Chopra and Rekha Pai

Outline

o Data Flow Analysis
© Concurrent Programs
© Race-Free Programs
@ Sync-CFG Analysis

© Analysis

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts

1. p :=17;
about the program state at each 2. q =105
. 3. while (p > @) {
program point. 4. p:i=p+1;
@ Use abstract states to represent the 2' y 1 *2
concrete state. 7. print p, q;

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

@ Interpret execution along a path by
transforming the abstract state.

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts Y(”)
about the program state at each pi= 17
program point.

@ Use abstract states to represent the
concrete state.

Q
I
=
o

L.

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

o
<o

o
v
Q

Q

@ Interpret execution along a path by
transforming the abstract state.

es]

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =

0

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point. (0, €)

-]

@ Use abstract states to represent the
concrete state.

l Q
O i
o

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

o
<o

o
v
Q

Q

@ Interpret execution along a path by
transforming the abstract state.

es]

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =
0

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.

-]

@ Use abstract states to represent the
concrete state.

Q
I
=
o

l >
O=-=e
:8
&

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

o
<o

o
v
Q

Q

@ Interpret execution along a path by
transforming the abstract state.

es]

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =

0

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.

-]

@ Use abstract states to represent the
concrete state.

Q
I
=
o

L.

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

oo}
<o
—
o
J
—

o
v
Q

Q

@ Interpret execution along a path by
transforming the abstract state.

es]

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =

0

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.

-]

@ Use abstract states to represent the
concrete state.

Q
I
=
o

L.

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

o
<o

@ Interpret execution along a path by E
transforming the abstract state.

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =

0

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.

-]

@ Use abstract states to represent the
concrete state.

Q
I
=
o

L.

Example: B¢
Concrete state: (p +— 17, q — 10)
>
Abstract state: (p+ 0,q > e). pC :
@ Interpret execution along a path by E . .

transforming the abstract state. v

D} (e, e)

q:=q+2

o]

=

-

=]

=
!

o)

Data Flow Analysis

Data-Flow Analysis / Abstract Interpretation

@ Aim: To obtain conservative facts
about the program state at each pi= 17
program point.

-]

@ Use abstract states to represent the
concrete state.

Q
I
=
o

L.

Example:
Concrete state: (p +— 17, q — 10)
Abstract state: (p+ 0,q > e).

o
<o

o
v
Q

Q

@ Interpret execution along a path by~ (¢:¢)
transforming the abstract state.

es]

'O
|
el
¥
[
PY
s}

q:=q+2

d

=] |
(a3 =

0

Data Flow Analysis

Computing JOP/LFP

C
@ We usually further over-approximate the JOP by L IE I F
computing the least fixpoint (LFP) (least solution) o +
of data-flow equations. L
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of
abstract lattice Gé |

print p, @

Data Flow Analysis

Computing JOP/LFP

C
@ We usually further over-approximate the JOP by E I F
computing the least fixpoint (LFP) (least solution) o +
of data-flow equations. L
q:=q+2
@ The number of steps in the LFP computation is
bounded by

number of program points x height of qrint P

abstract lattice G*, n

Data Flow Analysis

Computing JOP/LFP

e i oo

Ce (o,e)
@ We usually further over-approximate the JOP by E LE
computing the least fixpoint (LFP) (least solution) o
of data-flow equations. L
q:=q+2
@ The number of steps in the LFP computation is
bounded by

number of program points x height of

abstract lattice G*, n

Data Flow Analysis

Computing JOP/LFP

e i oo

€l (09
@ We usually further over-approximate the JOP by E LE
computing the least fixpoint (LFP) (least solution) BY (e0)

of data-flow equations.

1=q+2
@ The number of steps in the LFP computation is {
bounded by

number of program points x height of

abstract lattice G*, n

Data Flow Analysis

Computing JOP/LFP

e i oo

C

(0, €)
@ We usually further over-approximate the JOP by (¢ 4E

computing the least fixpoint (LFP) (least solution) _
of data-flow equations.
qg:=g+2
@ The number of steps in the LFP computation is ’
bounded by

number of program points x height of

abstract lattice G*, n

p+1l

D$ (e, e)

Data Flow Analysis

Computing JOP/LFP

€1 (0.0
@ We usually further over-approximate the JOP by (e.€) ¢ E —
computing the least fixpoint (LFP) (least solution)
of data-flow equations.
q:=q+2
@ The number of steps in the LFP computation is ’
bounded by

number of program points x height of

abstract lattice G*, n

p+1l

D$ (e, e)

Data Flow Analysis

Computing JOP/LFP

C oe, €)
@ We usually further over-approximate the JOP by (e.€) ¢ E m
computing the least fixpoint (LFP) (least solution)

D$ (e, e)

of data-flow equations.

