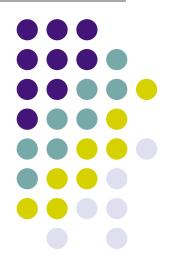
Markov Logic: Combining Logic and Probability

Parag Singla

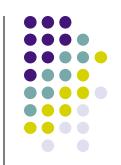
Dept. of Computer Science & Engineering Indian Institute of Technology Delhi



Overview

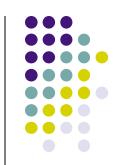
- Motivation & Background
- Markov logic
- Inference & Learning
- Abductive Plan Recognition

Social Network and Smoking Behavior



Cancer

Social Network and Smoking Behavior



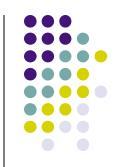
Smoking leads to Cancer

Social Network and Smoking Behavior



Smoking leads to Cancer

Social Network and Smoking **Behavior**



Smoking leads to Cancer

Habits

Statistical Relational Al

- Real world problems characterized by
 - Entities and Relationships
 - Uncertain Behavior
- Relational Models
 - Horn clauses, SQL queries, first-order logic
- Statistical Models
 - Markov networks, Bayesian networks
- How to combine the two?
- Markov Logic
 - Markov Networks + First Order Logic

Statistical Relational Al

- Probabilistic logic [Nilsson, 1986]
- Statistics and beliefs [Halpern, 1990]
- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Bayesian Logic Programs
 [Kersting and De Raedt 2001]
- Relational Markov networks [Taskar et al., 2002]
- BLOG [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]

First-Order Logic

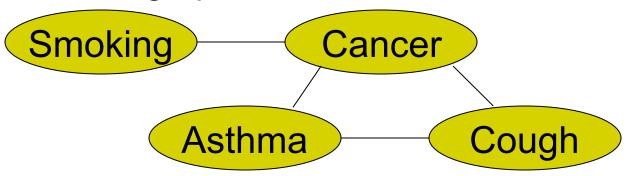
- Constants, variables, functions, predicates
 - Anil, x, MotherOf(x), Friends(x,y)
- Grounding: Replace all variables by constants
 - Friends (Anna, Bob)
- Formula: Predicates connected by operators
 - Smokes(x) \Rightarrow Cancer(x)
- Knowledge Base (KB): A set of formulas
 - Can be equivalently converted into a clausal form
- World: Assignment of truth values to all ground atoms

First-Order Logic

- Deal with finite first-order logic
- Assumptions
 - Unique Names
 - Domain Closure
 - Known Functions

Markov Networks

Undirected graphical models



Log-linear model:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x)\right)$$
Weight of Feature *i* Feature *i*

$$f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if Smoking} \Rightarrow \text{Cancer} \\ 0 & \text{otherweise} \end{cases}$$

Overview

- Motivation & Background
- Markov logic
- Inference & Learning
- Abductive Plan Recognition

Markov Logic [Richardson & Domingos 06]

- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints:
 When a world violates a formula,
 It becomes less probable, not impossible
- Give each formula a weight
 (Higher weight ⇒ Stronger constraint)

$$P(world) \propto exp(\sum weights of formulas it satisfies)$$

Definition

- A Markov Logic Network (MLN) is a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
- Together with a finite set of constants, it defines a Markov network with
 - One node for each grounding of each predicate in the MLN
 - One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Smoking causes cancer.

Friends have similar smoking habits.

