Counterexample-Guided Quantifier Instantiation
for Synthesis in SMT

Andrew Reynolds, Morgan Deters, Viktor Kuncak,
Cesare Tinelli, and Clark Barrett

Kumar Madhukar

TCS Research, Pune

Formal Methods Update Meet, IIT Mandi, 17-18 July, 2017

Outline

» The Problem
» Restrictions

» Solutions

The (Synthesis) Problem

» Synthesize a function that meets a given specifications.

» Example - Synthesize fsuch that:

> f(X17X2) Z x1 N\
> f(Xl,Xz) >x A
> f(Xl,Xz)%Xl\/f(Xl,Xg)%XQ

» Applicable in synthesis of functional programs, program sketching, synthesis of
reactive systems, etc.

If Pis a formula that encodes the specification,

PIf, x1, %] = f (x1, %) > x1 A f(x1,%) > x2 A
(f (x1, %) = x1 V f(x1, %) = x)

then we must have

VX1X2. P[f, X1, X2]

And the question that we are asking is

3f. \V/X1X2. P[f; X1,X2]

» Or, more generally,

df Vx, X, . x0 P(f, x1, X, ...Xp)

Exists a function s.t.

for all X, P(f,X) is true

» An SMT solver may treat f as an uninterpreted function, but the real challenge
here is the universal quantification over Xx.

» The solver must construct (a finite representation of) an interpretation for f which
is true for all x .

» In contrast, there are effective techniques to show unsatisfiability of universally
quantified formulas.

» SMT solvers use instantiation-based methods - generate ground instances until a
refutation is found.

» Can we transform our problem into one of checking unsatisfiability?

If satisfiability (F) = validity (F),

(Fis sat) < (—F is not valid) < (—F is unsatisfiable)

Restriction

1. Satisfiability = Validity

> In other words, we will only consider theories that are satisfaction complete wrt the
formulas we are interested in.

» Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic
datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.

3f. Vx . P(f,%)
J negate

~ 3f . Vx. P(£,X)
J push =

VF. 3x. - P(£,X)

sat

unsat

unsat

» Another challenge: Negation introduces second-order universal quantification

(over function f).

» What if we restrict ourselves to the class of synthesis problems 3f. Vx . P[f,X],
where every occurrence of fin P is of the form f(x).

» In that case, we can transform the synthesis problem to: Vx . Jy . Q[X, y].

Restrictions

1. Satisfiability = Validity

> In other words, we will only consider theories that are satisfaction complete wrt the
formulas we are interested in

» Most theories used in SMT (e.g. various theories of integers, reals, strings, algebraic
datatypes, bit-vectors, etc.) are satisfaction complete wrt the class of closed
first-order formulas.

2. P consists of single-invocation properties

7~

f(x1,x) >x1 Af(x1,x2) > x A(f(x1,x) = x1 VT (x,x)=x)

C(Xl, X2) ~ C(XQ, Xl)

Recall

Synthesis conjecture:
Af. Vxq...xn. P[f, X1, .y Xa)

» avoid second-order quantification, and

» solve an unsatisfiability (universal quantification) problem instead of a satisfiability
one.

So far..

af . vx . P(fx) sat
\L(single—invocation property)
Vx.dg. P(g,x) sat

\L(satisfaction—complete theory)
Vx . dg . P(g,x) valid
\l,(negate)
-Vx. 3g. P(g X) unsat

J(push)
dx . Vg . -P(g,X) unsat

Our first example

3f. Vxaxo.(F (x1,x2) > x1 A f(x1,x2) > xo A (f (x1,x2) = x1V f(x1,x2) = x2)) sat

\L(single-invocation property)

Vxixo. 38 (g > x1Ng>x Ng~x1V g~ x3)) sat

\l,negate (satisfaction-complete theory)

dx1x. Vg (< x1Vg<x V(g# x1 N g# x)) unsat

\LSkolemize, for fresh a, b

Vg. (g<aVvg<bV(g# aNgs# b)) unsat

Solving Max Example

Ground

solver

Vg. (g<avg<bv (g#a/\g#b))

Quantifiers

Module

Solving Max Example

(a<ava<byv(a#aAa#b))A Vg. (g<avg<bvVv(g#a A g#b))

