A Finitary Analogue of the Downward Löwenheim-Skolem Property

Abhisekh Sankaran
IMSc, Chennai

Formal Methods Update Meet
IIT Mandi
July 18, 2017
The Downward Löwenheim-Skolem theorem (DLS) is amongst the earliest results in classical model theory.

The first version of DLS is by Löwenheim in his paper Über Möglichkeiten im Relativkalkül (1915) and reads as follows: If a first order sentence over a countable vocabulary has an infinite model, then it has a countable model.

Historically,

1915: First version of DLS by Löwenheim. His proof used König’s lemma (1927) without proving it.

1920s: First fully self-contained proof of Löwenheim’s statement and various generalizations of DLS by Skolem

1936: The most general version of DLS by Mal’tsev

DLS + compactness = first order logic (Lindström 1969).
Outline of the talk

A. Notions:
- The Downward Löwenheim-Skolem Property: DLSP
- The Equivalent Bounded Substructure Property: EBSP

B. Results:
- Classes of finite structures satisfying EBSP
- Closure properties of EBSP
- Techniques and f.p.t. algorithms
- Connection with Nature
Some assumptions and notation for the talk

Assumptions:
- First order (FO) logic
- Finite relational vocabularies (i.e. only predicates)

Notation:
- $\mathcal{A} \subseteq \mathcal{B}$ means \mathcal{A} is a substructure of \mathcal{B}.
- $U_{\mathcal{A}}$ denotes universe of \mathcal{A}.
- $|\mathcal{A}|$ denotes size of $U_{\mathcal{A}}$.
A. Notions
The Downward Löwenheim-Skolem Property
FO-similarity of structures

Q and R are FO-similar

We say structures \mathcal{A} and \mathcal{B} are **FO-similar**, denoted $\mathcal{A} \equiv \mathcal{B}$, if \mathcal{A} and \mathcal{B} agree on all properties that can be expressed in FO.
Definition

We say **DLSP** holds if
The Downward Löwenheim-Skolem Property

Definition

We say \textit{DLSP} holds if

\[\forall A \]
The Downward Löwenheim-Skolem Property

Definition

We say **DLSP** holds if

\[\forall A \exists B \subseteq A \]

[Diagram: \(A \) containing \(B \) with arrows indicating \(\forall A \exists B \subseteq A \)]
We say **DLSP** holds if

\[\forall A \ \exists B \subseteq A \]

(i) the size of \(B \) is \(\leq \omega \)
The Downward Löwenheim-Skolem Property

Definition

We say DLSP holds if

(i) the size of B is $\leq \omega$

(ii) B is FO-similar to A

\[
\forall A \\
\exists B \subseteq A
\]

i the size of B is $\leq \omega$

(ii) B is FO-similar to A
The Downward Löwenheim-Skolem Property

Definition

We say **DLSP** holds if

\[\forall A \exists B \subseteq A \]

\[(i) \text{ the size of } B \text{ is } \leq \omega \]

\[(ii) \text{ } B \text{ is FO-similar to } A \]

\[A \text{ has an FO-similar substructure of size } \leq \omega \]
The Downward Löwenheim-Skolem theorem

Theorem (Löwenheim 1915, Skolem 1920s)

DLSP is true over all structures.
Downward Löwenheim-Skolem theorem in the finite

- Does not make sense when taken as is.
- No recursive version of Löwenheim’s statement – there is no recursive function bounding the size of a small model of an FO sentence.
- Grohe showed a stronger negative result:
 For every recursive function $f : \mathbb{N} \rightarrow \mathbb{N}$, there is an FO sentence φ and $n \geq f(|\varphi|)$, such that φ has a model of each size $\geq n$ but no model of size $< n$.
- Quoting Grohe, the above counterexample “refutes almost all possible extensions of the classical Löwenheim-Skolem theorem to finite structures”.