$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

$$\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$$

1.5	$\forall x \ Smokes(x) \Rightarrow Cancer(x)$	x))
-----	---	----	---

1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

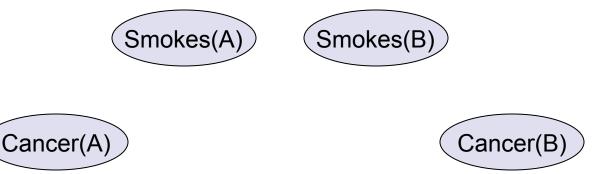
1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Two constants: **Anil** (A) and **Bunty** (B)


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

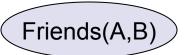
Two constants: Anil (A) and Bunty (B)




```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1
$$\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$$

Two constants: **Anil** (A) and **Bunty** (B)



Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

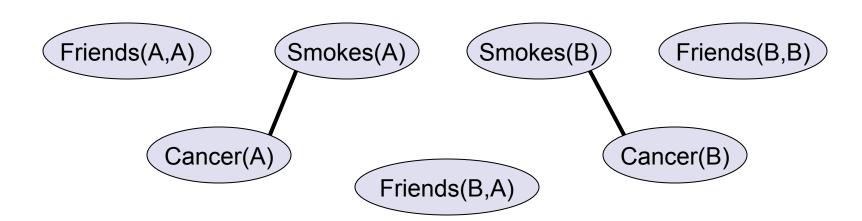
Cancer(B)


```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

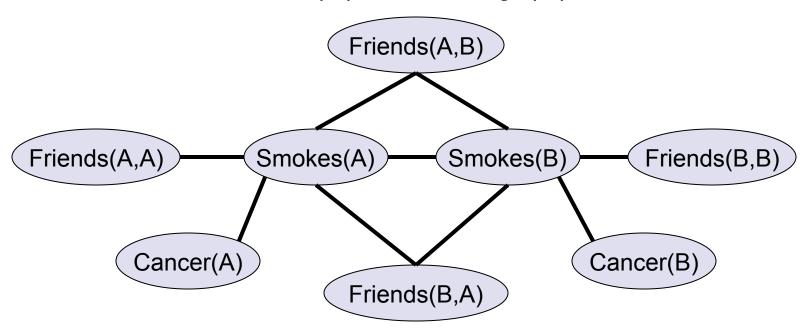
Two constants: Anil (A) and Bunty (B)

Friends(A,B)



- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

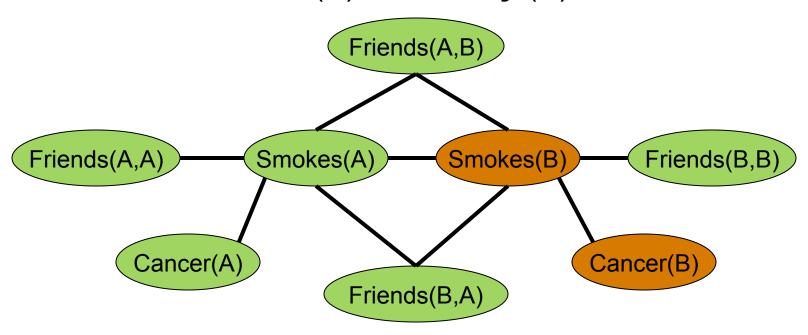
Two constants: **Anil** (A) and **Bunty** (B)




```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1 $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Two constants: Anil (A) and Bunty (B)



State of the World $\equiv \{0,1\}$ Assignment to the nodes

Markov Logic Networks

- MLN is **template** for ground Markov nets
- Probability of a world x:

$$P(x) = \frac{1}{Z} \exp\left(\sum_{k \in ground \ formulas} w_k f_k(x)\right)$$

- MLN is template for ground Markov nets
- Probability of a world x:

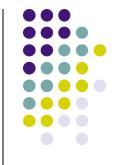
$$P(x) = \frac{1}{Z} \exp\left(\sum_{k \in ground \ formulas} w_k f_k(x)\right)$$

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i \in MLN \text{ formulas}} w_i n_i(x)\right)$$

Weight of formula i

No. of true groundings of formula i in x

Relation to Statistical Models



- Special cases:
 - Markov networks
 - Markov random fields
 - Bayesian networks
 - Log-linear models
 - Exponential models
 - Logistic regression
 - Hidden Markov models
 - Conditional random fields

 Obtained by making all predicates zero-arity

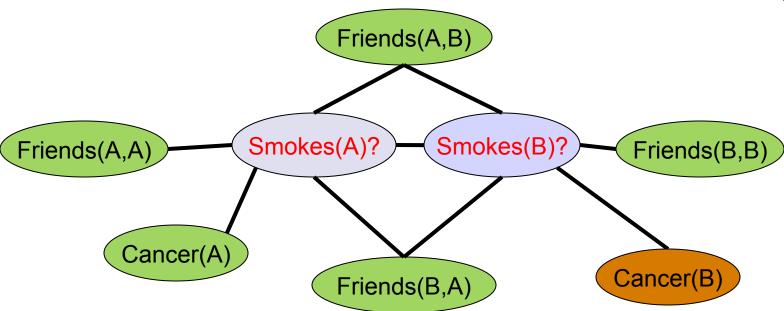
Relation to First-Order Logic

- Infinite weights ⇒ First-order logic
- Satisfiable KB, positive weights ⇒
 Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas
- Relaxing Assumptions
 - Known Functions (Markov Logic in Infinite Domains)
 [Singla & Domingos 07]
 - Unique Names (Entity Resolution with Markov Logic)
 [Singla & Domingos 06]

Overview

- Motivation & Background
- Markov logic
- Inference & Learning
- Abductive Plan Recognition

Inference



blue? – non-evidence (unknown) green/orange – evidence (known)

MPE Inference

 Problem: Find most likely state of world given evidence

$$P(y \mid x) = \frac{1}{Z_x} \exp\left(\sum_i w_i n_i(x, y)\right)$$

Query

Evidence

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y) \right)$$

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

MPE Inference

 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
 (e.g., MaxWalkSAT [Kautz et al. 97])

Lazy Grounding of Clauses: LazySAT [Singla & Domingos 06]

 Problem: Find the probability of query atoms given evidence

$$P(y \mid x) = \frac{1}{Z_x} \exp\left(\sum_i w_i n_i(x, y)\right)$$

Query

Evidence

 Problem: Find the probability of query atoms given evidence

$$P(y \mid x) = \frac{1}{Z_x} \exp\left(\sum_{i} w_i n_i(x, y)\right)$$
Query
Evidence

Computing Z_x takes exponential time!

 Problem: Find the probability of query atoms given evidence

$$P(y \mid x) = \frac{1}{Z_x} \exp\left(\sum_i w_i n_i(x, y)\right)$$
Query
Evidence

Approximate Inference: Gibbs Sampling, Message Passing [Richardson & Domingos 06, Poon & Domingos 06, Singla & Domingos 08]

Learning Parameters


```
w_1? \forall x \ Smokes(x) \Rightarrow Cancer(x)

