# A survey of techniques for precise program slicing

Komondoor V. Raghavan Indian Institute of Science, Bangalore

## The problem of program slicing

- Given a program P, and a statement c (the criterion),
  identify statements and conditionals in the program that
  are relevant to the variables that occur in c
  - A conditional is relevant if modifying the conditional could disturb the values of the variables in c from what's expected (on any input)
  - A statement is relevant if modifying its rhs could disturb the values of the variables at c
- Intuitively, a slice is a projection of P that's behaviorally equivalent to P wrt what's observable at c

## An example

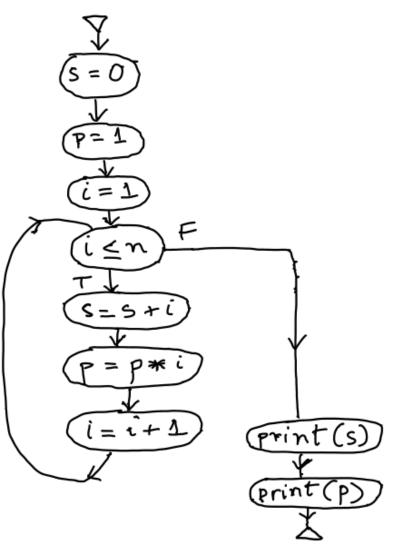
sum = 0;  
prod = 1;  

$$i = 1$$
;  
while  $(i \le n)$  {  
Sum = sum + i;  
 $prod = prod * i$ ;  
 $i = i + 1$ ;  
 $print (sum)$ ;  
 $print (prod)$ ;

## Applications of slicing

- Software understanding tools
- Software maintenance tools
  - Clone detection
  - Merging back different variants of a program
  - Decomposition of monolithic programs into coherent functionalities (e.g., sum-product example)
  - Recovering independent threads from sequential program
- Compilers and verification tools
  - Improves scalability, by identifying portion of program that's relevant to a property that needs to be checked

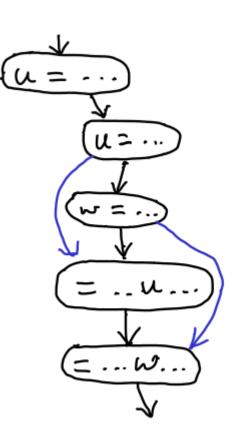
## Control flow graph



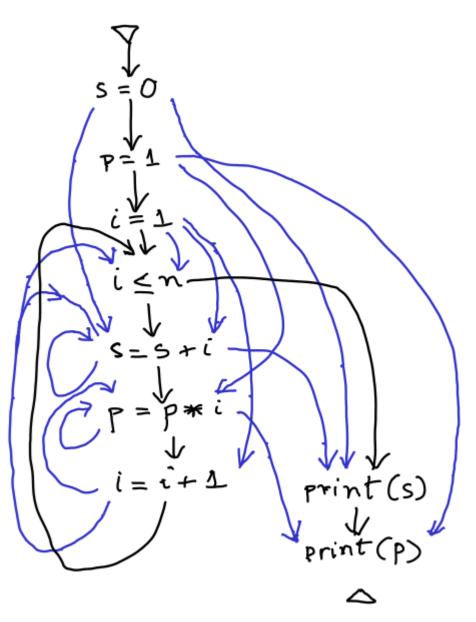
## Flow dependence relation

#### $s1 \longrightarrow s2$ if

- s1 defines a variable v
- *s2* uses *v*
- there is a control-flow path from s1 to s2 along which no other statement defines v