Classical theorems over classes of finite structures

- Most theorems from classical model theory fail over all finite structures (DLS, preservation theorems, interpolation theorems, etc.)
- Active research in last 15 years to “recover” classical theorems over classes interesting from structural and algorithmic perspectives.
- Acyclic, bounded degree, wide, bounded tree-width – Łoś-Tarski pres. theorem
- In addition to the above, quasi-wide classes, classes excluding at least one minor – homomorphism pres. theorem
- No such studies in the literature for the DLS theorem.
A new logic based combinatorial property of finite structures
Any finite structure can be captured up to isomorphism by FO.

\[\varphi := \exists x \exists y \exists z \forall w
\left((x \neq y \land y \neq z \land z \neq x) \land
(w = x \lor w = y \lor w = z) \land
(E(x, x) \land E(x, y) \land E(x, z) \land E(y, z)) \land
\neg(E(y, y) \lor E(z, z) \lor E(y, x) \lor E(z, y) \lor E(z, x)) \right) \]

Then FO-similarity = isomorphism in the finite.

Define a weaker version of FO-similarity by considering FO sentences of a fixed quantifier nesting depth.
\(m \)-similarity of structures

\[
\begin{align*}
\mathcal{A} \equiv_1 \mathcal{B} \\
\mathcal{A} \text{ and } \mathcal{B} \text{ are } 1\text{-similar, but not } 2\text{-similar.}
\end{align*}
\]

We say structures \(\mathcal{A} \) and \(\mathcal{B} \) are \textit{m}-\textit{similar}, denoted \(\mathcal{A} \equiv_m \mathcal{B} \), if \(\mathcal{A} \) and \(\mathcal{B} \) agree on all properties that can be expressed using FO sentences having \textit{quantifier nesting depth} \(m \).
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if

\[\forall A \forall m \in \mathbb{N} \]
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if

\[\forall A \forall m \in \mathbb{N} \exists B \subseteq A \]

\[\forall A \forall m \in \mathbb{N} \exists B \subseteq A \]
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if

\[
\forall A \ \forall m \in \mathbb{N} \ \exists B \subseteq A \ (i) \ |B| \text{ is bounded in } m
\]
The Equivalent Bounded Substructure Property

Definition

We say EBSP holds if

\[\forall A \forall m \in \mathbb{N} \exists B \subseteq A \]

(ii) \(B \) is \(m \)-similar to \(A \)

\[|B| \text{ is bounded in } m \]

\[(i) \text{ } |B| \text{ is bounded in } m \]

\[(ii) \text{ } B \text{ is } m \text{-similar to } A \]
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if

\[
\forall A \forall m \in \mathbb{N} \exists B \subseteq A \\
(i) |B| \text{ is bounded in } m \\
(ii) B \text{ is } m\text{-similar to } A
\]

“\(A\) has a small \(m\)-similar substructure”
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if there exists a **witness function** $\theta : \mathbb{N} \to \mathbb{N}$ such that

\[
\forall A \forall m \in \mathbb{N} \exists B \subseteq A
\]

(i) $|B| \leq \theta(m)$

(ii) B is m-similar to A

\[A \equiv_m B\]

“A has a small m-similar substructure”
The Equivalent Bounded Substructure Property

Definition

We say **EBSP** holds if there exists a **witness function** $\theta : \mathbb{N} \rightarrow \mathbb{N}$ such that

\[
\forall A \forall m \in \mathbb{N} \exists B \subseteq A \ (i) \ |B| \leq \theta(m) \\
(ii) \ B \text{ is } m\text{-similar to } A
\]

“A has a small m-similar substructure”
The Equivalent Bounded Substructure Property

Definition

Given a class \mathcal{S} of finite structures, we say $\text{EBSP}(\mathcal{S})$ holds if there is a witness function $\theta : \mathbb{N} \to \mathbb{N}$ such that

1. $\forall A \in \mathcal{S} \quad \forall m \in \mathbb{N}$
2. $\exists B \subseteq A, \ B \in \mathcal{S}$
3. $|B| \leq \theta(m)$
4. B is m-similar to A
The Equivalent Bounded Substructure Property

Definition

Given a class S of finite structures, we say $\text{EBSP}(S)$ holds if there is a witness function $\theta : \mathbb{N} \to \mathbb{N}$ such that

(i) $|B| \leq \theta(m)$

(ii) B is m-similar to A

$\forall A \in S \quad \forall m \in \mathbb{N} \quad \exists B \subseteq A, \; B \in S$

“A has a small m-similar substructure” – over S
EBSP(\(S\)) as a finitary analogue of DLSP

\[\forall A \\exists B \subseteq A \\ (i) \ |B| \leq \omega \ (ii) \ B \text{ is FO-similar to } A\]

\[\exists B \subseteq A, \ B \in S \equiv m \equiv m \equiv m \]