w_2? \forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)
```

Three constants: Anil, Bunty, Chaya

Learning Parameters

w_1 ?	$\forall x \ Smokes(x) \Rightarrow Cancer(x)$
w_2 ?	$\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bunty)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

Closed World Assumption:

Anything not in the database is assumed false.

Learning Parameters

$$w_1$$
? $\forall x \, Smokes(x) \Rightarrow Cancer(x)$
 w_2 ? $\forall x, y \, Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bunty)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

Maximize the Likelihood: Use Gradient Based Approaches [Singla & Domingos 05, Lowd & Domingos 07]

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bob)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

Can we learn the set of the formulas in the MLN?

$$w_1$$
? $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
 w_2 ? $\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bob)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

Can we refine the set of the formulas in the MLN?

w_1 ?	$\forall x \ Smokes(x) \Rightarrow Cancer(x)$
w_2 ?	$\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$
w_3 ?	$\forall x, y \ Friends(x, y) \Rightarrow Friends(y, x)$

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bob)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

Can we refine the set of the formulas in the MLN?

w_1 ?	$\forall x \ Smokes(x) \Rightarrow Cancer(x)$
w_2 ?	$\forall x, y \ Friends(x, y) \land Smokes(x) \Rightarrow Smokes(y)$
w_3 ?	$\forall x, y \ Friends(x, y) \Rightarrow Friends(y, x)$

Three constants: Anil, Bunty, Chaya

Smokes

Smokes(Anil)

Smokes(Bunty)

Cancer

Cancer(Anil)

Cancer(Bunty)

Friends

Friends(Anil, Bob)

Friends(Bunty, Anil)

Friends(Anil, Chaya)

Friends(Chaya, Anil)

ILP style search for formuals [Kok & Domingos 05, 07, 09, 10]

Open-source software including:

- Full first-order logic syntax
- Inference algorithms
- Parameter & structure learning algorithms

alchemy.cs.washington.edu

Overview

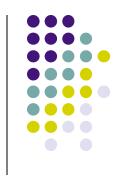
- Motivation & Background
- Markov logic
- Inference & Learning
- Abductive Plan Recognition

Applications

- Web-mining
- Collective Classification
- Link Prediction
- Information retrieval
- Entity resolution
- Activity Recognition
- Image Segmentation & De-noising

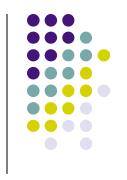
- Social Network Analysis
- Computational Biology
- Natural Language Processing
- Robot mapping
- Abductive Plan Recognition
- More..

Abduction



- Abduction: Given the observations and the background, find the best explanation
- Given:
 - Background knowledge (B)
 - A set of observations (O)
- To Find:
 - A hypothesis, H, a set of assumptions
- B ∪ H ≠ ⊥, B ∪ H |= O

Plan Recognition



- Given planning knowledge and a set of lowlevel actions, identify the top level plan
- Involves abductive reasoning

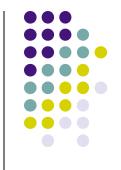
B: Planning Knowledge (Background)

O: Set of low-level Actions (Observations)

H: Top Level Plan (Hypothesis)

 $B \cup H \neq \bot, B \cup H \models O$

Plan Recognition Example



- Emergency Response Domain [Blaylock & Allen 05]
- Background Knowledge

```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc) accident(loc) ∧ clear_wreck(crew,loc) ⇒ block_road(loc)
```

Observation

```
block_road(Plaza)
```

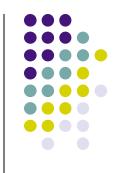
- Possible Explanations
 - Heavy Snow?
 - Accident?

Given

```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc) accdent(loc) ∧ clear_wreck(crew, loc) ⇒ block_road(loc)

Observation: block_road(plaza)
```

Abduction using Markov logic



Given

```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc) accdent(loc) ∧ clear_wreck(crew, loc) ⇒ block_road(loc)

Observation: block_road(plaza)
```

Does not work!

- Rules are true independent of antecedents
- Need to go from effect to cause


```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc)

rb_C1(loc) → Hidden Cause

heavy_snow(loc) ∧ drive_hazard(loc) ⇔ rb_C1(loc)
```



```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc)

rb_C1(loc) → Hidden Cause

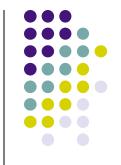
heavy_snow(loc) ∧ drive_hazard(loc) ⇔ rb_C1(loc)

rb_C1(loc) ⇒ block_road(loc)
```

Introducing Hidden Cause

```
heavy_snow(loc) ∧ drive_hazard(loc) ⇒ block_road(loc)
           rb_C1(loc) → Hidden Cause
heavy snow(loc) ∧ drive_hazard(loc) ⇔ rb_C1(loc)
rb_C1(loc) ⇒ block_road(loc)
accident(loc) ∧ clear_wreck(loc, crew) ⇒ block_road(loc)
          rb_C2(loc, crew)
   accident(loc) ∧ clear_wreck(loc) ⇔ rb_C2(loc, crew)
   rb C2(loc,crew) ⇒ block road(loc)
```

Introducing Reverse Implication



```
Explanation 1: heavy_snow(loc) ∧ clear_wreck(loc) ⇔ rb_C1(loc)
```

Explanation 2: accident(loc) ∧ clear_wreck(loc) ⇔ rb_C2(loc, crew)