(b<a v b<b v (b#a Ab#b))

instances LUg

Ground 2/g. ble dule

solver

Solving Max Example

a<b A Vg. (g<avg<bvVv(g#a A g#b))

simplify

b<a

Quantifiers

Ground
Module

solver

Solving Max Example

a<b A Vg. (g<avg<bvVv(g#a A g#b))

b<a

Ground Quantifiers

Module
solver

= Vg. (g<avg<bvVv(g#a A g#b)) is unsatisfable,
implies original synthesis conjecture has a solution

How do we get solutions? 3. vx. P (£ (x),x)

! negate, translate to FO

—|P(tl,k),...,—|P(tn,k) ‘v’g.ﬁP(g,k)

e instances Quantifiers

Module
solver

—P (tl’ k) ey TP (tn’ k) |= false

How do we get solutions? 3. vx. P (£ (x),x)

! negate, translate to FO

—|P(tl,k),...,—|P(tn,k) ‘v’g.ﬁP(g,k)

Ground instances Quantifiers

Module
solver

Claim the following is a solution for f:
Ax. ite(P(t,, k), ti,
ite(P(t,, k), t,,

—P(t,,k),..,—P(t k) |= false tte(Pty k), togy
t.)..) [x/k]

Why is this a solution?

Given df.Vx.P (f (x), x)

Found =P (t,,k),..,—P(t,k) |= false

Claim the following is a solution for f:
Ax. ite(P(t,, k), t,,
ite(P(t,, k), t,,

ite(P(t,.i, k), t, 1,

Why is this a solution?

Given df.Vx.P (f (x), x)

Found —P (t,,k),..,—P(t,k) |= false

Claim the following is a solution for f:

Ax. ite(P(t,, k), t,, If P holds for t, return ¢,
ite(P(t,, k), t,,

ite(P(t,.i, k), t, 1,

Why is this a solution?

Given df.Vx.P (f (x), x)

Found —P (t,,k),..,—P(t,k) |= false

Claim the following is a solution for f:
Ax. ite(P(t,, k), t,,
ite(P(t,, k), t,, If P holds for t,, return t,

ite(P(t,.i, k), t, ¢,

Why is this a solution?

Given df.Vx.P (f (x),x)

Found =P (t,,k),..,—P(t,k) |= false

Claim the following is a solution for f:
Ax. ite(P(t,, k), t,,
ite(P(t,, k), t,,

ite(P(t,i, k), t, ., If P holds for t ,_,, return t __,

Why is this a solution?

Given df.Vx.P(f (x), x)

Found —P (t,,k),..,—P(t,k) |= false

Claim the following is a solution for f:
Ax. ite(P(t,, k), t,,
ite(P(t,, k), t,,

lte(P (tn—l’k) ’ tn 17
t.)..) [x/k] Why does P (t_, k) hold?

Solution for Max Example

Given Jf.Vxvy. (f(x,V)2xAf(X,V)2VA(f(x,V)=xV f(xX,V)=Y))

—(az2a Aaz2b A(a=ava=b)),

—(b>a Ab>b A (b=a v b=b)) |= false

Found
Claim the following is a solution for f:
Axy. ite(a2aAna2bA(a=ava=b), a,

b)..) [x/a] [y/Db]

Solution for Max Example

Given Jf.Vxvy. (f(x,V)2xAf(X,V)2yA(f(x,V)=xV f(xX,V)=Y))

—(az2a AazbA(a=ava=b)),

— (b>a Ab>b A (b=a v b=b)) |= false

Found

Claim the following is a solution for f:
Axy. 1te(X2X A X2V A(X=XV X=V), X,
y)...)

Solution for Max Example

Given | Jf.Vxvy. (f(x,V)2xAf(X,V)2VA(f(x,V)=xV f(xX,V)=Y))

—(az2a Aaz2b A(a=ava=b)),

—(b>a Ab>b A (b=a v b=b)) |= false

Found

Claim the following is a solution for f:
Axy. ite(x2y, X, V)

Lifting the single-invocation property restriction

» Can we still refute negated synthesis conjectures?

» Yes, under syntactic restrictions.

Example: Syntax-Guided Synthesis

» Syntactic restriction for the solution space, expressed by these algebraic datatypes:

S:=1t1 | ta | zero | one | plus(S,S) | minus(S,S) | if (C,S,S)
C:=1eq(S,S) | eq(S,S) | and(C, C) | not(C)

Example: Syntax-Guided Synthesis

» Syntactic restriction for the solution space, expressed by these algebraic datatypes:

S:=t1 | to | zero | one | plus(S,S) | minus(S,S) | if (C,S,S)
C:=1eq(S,S) | eq(S,S) | and(C, C) | not(C)

> And an interpretation of these datatypes in terms of the original theory.