### Flow dependences

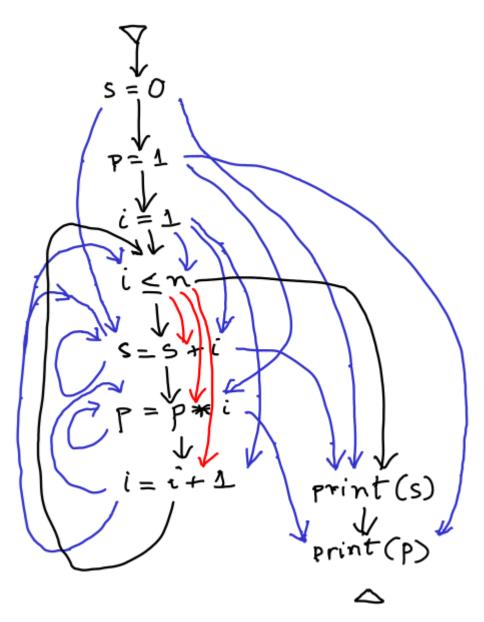


## Control dependence relation

$$s1 \longrightarrow s2$$
 if

- s1 is a conditional
- s2 is definitely reachable along one branch out of s1
- there is a path along the other branch along which s2 is not reached

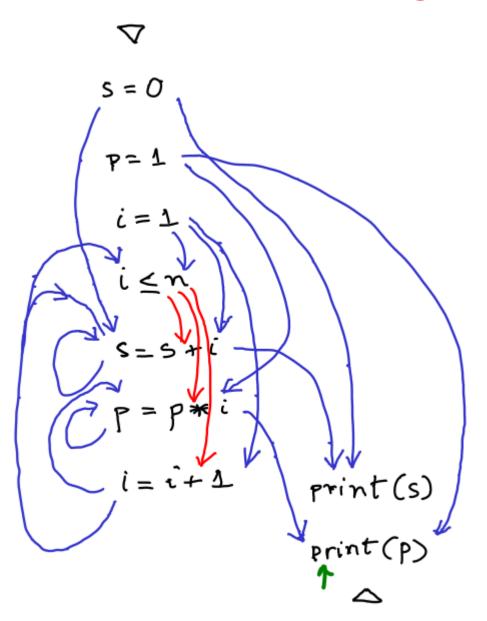
### Flow + control dependences



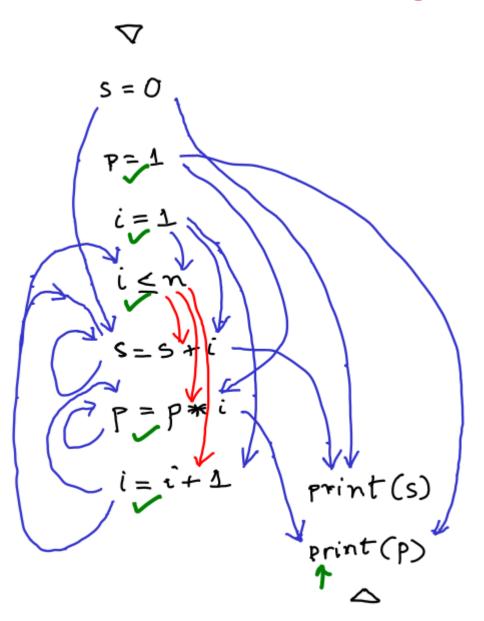
## Basic slicing technique

- 1. From *P*, construct flow dependence relation *F* and control dependence relation *C*
- 2. Obtain reflexive-transitive closure R of  $(F \cup C)$
- 3. Slice =  $\{s \mid \langle s, c \rangle \text{ in } R\}$ , where c is given criterion

### Illustration of slicing



### Illustration of slicing

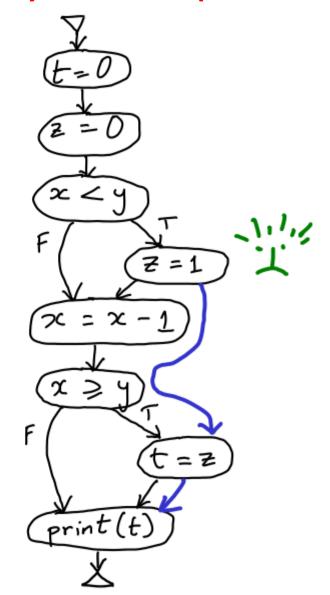


### A more complex example

$$t = 0;$$
 $y = 0;$ 
 $y$ 

### Basic technique yields imprecise slice

$$t = 0;$$
  
 $2 = 0;$   
 $4(x = 1);$   
 $x = x - 1;$   
 $x = 2;$   
 $x = 2;$   
 $x = 2;$   
 $x = 2;$   
 $x = 2;$ 