```
Multiple causes combined via Existential reverse implication quantification

block_road(loc) ⇒ rb_C1(loc) v (∃ crew rb_C2(loc, crew))
```



```
Explanation 1: heavy_snow(loc) ∧ clear_wreck(loc) ⇔ rb_C1(loc)

Explanation 2: accident(loc) ∧ clear_wreck(loc) ⇔ rb_C2(loc, crew)

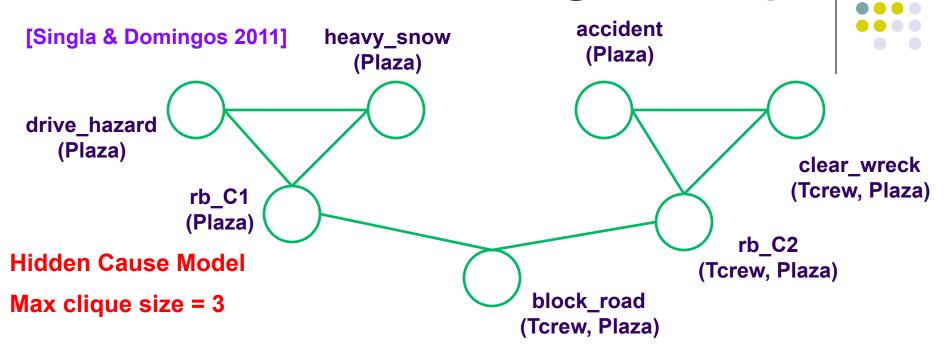
Multiple causes combined via reverse implication

Existential quantification
```

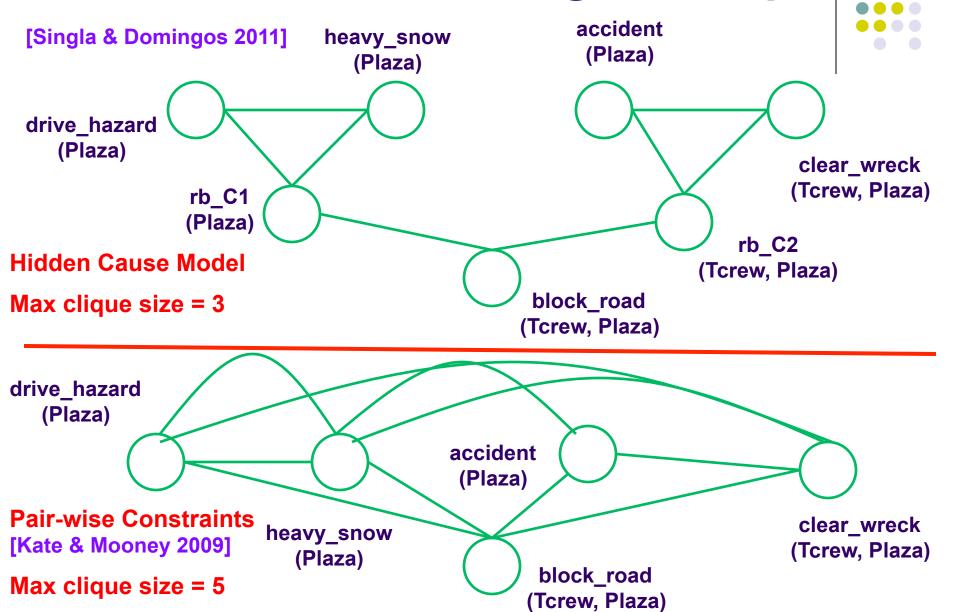
block_road(loc) ⇒ rb_C1(loc) v (∃ crew rb_C2(loc, crew))

