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Modal logics

Modal logics are extensively studied and applied in various
fields like verification, epistemic logic etc.

We have a fixed set of modalities Ag = {1 · · · n} and �i
and ♦i modalities for every i ∈ Ag.
Modalities are also referred as agents.

Syntax:

Ag = {1 · · · n} is a non-empty fixed set of finite agents. P is a
countable set of propositions.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �i ϕ

where p ∈ P and i ∈ Ag.
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Modal logic

Semantics:
M = (W ,R1 · · ·Rn,V ) is a structure where

W is a non-empty set of worlds
Ri ⊆W ×W
V : W → 2P .

For any w ∈W and a formula ϕ, M,w |= ϕ is defined
inductively as follows:
M,w |= p iff p ∈ V (w)
M,w |= ¬ϕ1 iff M,w 6|= ϕ1
M,w |= ϕ1 ∧ ϕ2 iff M,w |= ϕ1 and M,w |= ϕ2
M,w |= �i ϕ1 iff for every w ′ ∈W if (w ,w ′) ∈ Ri

then M,w ′ |= ϕ1.
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Fixed agent set

In the classical modal logic case (and first order model
logic), the collection of agents is fixed.

Every agent has a unique name and these names are
common knowledge among the agents.
Are these assumptions reasonable?
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Fixed agent set

In situations like client-server systems, the clients do not
know how many other clients are present.

The number of processes cannot be bounded a priori in a
system where processes can fork new processes.
In epistemic settings, can we have a logic where agency is
in the scope of knowledge?

Everyone who knows p, knows that someone knows q.
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TML

Term Modal Logic (TML) was introduced by Fitting,
Thalmann and Voronkov[2001].

In TML, modalities are indexed by terms and these terms
can be quantified.
∃x
(
�x∀y♦y (P(x , y)))

TML syntax
Given Var (variables) and P (predicates), the syntax of TML is
defined as follows:

ϕ ::= Px | x ≈ y | ¬ϕ | (ϕ ∧ ϕ) | ∃xϕ | �xϕ

where x ∈ Var, P ∈ P.
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TML

Semantics
An (increasing agent) model M for TML is a tuple (W ,D, δ,R, ρ)
where,

W is a non-empty set of worlds

D is a non-empty set of agents
R ⊆ (W × D ×W )

δ : W → 2D assigns to each w ∈W a non-empty set of
“live agents” s.t. (w ,d , v) ∈ R implies d ∈ δ(w) ⊆ δ(v) for
any w , v ∈W
ρ : (W × P)→

⋃
n∈ω 2Dn

such that ρ assigns to each n-ary
predicate on each world an n-ary relation on D.

We need interpretation for variables σ : Var→ D.
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TML

Semantics
Given M = (W ,D, δ,R, ρ), w ∈W , and an assignment σ that is
relevant at w , define M,w , σ � ϕ inductively as follows:

M,w , σ � P(x1 · · · xn) ⇔ (σ(x1), · · · , σ(xn)) ∈ ρ(P,w)
M,w , σ � x ≈ y ⇔ σ(x) = σ(y)
M,w , σ � ¬ϕ ⇔ M,w , σ 2 ϕ
M,w , σ � (ϕ ∧ ψ) ⇔ M,w , σ � ϕ and M,w , σ � ψ
M,w , σ � ∃xϕ ⇔ there is some d ∈ δ(w) such

M,w , σ[x 7→ d ] � ϕ
M,w , σ � �xϕ ⇔ M, v , σ � ϕ for all v s.t.

(w , σ(x), v) ∈ R
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Term-modal logic

Examples
Everyone who knows p, knows that someone knows q
∀x .�x (p ⇒ ∃y�yq).

For every process, there exists another process such that
there is one execution the first process after which any
possible execution of the second process, property p
holds.
∀x∃y .♦x�yp.
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Satistiability problem

Satisfiability problem asks Given a formula ϕ ∈ TML is
there a model M and a σ such that M,w , σ |= ϕ.

Since FO corresponds to the modal free fragment of TML,
satisfiability problem is undecidable.

Theorem (PR 2017)
Satisfiability problem for TML is undecidable even if atoms are
restricted to propositions.