+2
@ The number of steps in the LFP computation is {
bounded by

number of program points x height of

abstract lattice G*, n

Data Flow Analysis

Computing JOP/LFP

C
@ We usually further over-approximate the JOP by (e.€) ¢ E e’e) L
computing the least fixpoint (LFP) (least solution) 5
. $ (oe, €)
of data-flow equations.
q:=q+2

id

@ The number of steps in the LFP computation is
bounded by

number of program points x height of

abstract lattice G +

FI

Data Flow Analysis

Computing JOP/LFP

@ We usually further over-approximate the JOP by(oe,e) ¢ E e’e) L
computing the least fixpoint (LFP) (least solution)

D
of data-flow equations. i&e)
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of "
abstract lattice Gé |

Data Flow Analysis

Computing JOP/LFP

@ We usually further over-approximate the JOP by, ¢)tE 876) L
computing the least fixpoint (LFP) (least solution)

D
of data-flow equations. i&e)
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of "
abstract lattice Gé |

Data Flow Analysis

Computing JOP/LFP

@ We usually further over-approximate the JOP by, ¢)tE 876) I
computing the least fixpoint (LFP) (least solution) (

D
of data-flow equations. i&e)
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of -.
abstract lattice G*/ (oe, €)

Data Flow Analysis

Computing JOP/LFP

@ We usually further over-approximate the JOP by, ¢)tE 876) I
computing the least fixpoint (LFP) (least solution) (

D
of data-flow equations. i&e)
qg:=g+2
@ The number of steps in the LFP computation is

bounded by

number of program points x height of "
abstract |attice G*, (oe, €)

Concurrent Programs

Multi-Threaded Programs

Standard interleaving semantics

main:
x := 0;

e *
spawn (t2) ;

tl: t2:
if (x < 10) . if (x < 10)
X++; X++;

1

2.
y++ 3.

4

g W N

S W N -

Concurrent Programs

Product Control Flow Graph

main: x = 0
1. x := 0;
2.y :=0;
3. spawn(tl); y - 0
4. spawn(t2);
5.
spawn (tl)
tl: t2:
1. if (X < 10) 1. if (X < 10) assume (x<10) spawn (t2)
2. X++; 2. X++; \
3. y++ 3. y++

spawn (t2) assume (x<10)

assume (x<10)

Concurrent Programs

Data Flow Analysis for a Concurrent Program

Naive approach:
@ Construct Product CFG
@ Carry out analysis on this graph

Approach is precise, but too expensive! Problem: If number of
threads is k, height of lattice is h, and number of program points
in a thread is n, then

@ Number of program points in product CFG is n.

@ Number of iterations is bounded by

h x n*

@ Time taken can be exponential in number of threads.

Can we be more efficient for some class of programs, maybe at the
cost of precision?

Race-Free Programs

Happens-Before Race

@ Happens-Before ordering on instructions in an execution:

e synchronizes-with relation: Two instructions / and J in an
execution are sync-with related if / is a release (like
unlock(1)) and J is the next corresponding acquire (like
lock(1)).

o Program-Order relation.

o HB order is the reflexive transitive closure of the union of
program-order and sync-with relations.

@ Two instructions in an execution are involved in a HB-race if they
are conflicting accesses and are unordered by the the HB order.

Race-Free Programs

lllustrating Happens-Before Race

S W N e

DO WN -

main:
x := 0;
y := 0;

spawn(t1);
spawn(t2) ;

tl:

t = x;

lock(1l);

if (x < 10)
x++;

yH++;

unlock(1);

O W N

t2:

lock(1l);

if (x < 10)
X++;

y++;

unlock(1);

main: tl: 2
lx =0
IS
+ spawn (

@

| 'spawn (

| lock (1)
[]
assume (x<10)

assume (x<10)

Sync-CFG Analysis

Sync-CFG Analysis for HB-Race-Free Programs [De, D, Nasre 2011]

Given a HB-Race-Free program

Build a Sync-CFG for the program
o Union of CFG's of each thread
o May-Sync-With edges to conservatively capture sync-with
relation.

Perform a Value-Set analysis.

@ LFP values for a variable are guaranteed to be sound at points
where the variable is owned by the thread.