```
-w1 rb_C1(loc)
-w2 rb_C2(loc, crew)
```

Hidden Causes: Avoiding Blow-up



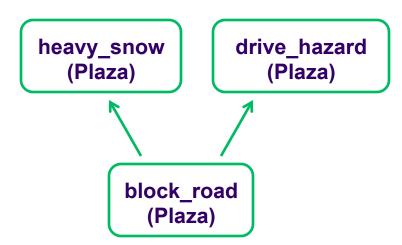
Hidden Causes: Avoiding Blow-up



Second Issue: Ground Network Too Big!

- Grounding out the full network may be costly
- Many irrelevant nodes/clauses are created
- Complicates learning/inference
- Can focus the grounding (KBMC)

Observation: block_road(Plaza)

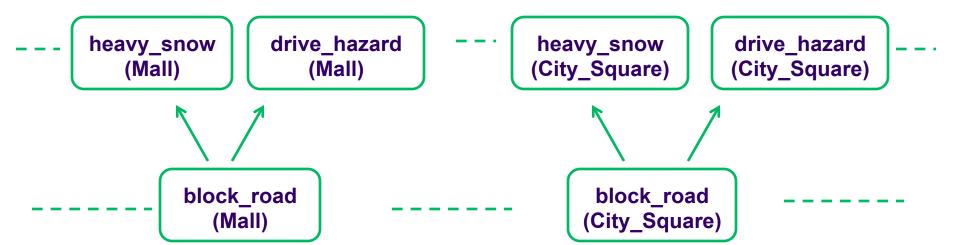


Observation: block_road(Plaza)

heavy_snow (Plaza)

block_road (Plaza)

Constants: ..., Mall, City_Square, ...



Observation: block_road(Plaza)

heavy_snow (Plaza)

drive_hazard (Plaza)

Constants: ..., Mall, City_Square, ...

block_road (Plaza) Not a part of abductive proof trees!

heavy_snow (Mall)

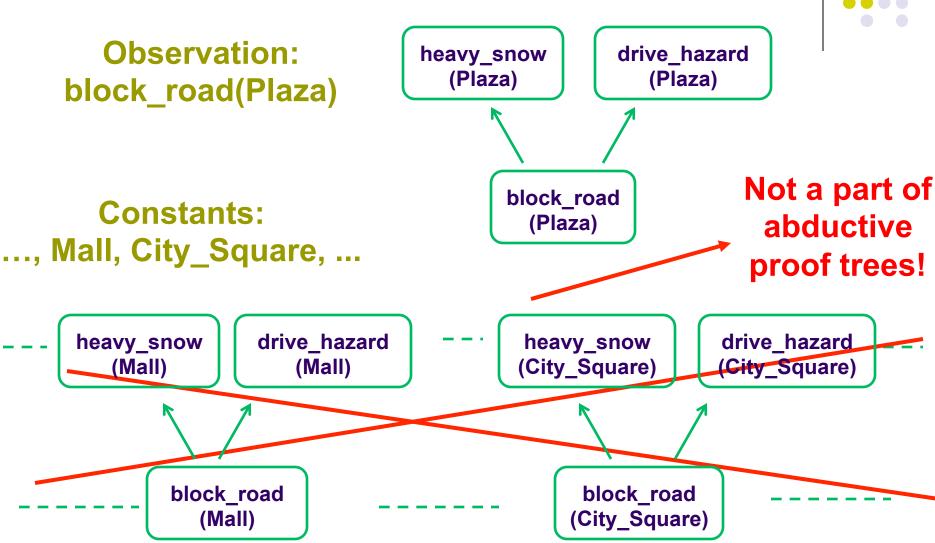
drive_hazard (Mall)

heavy_snow (City_Square)

drive_hazard_ (City_Square)

block_road (Mall)

block_road (City_Square)



Backward chaining to get proof trees [Stickel 1988]

Abductive Markov Logic [Singla & Domingos 11]

- Re-encode the MLN rules
 - Introduce reverse implications
- Construct ground Markov network
 - Use abductive model construction
- Perform learning and inference

Summary

- Real world applications
 - Entities and Relations
 - Uncertainty
- Unifying logical and statistical Al
- Markov Logic simple and powerful model
- Need to do to efficient learning and inference
- Applications: Abductive Plan Recognition