Can be strengthen the undecidability result?
Are there any interesting decidable fragments?
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TML over (>,⊥)

Theorem (PR)
Satisfiability problem for TML when atoms are restricted to
(>,⊥) is undecidable.

Proof sketch.
Reduction from FO(R) satisfiatibility problem.

αR(x ,y)  ♦x♦y>
α¬ϕ  ¬αϕ
αϕ∧ψ  αϕ ∧ αψ
α∃x ϕ  ∃x αϕ

Any ϕ ∈ FO(R) is satisfiable iff αϕ is satisfiable.
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TML over (>,⊥)

r

uab

vab

uba

vba

ucb

vcb

a

b

b

a

c

b

Figure: Model corresponding to the FO structure (D, I) where
D = {a,b, c} and I = {(a,b), (b,a), (c,b)}.
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Relationship between modal depth and arity of
predicates

Mod. depth Predicates Status Remark
0 P0,P1 D Follows from FO
0 R UD Same as FO(R)

1 P0 D Fragment of Monodic TML
1 P UD Encode R(x , y) as ♦xP(y)

≥ 2 (>,⊥) UD Encode R(x , y) as ♦x♦y>
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TML over ≈

Theorem (PR)
For TML over ≈, the FinSat,UnSat and InfAx are mutually
recursively inseparable.

Proof sketch
Reduction from tiling problem.
For any tiling instance T , we come up with a formula ϕT
such that

ϕT ∈ FinSat iff T has some periodic tiling
ϕT ∈ UnSat iff T has no tiling.
ϕT ∈ InfAx iff T has only aperiodic tiling
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TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.

A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if

S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0

and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance.

Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Tiling encoding

A tile is given by t = (ut ,dt , rt , `t ) where each component is
one of the finite set of colours C.
A tiling instance is given by T = (X , t0) where X is a finite
set of tile types and t0 ∈ X
Given T , S : N× N→ X is a tiling if S(0,0) = t0 and
for all i , j ∈ N, if S(i , j) = t and S(i + 1, j) = t ′ then rt = `t ′

and similarly, if S(i , j) = t and S(i , j + 1) = t ′ then ut = dt ′ .

Before encoding the tiling instance, we need to encode a grid
structure which is independent of the tiling instance. Before grid
we need to enforce N.



Introduction Term Modal logic Undecidability results Decidable fragments

TML over ≈

Idea: Encode x < y as ♦x♦y>.

ϕ0 := ∃x zero(x) there is a min. element.
ϕir := ∀x¬♦x♦x> c 6< c (irreflexive)
ϕtot := ∀x∀y(x 6≈ y ⇒ for all c 6= d either

♦x♦y> ∨ ♦y♦x>) c < d or d < c (total)
ϕdis := ∀x

(
last(x)∨ for all c, either c is last or

∃y succ(x , y)
)

has a successor
ϕtrans := ∀x∀y∀z(♦x♦y>∧ c < d and d < e

♦y♦z>)⇒ (♦x♦z>) implies c < e.
where,
zero(x) := ∀y ¬♦y♦x> for all c, c 6< I(x)

last(x) := ∀y¬♦x♦y> forall c, I(x) 6< c(
last(y) ∧ zero(x)

)
∨ (I(y) = max ; I(x) = min)(

♦x♦y> ∧ or I(x) < I(y) and
succ(x , y) := ∀z(♦z♦y> for all c if c < I(y) then

⇒ (x ≈ z ∨ ♦z♦x>)
)

x = c or c < I(x).
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ϕir := ∀x¬♦x♦x> c 6< c (irreflexive)
ϕtot := ∀x∀y(x 6≈ y ⇒ for all c 6= d either

♦x♦y> ∨ ♦y♦x>) c < d or d < c (total)
ϕdis := ∀x

(
last(x)∨ for all c, either c is last or

∃y succ(x , y)
)

has a successor
ϕtrans := ∀x∀y∀z(♦x♦y>∧ c < d and d < e

♦y♦z>)⇒ (♦x♦z>) implies c < e.
where,
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last(x) := ∀y¬♦x♦y> forall c, I(x) 6< c(
last(y) ∧ zero(x)
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∨ (I(y) = max ; I(x) = min)(
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TML with ≈

Define Ord = {ϕ0, ϕir , ϕtot , ϕdis} and ϕ̂ =
∧
ϕ∈Ord ϕ.