Sync-CFG Analysis

Example Sync-CFG

main:

1. x = y :=0;
2. spawn(tl);

3. spawn(t2);

tl: 2:

0. t :=0; 1. lock(l);
1. lock(l); 2. 1f (x < 10)
2. if (x < 10) 3 xHE;

3. x++; 4.yt

4. y++; 5. unlock(1l);
5. unlock(1l);

Sync-CFG Analysis

Example Sync-CFG with Value-Set Analysis

main:

1. x := y = 0;
x=y=0 2 spawn(tl);

3. spawn(t2);

tl t2:
AR R 1. lock(1); g=3 ="
1. lock(1l); 2. 1f (x < 10)7
0<x<10 2, if (x < 10) 3. X++;
0=y 3. x++; 4. y++;
4. y++; 5. unlock (1); 831;210
5. unlock (1l);

Soundess Claim and Proof

Claim: Let P be a HB-race-free
program. Consider the final
data-flow facts in the Value-Set
analysis for P. Suppose variable x is
owned by thread t at point N.
Consider an execution reaching N
with x having value v. Then v
belongs to the value set of x at .

Sync-CFG Analysis

Sync-CFG Analysis

Shortcomings and Extensions

@ Can be imprecise due to following reasons:

o No relational information (like x < y).
e Spurious loops (y is unbounded).
@ Some extensions

o Use regions of variables (like {x,y}) which are similarly
protected, and compute a value-set for the region (can get
x <y).

o Define a relational sync-cfg based semantics which is sound
and complete (Mukherjee et al 2017). This gives us a variety
of relational analyses.

o Can handle programs with races (havoc reads of variables
involved in a race)

Sync-CFG Analysis

Shortcomings and Extensions

@ Can be imprecise due to following reasons:

o No relational information (like x < y).
e Spurious loops (y is unbounded).
@ Some extensions

o Use regions of variables (like {x,y}) which are similarly
protected, and compute a value-set for the region (can get
x <y).

o Define a relational sync-cfg based semantics which is sound
and complete (Mukherjee et al 2017). This gives us a variety
of relational analyses.

o Can handle programs with races (havoc reads of variables
involved in a race)

How do we extend this Sync-CFG based analysis to programs with
non-standard concurrency? What is the notion of a race, sync-with
relation, HB order, etc?

Sync-CFG Analysis

Abstracted version of Send/ReceivelSR Methods

main: gsend: grec_ISR:
msgw := 0; 10 disableint; 41 1if (msgw > 0) {
2 len := 10; 11 if (msgw < len) { 42 msgw--—;
3 wtosend := 0; 12 msgwit; 43 if (RxLock = 0) {
4 wtorec 13 if (wtorec > 0) 44 if (wtosend > 0)
5 RxLock 14 wtorec——; 45 wtosend-—;
6 create(gsend); 15 enableint; 46}
7 create(grec_ISR); 16 } 47 else
17 else { 48 RxLock++;
18 enableint; 49 '}

19 suspendsch;

20 disableint;

21 RxLock++;

22 enableint;

23 wtosend++;

24 disableint;

25 while (RxLock > 1) {

26 if (wtosend > 0)
27 wtosend——;

28 RxLock-—;

29 }

30 RxLock := 0;

31 enableint;
31 resumesch;
31}

Sync-CFG Analysis

Disjoint blocks with locks

main:

1. x := y := 0;
2. spawn(tl);

3. spawn(t2);

tl: t2:

0. t :=0; 1. lock(l);

1. lock(l); 2. 1f (x < 10)
2. 1f (x < 10) 3 xt+;

3. x++; 4.yt

4. y++; 5. unlock (1) ;
5. unlock(l);

Disjoint Blocks

Sync-CFG Analysis

task: task:

disableint; disableint;

enableint enableint
(a)

task: t :

disableint; suspendsch;

enableint resumesch;

(@

task: ISR:
disableint; // begin
enableint // end
(b)
task: task:
suspendsch; suspendsch;
resumesch; resumesch;
(e

ISR: ISR:

// begin // begin

// end // end
(©

main: t:

// begin // begin

create(t) // end

®

Disjoint Blocks

task: [SR:

E r
i)

resumesch;

}

(&)

Sync-CFG Analysis

Analysis

Sync-CFG induced by FreeRTOS kernel

main:

taskys”

Analysis

Sync-CFG and the Value-Set analysis on it

1

2 len :

3 wtosend := 0;
4 wtorec := 0;
5 RxLock := 0;

0 = RxLock = msgw < len =10 ; create (gsend) ;

©7 create(qgrec_ISR);

gsend: ~ IR qrec_ISR:

. . msgw < len, 0 < RxLock
msgw < len, 0 < RxLock 10 disableint; '/1‘7‘ if (msgw > 0) 0 é wtorec, 0 < wtosend
0 < worec, 0 < wrosend - if(msgw < len) {42/ msgw—;

msgw++; o743 if (RxLock = 0) {

. : msgw < len, 0 < RxLock
if (wtorec > 0) 44 A if (wtosend > 0) 0o < wrorec, 0 < wtosend

wtorec——; 1 v 45 / wtosend--—;
v /

enableint; ‘46 1} msgw < len, 0 < RxLock
0 < wtorec, 0 < wtosend

msgw < len, 0
0 < wtorec, 0 <

16 } '47 1 else
1 else { 8 RxLock++;
enableint; 20oag) msgw < len, 0 < RxLock
suspendsch; 0 < wtorec, 0 < wtosend
disableint;
RxLock++; .~
enableint; f
wtosend++; A
disableint; '
while (RxLock > 1) {
if (wtosend > 0)
wtosend-—; 1
RxLock——;

msgw < len, 0 < RxLock
0 < wtorec, 0 < Wtosend

msgw < len, 0 < RxLock
0 < wtorec, 0 < wtosend N
2

msgw < len, 0 < RxLock)

0 < wtorec, 0 < wtosend RxLock := 0;
msgw < /en 0 = RxLock~ lei .
JrEw = e B2 Xoch31 enableint;

Analysis

Octagon/Polyhedral Analysis on FreeRTOS sync-CFG

Assertion Interval Region Analysis
Analysis | (Octagon/Polyhedra)

xTickCount < xNextTaskUnblockTime
head(pxDelayedTaskList) = xNextTaskUnblockTime
head(pxDelayedTaskList) > TickCount
uxMessagesWaiting < uxLength
uxMessagesWaiting > 0
uxCurrentNumberOfTasks > 0
lenpxReadyTasksLists > 0
uxTopReadyPriority > 0
lenpxDelayed TaskList > 0
lenxPendingReadyList > 0
lenxSuspendedTaskList > 0
cRxLock > -1
cTxLock > -1
lenxTasksWaitingToSend > 0
lenxTasksWaiting ToReceive > 0

S S S S X X X X
S S S S

Analysis

Why a lock translation does not work

Why not

@ Translate interrupt-driven program P to classical lock-based
PL. which captures interleaved executions of P.

@ Now do race-detection and sync-CFG analysis on PL.

Analysis

Races may not be preserved

main: main:
1. x:=y :=1t :=0; 1. x :=y =1t :=0;
2. create(tl); 2. spawn(tl);
3. create(t2); 3. spawn(t2);
t1: t2: tl: t2
4, x :=x + 1; 8. disableint; 4. lock(E) 10. lock(E);
5. disableint; 9. t := x; 5. x :=x + 1; 11. t := x;
6. x :=y; 10. enableint; 6. unlock(E) 12. unlock(E);
7. enableint; 7. lock(E)
8. x :=y;
Program P 9. unlock(E)

Execution preserving translation Pt

Analysis

Sync-CFG may be too imprecise

Analysis

Our Translation

Our approach can be viewed as giving a weak lock-based traslation
P to PY which:

@ Does not attempt to preserve execution semantics (allows
more executions than original program)

@ Preserves disjoint blocks, hence race-detection.

@ Produces a lean sync-CFG with more precise data-flow facts.

Our “Weak” Translation

main:

1. x :=y =1t :=0;
2. create(tl);

3. create(t2);

Program P

tl: t2:

4., x :=x + 1; 8. disableint;
5. disableint; 9. t = x;

6. x :=y; 10. enableint;
7. enableint;

main:

1. x :=y =1t :=0;
2. spawn(tl);

3. spawn(t2);

tl: t2

4. x :=x + 1; 8. lock(A);
5. lock(A); 9. t := x;
6. x 1= y; 10. unlock(A)
7. unlock(A);

Lightweight translation PV

Analysis

’

Analysis

Sync-CFGs produced by the two translations

Translation
PL

Translation
PW

0 -1 o Ul

main:
1 x =y =t :=0;
2 create(tl);
3 create (t2);

’ RN
v - © 0< x,y,t
lock (E); 0 lock(E);
y o= v+ T ALt o= kg
‘12 // assert (t<=1)
lock (E); "’f’”/*/*\ 13 unlock(E); 0<x,y,t

X 1= yi ,
unlock (E);’

main:
1 x =y =t :=0;
2 create(tl);
create (t2);

V4
tl: N 2
0<x,y,t<1
y = y+l; 8 lock(a);
lock () ; N ot = kg
X 1=y LA, 10 // assert (t<=1)
unlock (A); ~~ 11 unlock(n); 0< x,y,t<1

Conclusion and Future Directions

Sync-CFG based analysis of race-free programs.

Lays foundation for extending to other non-standard
concurrency.
Future directions:
o Implement other analyses (Null dereference, points-to, shape
analysis).
o Explore Sync-CFG as a proof technique for concurrent
programs.

Analysis

	Data Flow Analysis
	Concurrent Programs
	Race-Free Programs
	Sync-CFG Analysis
	Analysis