1. evaIntXInt—)Int . embedding Sin Int.

Cx Intx Int— Bool .

2. ev : embedding C in Bool.

The evaluation operators

ev(ty, X, y) ~ x
ev(zero, x, y) ~ 0
ev(not(c), x, y) = —ev(c, X, y)
ev(and(ci, &), x, ¥) ~ ev(cy, x,y) A ev(ca, X,)
ev(plus(st, 52), x, ¥) = ev(s1, x, ¥) + ev(sy, X, y)

ev(if (¢, s1, %), x,y) = ite(ev(c, x, y), ev(st, X,), ev(sz, X, y))

Another example

Plc, x1, %) = c(x1, %) ~ c(x2, x1)

> can be restated as follows, where g is a variable of type S:

Pe/lg, x1, %] = ev(g, x1,x) ~ ev(g, X2, X1)

» Now, instead of finding a witness for Jc. Vxix2.P[c, x1, x2] we will determine the
unsatisfiability of Ix1x2. Vg.—Pe/[g, X1, X2]-

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, X2,X1)

Model Added Formula

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, Xz,Xl)

Model Added Formula

[g—> tl] ev(tl,al,bl) "75 ev(tl,bl,al)

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, Xz,Xl)

Model Added Formula

[g—> tl] ev(tl,al,bl) "75 ev(tl,bl,al)

[a1 — 1,b; — O] G=ev(g 1,0) =~ ev(g0,1)

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, Xz,Xl)

Model Added Formula

[g—> tl] ev(tl,al,bl) "75 ev(tl,bl,al)
[a1 — 1,b; — O] G=ev(g 1,0) =~ ev(g0,1)

g — zerd ev(zero, ay, by) % ev(zero, by, ay)

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, Xz,Xl)

Model Added Formula

[g—> tl] ev(tl,al,bl) o ev(tl,bl,al)
[a1 — 1, b1 — O] G=ev(g 1,0) =~ ev(g0,1)
g — zerd ev(zero, ay, by) % ev(zero, by, ay)

none

Positive Example : Plc, x1, %] = c(x1, %) ~ c(x2, x1)

Pev[g, X1,X2] = ev(g, X1,X2) ~ ev(g, Xz,Xl)

Model Added Formula

[g—> tl] ev(tl,al,bl) o ev(tl,bl,al)
[a1 — 1, b1 — O] G=ev(g 1,0) =~ ev(g0,1)
g — zerd ev(zero, ay, by) % ev(zero, by, ay)

none

Solution: ¢(x1,%) =0

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Model Added Formula

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Model Added Formula

g — t1] ev(t1, a1, b1) =~ ev(ty, b1, a1)

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Model Added Formula

g — t1] ev(t1, a1, b1) =~ ev(ty, b1, a1)

[a1 = 0,b1 0] G=ev(g0,0) % ev(g,0,0)

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Model Added Formula

g — t1] ev(t1, a1, b1) =~ ev(ty, b1, a1)
[a1 = 0,b1 0] G=ev(g0,0) % ev(g,0,0)

none

Negative Example: P[c, x1, x| = c(x1, x2) % c(x, x1)

Po g, x1,x0] = ev(g, x1,x2) % evV(g, X2, x1)

Model Added Formula

g — t1] ev(t1, a1, b1) =~ ev(ty, b1, a1)
[a1 = 0,b1 0] G=ev(g0,0) % ev(g,0,0)

none

No Solution

The procedure has following properties:

» Solution Soundness: Every term that it returns can be mapped to a solution of
the original synthesis conjecture 3f .Vx. P[f,X].

» Refutation Soundness: If it does not find a solution (up to a given length), the
original conjecture has no solution under the syntactic restrictions up to that
length.

» Solution Completeness: If the original synthesis conjecture has a solution under
these restrictions, the procedure will find one.

To conclude

> Refutation based approach for syntax-guided synthesis.

> Implemented in CVC4; winner in General and LIA tracks at SyGuS-Comp 2014.

» Single-invocation - appears to be restrictive but not quite so in practice; 176
benchmarks out of 243 at SyGuS-Comp 2014 were single-invocation.

Thank you.

Questions?