Let \(p = \theta(m)\)

\[\forall A \in S \ \exists B \subseteq A, \ B \in S \ (i) \ |B| \leq p \ (ii) \ B \text{ is } m\text{-similar to } A\]
B. Results
Classes that satisfy EBSP
Posets satisfying EBSP
Words and trees (unordered, ordered, ranked)

- Classically studied structures

Unordered Σ-tree
$\Sigma = \{a, b\}$

Ordered Σ-tree
$\Sigma = \{a, b\}$

Ordered Σ-tree ranked by ρ
$\Sigma = \{a, b\}$; $\rho = \{a \rightarrow 2, b \rightarrow 1\}$

Σ-word
$\Sigma = \{0, 1\}$
Nested words

- Introduced by Alur and Madhusudan in 2004 as joint generalization of words and ordered unranked trees.

\[W = (abaababba \leadsto) \]
\[\leadsto = \{(2, 8), (4, 7)\} \]
A regular language of words/trees/nested words is a class of words/trees/nested words that can be recognized by a finite word/tree/nested word automaton.

Recall: EBSP(\mathcal{S}) says for each m, that a large \mathcal{S}-structure contains a small m-similar \mathcal{S}-substructure.

Theorem

Let \mathcal{S} be a regular language of words, trees (unordered, ordered or ranked) or nested words. Then EBSP(\mathcal{S}) holds with a computable witness function (which is non-elementary, in general).
Graphs satisfying EBSP
\(m\)-partite cographs

- Hliněný, Nešetřil, et al. introduced in 2012, the class of \(m\)-partite cographs.
- An \(m\)-partite cograph \(G\) is a graph that has an \(m\)-partite cotree representation \(t\):

\[
\begin{align*}
fx &= fz = 0 \\
fy &= 1 \\
f(\mathbf{v}, \mathbf{w}) &= 1, \text{ else } 0 \\
w(\mathbf{v}, \mathbf{w}) &= 1, \text{ else } 0
\end{align*}
\]

\[
\text{Label set } = \{1, 2\} \\
f_x = f_z = 0 \\
f_y = 1 \\
f(2, 2) = 1, \text{ else } 0 \\
w(1, 1) = 1, \text{ else } 0
\]
Important subclasses of m-partite cographs

- **Cographs** (1-partite cographs): complete graphs, complete k-partite graphs, threshold graphs, Turan graphs, etc.
- **Bounded tree-depth** graphs
- **Bounded shrub-depth** graphs

All of the above classes are of active current interest for their excellent algorithmic and logical properties!
Let S be a hereditary subclass of any of the following graph classes. Then $EBSP(S)$ holds with a computable witness function. For classes with bounded parameters as below, there exist elementary witness functions.

1. the class of m-partite cographs
2. any graph class of bounded shrub-depth
3. any graph class of bounded tree-depth
4. the class of cographs
EBSP and well-quasi-orders
A property of binary strings

- Consider the binary strings $u = 00$, $v = 010$ and $w = 111$.
- We say u is a substring of v since u “embeds inside” v. Observe that neither of v or w is a substring of the other.
- For each n, there exists a set of n strings such that no string in the set is a substring of another.
 Eg. $n = 4$: 0000, 0101, 1010, 1111
- However this cannot be done if n becomes infinite!

Theorem (Higman 1952)

For every infinite set \{\(w_1, w_2, \ldots\)\} of binary strings, there exist i, j such that w_i is a substring of w_j. In other words, binary strings are well-quasi-ordered (w.q.o.) under the substring relation.
Definition
A class S of structures is said to be **w.q.o. under embedding** if for every infinite set \{${A_1, A_2, \ldots}$\} of structures of S, there exist i, j such that A_i is embeddable in A_j.

Theorem
Let S be w.q.o. under embedding. Then $\text{EBSP}(S)$ is true.