Lemma
The following statements hold for the formula ϕ̂:

1 For any N′ ⊆ N (either finite or infinite) which is an initial
fragment of N, there is some M = (W ,N′, δ,R) and w ∈W
where N′ = γ(w) such that M,w |= ϕ̂.

2 For any model M = (W ,D, δ,R) if M,w |= ϕ̂ then there
some initial fragment of N(say N′) and a function
f : N′ → δ(w) where for all i , j ∈ N′, we have i < j iff
M,w |= ♦f (i)♦f (j)>.

Hence w .l .o.g for any M,w |= ϕ̂ we can assume that there is
some initial fragment N′ of N such that δ(w) = N′ and for all
i , j ∈ N′, i < j iff M,w |= ♦i♦j>.



Introduction Term Modal logic Undecidability results Decidable fragments

TML with ≈

Define Ord = {ϕ0, ϕir , ϕtot , ϕdis} and ϕ̂ =
∧
ϕ∈Ord ϕ.

Lemma
The following statements hold for the formula ϕ̂:

1 For any N′ ⊆ N (either finite or infinite) which is an initial
fragment of N, there is some M = (W ,N′, δ,R) and w ∈W
where N′ = γ(w) such that M,w |= ϕ̂.

2 For any model M = (W ,D, δ,R) if M,w |= ϕ̂ then there
some initial fragment of N(say N′) and a function
f : N′ → δ(w) where for all i , j ∈ N′, we have i < j iff
M,w |= ♦f (i)♦f (j)>.

Hence w .l .o.g for any M,w |= ϕ̂ we can assume that there is
some initial fragment N′ of N such that δ(w) = N′ and for all
i , j ∈ N′, i < j iff M,w |= ♦i♦j>.



Introduction Term Modal logic Undecidability results Decidable fragments

TML with ≈

Define Ord = {ϕ0, ϕir , ϕtot , ϕdis} and ϕ̂ =
∧
ϕ∈Ord ϕ.

Lemma
The following statements hold for the formula ϕ̂:

1 For any N′ ⊆ N (either finite or infinite) which is an initial
fragment of N, there is some M = (W ,N′, δ,R) and w ∈W
where N′ = γ(w) such that M,w |= ϕ̂.

2 For any model M = (W ,D, δ,R) if M,w |= ϕ̂ then there
some initial fragment of N(say N′) and a function
f : N′ → δ(w) where for all i , j ∈ N′, we have i < j iff
M,w |= ♦f (i)♦f (j)>.

Hence w .l .o.g for any M,w |= ϕ̂ we can assume that there is
some initial fragment N′ of N such that δ(w) = N′ and for all
i , j ∈ N′, i < j iff M,w |= ♦i♦j>.



Introduction Term Modal logic Undecidability results Decidable fragments

TML with ≈

Define Ord = {ϕ0, ϕir , ϕtot , ϕdis} and ϕ̂ =
∧
ϕ∈Ord ϕ.

Lemma
The following statements hold for the formula ϕ̂:

1 For any N′ ⊆ N (either finite or infinite) which is an initial
fragment of N, there is some M = (W ,N′, δ,R) and w ∈W
where N′ = γ(w) such that M,w |= ϕ̂.

2 For any model M = (W ,D, δ,R) if M,w |= ϕ̂ then there
some initial fragment of N(say N′) and a function
f : N′ → δ(w) where for all i , j ∈ N′, we have i < j iff
M,w |= ♦f (i)♦f (j)>.

Hence w .l .o.g for any M,w |= ϕ̂ we can assume that there is
some initial fragment N′ of N such that δ(w) = N′ and for all
i , j ∈ N′, i < j iff M,w |= ♦i♦j>.