Applications: The following classes satisfy $\text{EBSP}(S)$:

- k-letter graphs for each k (e.g. threshold graphs, unbounded interval graphs)
- k-uniform graphs for each k
Constructing new classes satisfying EBSP
Unary operations on structures

- Complement
- Transpose
- Line
Binary operations on structures

\(G_1 \sqcup G_2 \)

\(G_1 \bowtie G_2 \)
Binary operations on structures

(a, 2) \parallel (b, 3)

\text{parallel connect series connect}

G_1 \parallel G_2

G_1 + G_2
Binary operations on structures

\[G_1 \] \hspace{2cm} \text{cartesian product} \hspace{2cm} G_1 \times G_2 \hspace{2cm} \text{tensor product} \hspace{2cm} G_1 \otimes G_2

\[(a, 1) \hspace{2cm} (a, 2) \hspace{2cm} (a, 3) \hspace{2cm} (a, 4) \]
\[(b, 1) \hspace{2cm} (b, 2) \hspace{2cm} (b, 3) \hspace{2cm} (b, 4) \]
Generating graphs using trees of operations

$K_1 = \text{single vertex}; \ K_2 = \text{single edge}$
Theorem

Given a class S, let Z be any one of the following classes.

1. Complement(S)
2. Transpose(S)
3. Line(S)

If EBSP(S) holds with a computable/elementary witness function, then so does EBSP(Z).
Closure of EBSP under unary operations

Theorem

Given a class S, let Z be any one of the following classes.

1. Complement(S)
2. Transpose(S)
3. Line(S)

Then the following are true:

$EBSP(S) \rightarrow EBSP(Z)$
Closure of EBSP under unary operations

Theorem

Given a class S, let Z be any one of the following classes.

1. Complement(S)
2. Transpose(S)
3. Line(S)

Then the following are true:

- $\text{EBSP}(S) \rightarrow \text{EBSP}(Z)$
- If $\text{EBSP}(S)$ holds with a computable/elementary witness function, then so does $\text{EBSP}(Z)$.
Closure of EBSP under binary operations

Theorem

Given classes S_1 and S_2, let Z be any one of the following classes.

1. Disjoint-union(S_1, S_2)
2. Join(S_1, S_2)
3. Series-connect(S_1, S_2)
4. Parallel-connect(S_1, S_2)
5. Cartesian-product(S_1, S_2)
6. Tensor-product(S_1, S_2)

Then the following are true:

- $(\text{EBSP}(S_1) \land \text{EBSP}(S_2)) \rightarrow \text{EBSP}(Z)$
- If the conjuncts in the antecedent hold with computable/elementary witness functions, then so does the consequent.
An overview of classes satisfying EBSP

Posets
1. Words
2. Trees
 a. Unordered
 b. Ordered
 c. Ranked
3. Nested words

Graphs
1. Cographs
2. Bounded tree-depth graphs
3. Bounded shrub-depth graphs
4. m-partite cographs
5. Graphs w.q.o. under embedding

Classes generated using
1. Unary operations
 a. complement
 b. transpose
 c. line
2. Binary operations
 a. disjoint union
 b. join
 c. series-connect
 d. parallel-connect
 e. cartesian product
 f. tensor product
Key technical features we make use of:

- Most structures \mathcal{A} seen so far have tree representations $t_\mathcal{A}$.
- The representations are “good” - the operations used in $t_\mathcal{A}$ satisfy a Feferman-Vaught kind composition property.
- The index of the “m-similarity” equivalence relation is finite.
Techniques used to prove EBSP for a class

- Key technical features we make use of:
 - Most structures \mathcal{A} seen so far have tree representations $t_\mathcal{A}$.
 - The representations are “good” - the operations used in $t_\mathcal{A}$ satisfy a Feferman-Vaught kind composition property.
 - The index of the “m-similarity” equivalence relation is finite.

- Perform appropriate prunings and graftings iteratively in $t_\mathcal{A}$ to create a subtree that is “rainbow” in the following sense:
 - Height: No two nodes in any path from root to leaf represent structures of the same m-similarity class.
 - Degree: For a node a with children b_i where $1 \leq i \leq n$, let t_i be the subtree rooted at a, from which the subtrees rooted at b_{i+1}, \ldots, b_n, are deleted. Then no two t_i’s represent structures of the same m-similarity class.
Techniques used to prove EBSP for a class

- Key technical features we make use of:
 - Most structures \mathcal{A} seen so far have tree representations $t_{\mathcal{A}}$.
 - The representations are “good” - the operations used in $t_{\mathcal{A}}$ satisfy a Feferman-Vaught kind composition property.
 - The index of the “m-similarity” equivalence relation is finite.

- Perform appropriate prunings and graftings iteratively in $t_{\mathcal{A}}$ to create a subtree that is “rainbow” in the following sense:
 - Height: No two nodes in any path from root to leaf represent structures of the same m-similarity class.
 - Degree: For a node a with children b_i where $1 \leq i \leq n$, let t_i be the subtree rooted at a, from which the subtrees rooted at b_{i+1}, \ldots, b_n, are deleted. Then no two t_i’s represent structures of the same m-similarity class.

- The rainbow subtree represents a small m-similar substructure.
Algorithmic meta-theorems for EBSP classes

- The aforementioned prunings and graftings can be implemented in time linear in the size of the tree.
- The rainbow subtree thus obtained in linear time, represents a small uniform kernel for all FO$[m]$ properties of the original structure.
- FO properties of the kernel can be checked in constant time.

Theorem

Let S be a class of structures admitting good tree representations. Then there exists a linear time f.p.t. algorithm for FO model checking over S, provided input structures are given in the form of their tree representations.
Connection with Nature
Fractals

- Mathematical objects that exhibit **self-similarity at all scales**.
- Appear widely in Nature.

Fern leaf
Fractals

- Mathematical objects that exhibit self-similarity at all scales.
- Appear widely in Nature.

Conch shell
Fractals

- Mathematical objects that exhibit self-similarity at all scales.
- Appear widely in Nature.

Romanesco cauliflower
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^#(S)$ holds if
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^#(S)$ holds if

\[\langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle \]
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^#(S)$ holds if

$$\forall A \in S \forall m \in \mathbb{N}$$
A strengthening of EBSP

Given a class S of finite structures, we say $\text{EBSP}^\#(S)$ holds if

$$\forall A \in S \\forall m \in \mathbb{N} \text{ if } |A| \in \langle i \rangle, \text{ then } \forall j < i$$
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^#(S)$ holds if

$$\forall A \in S \ \forall m \in \mathbb{N}$$

If $|A| \in \langle i \rangle$, then

$$\forall j < i$$

$$\exists B_j \subseteq A, \ B_j \in S$$
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^\#(S)$ holds if

$$\forall A \in S \quad \forall m \in \mathbb{N}$$

If $|A| \in \langle i \rangle$, then

$$\forall j < i$$

$$\exists B_j \subseteq A, \quad B_j \in S$$

$$\langle i \rangle \quad \langle j \rangle$$
A strengthening of EBSP

Definition

Given a class S of finite structures, we say $\text{EBSP}^\#(S)$ holds if

\[
\forall A \in S \quad \forall m \in \mathbb{N} \\
\text{If } |A| \in \langle i \rangle, \text{ then } \\
\forall j < i \\
\exists B_j \subseteq A, \quad B_j \in S \\
(i) \quad |B_j| \in \langle j \rangle \\
(ii) \quad B_j \text{ is } m\text{-similar to } A
\]
EBSP# – a fractal-like property

∀A ∈ S ∀m ∈ N
A ∃B_j ⊆ A, B_j ∈ S
(i) |B_j| ∈ ⟨ j⟩
(ii) B_j is m-similar to A

∀A ∈ S ∀m ∈ N
If |A| ∈ ⟨ i⟩, then
∀j < i
∃B_j ⊆ A, B_j ∈ S
(i) |B_j| ∈ ⟨ j⟩
(ii) B_j is m-similar to A
EBSP# – a fractal-like property

EBSP# indeed asserts logical self-similarity at all scales.
EBSP# – a fractal-like property

EBSP# indeed asserts logical self-similarity at all scales.

All the classes seen so far can be shown to satisfy EBSP#.
EBSP# – a fractal-like property

EBSP# indeed asserts logical self-similarity at all scales.

All the classes seen so far can be shown to satisfy EBSP#.

Whereby all these classes can be regarded as
EBSP# – a fractal-like property

- EBSP# indeed asserts logical self-similarity at all scales.
- All the classes seen so far can be shown to satisfy EBSP#.
- Whereby all these classes can be regarded as logical fractals!
Conclusion
Summary of the talk

A. Notions:
- The Downward Löwenheim-Skolem Property: DLSP
- The Equivalent Bounded Substructure Property: EBSP

B. Results:
- Classes of finite structures satisfying EBSP
- Closure properties of EBSP
- Techniques and f.p.t. algorithms
- Connection with Nature
A challenging open problem

Is there a structural characterization of EBSP/logical fractals?
Dhanyavād!