Introduction Term Modal logic Undecidability results Decidable fragments

TML with ≈

Figure: A model for Ord when N′ = [1 · · · n] is finite.
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TML over ≈

Encode every tile ti as a path of length i , given by

pi ::=
∧
j<i

(∀z�)j(∃z♦>) ∧ (∀z�)i(∀z�z⊥)

ϕtile := ∀z1∀z2∀x∀y �z1�z2

(
(♦x♦y>) ∧ (�x�y

∨
ti∈X

pi)
)

ϕinit := ∀x zero(x)⇒ ∀z1∀z2(�z1�z2♦x♦xp0)

∀x∀y∀z succ(x , y)⇒
ϕhor :=

(
∀z1∀z2�z1�z2 (

∨
rti =`tj

(�x�z(pi) ∧�y�z(pj))
)

∀x∀y∀z succ(x , y)⇒
ϕver := ∀z1∀z2

(
�z1�z2 (

∨
uti =dtj

(�z�x (pi) ∧�z�y (pj))
)
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TML with ≈

Figure: Tiling instance.
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TML with ≈

Figure: A model for the tiling problem.
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Decidable fragments

Literature
Orlandelli and Crosi consider two cases of decidable
fragments:

Atoms are propositions and quantifier occurrence is
restricted to the form: ∃x�xα (and ∀x♦xα dually)
Atoms are propositions and quantifiers appear in a guarded
form: ∀x(P(x)⇒ �xα) and ∃x(P(x) ∧�xα) (and their
duals).

Shtakser considers a more general guarded fragment
(propositional atoms) of the form ∀X (P(X )⇒ �Xα) and
∃X (P(X ) ∧�Xα) where X is quantified over subsets of
agents and P is interpreted appropriately.

Semantically motivated fragments, from their interest in the
epistemic logic. (ex: All eye-witnesses know who killed Mary)
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Monodic fragment

Monodic fragment is where there is only one free variable
inside the scope of modality.

ϕ is in monodic fragment if for any
subformula �xα we have Fv(α) ⊆ {x}.

Theorem (PR 2017)
Satisfiability problem for monodic fragment is decidable.

Proof sketch.
Given a formula ϕ, define
type(w ,d) = {∆xα(x) | M,w |= ∆aα(a)} where
∆ ∈ {�,♦} for every ∆xα(x) ∈ SF (ϕ).
The types are finite (exponentially many). Now define
equivalence on worlds based which have same set of
types. (double exponential).
This gives a non deterministic double exponential time
algorithm.
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TML on 2-variables

Note that undecidability results need 3 variables. What
happens to 2 variable TML?

Note that 2 variable fragment of FO(FO2) is decidable.
However, Gradel and Otto showed that most of the natural
extensions of FO2(like 2 var lfp, transitive closure etc)
except for the counting quantifiers are undecidable.
On the other hand Kontchakov et.al prove that first order
modal logic over 2 variables in undecidable.
In the proof, they use the formula of the form
P(x , y) ≡ �P(x , y). Now this is not expressible in TML2

since � has to be indexed either by x or y . We use this
property of TML crucially to get the decidability.
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Towards TML2 decidability

Kit Fine introduces a normal form for modal logic which is a
DNF where each clause is of the form: (

∧
i

(li)∧�α∧
∧
j
♦βj)

where α, βj are recursively in the normal form.

Scott has a formal form for FO2 which is given by:
∀x∀yϕ ∧

∧
i
∀x∃yβi

We can combine there two to get a normal form for TML2

which is a DNF where each clause is of the form:∧
i≤a

si ∧
∧

z∈{x ,y}
(�zα∧

∧
j≤mz

♦zβj) ∧
∧

z∈{x ,y}
(∀zγ∧

∧
k≤nz

∃z δk ) ∧

∀x∀y ϕ ∧
∧

l≤b
∀x∃yψl

where si are literals and all α, βj are recursively in the
normal form and γ, δk , ϕ, ψl do not have quantifiers at the
outermost level.
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Lemma

Every TML2 formula has an equi-satisfiable formula in the
normal form.

Theorem

Every formula in TML2 normal form has small model property.

Inductive kings and courts argument. We believe that we have
the proof, but going through it to check for bugs.
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Conclusion

Summary
We looked at some tight undecidability results for TML.
On the positive side, we have some decidable fragments
like monodic, 2-variable fragment.

Future Work
Looking at different class of frames.
Fragments based on other parameters like quantifier
alternation etc.
Model checking and verification.
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