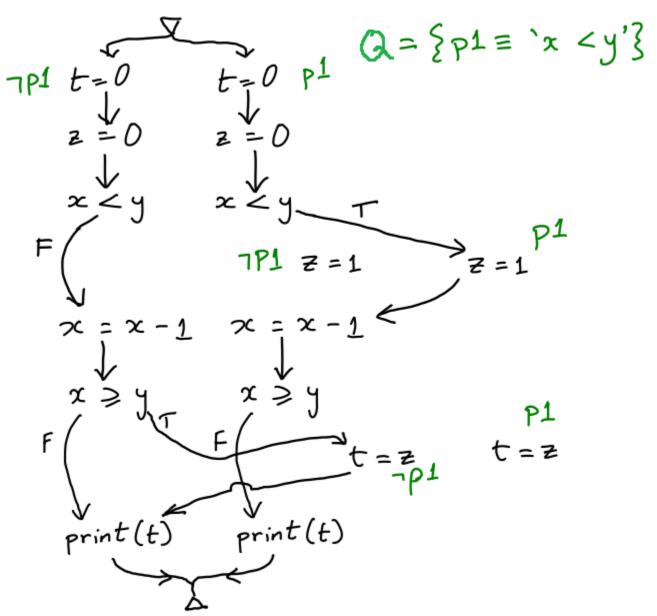


## Need to rule out infeasible paths

[Hong et al., '95] achieve this by code duplication

- Take a set of predicates Q (on program variables) as input
- Make up to  $2^{|Q|}$  copies of each statement, one for each combination of predicate evaluations
- Identify feasible paths in this "exploded" flow graph
- Then, apply usual slicing technique on this exploded graph

### Exploded flow graph



### Adding edges in exploded flow graph

- Edge (1) not present because in state ¬p1
   x < y cannot True</li>
- Edge (2) not present for similar reason
- Edge (3) not present because:

Program in state p1 remains in same state after executing

$$x = x - 1$$

$$Q = \{p1 = x < y'\}$$

$$P^{1}$$

$$x < y$$

$$F = \{p1 = x < y'\}$$

$$Z = 17P1$$

$$Z = x - 1$$

## Loops

```
t = 0;
2 = 0;
while (x < m)
  y (x ∠y)
     2 = 1;
  x = x - 1
if(x \ge y)
  t=2;
print (t);
```

## Loops

$$t = 0;$$

$$z = 0;$$

$$while (x < n)$$

$$z = 1;$$

$$x = x - 1;$$

$$t = 2;$$

$$print (t);$$

$$t = 0$$

$$z = 0$$

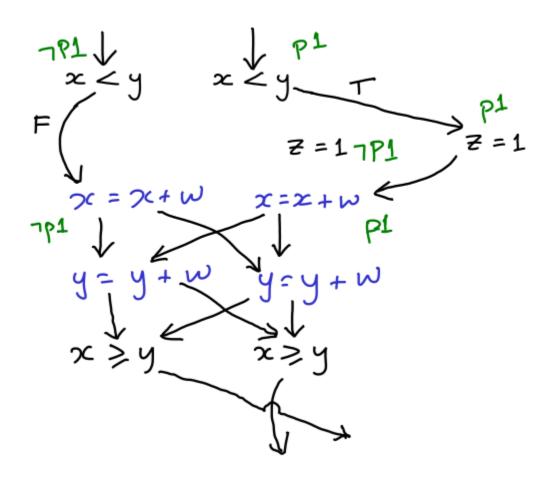
$$x < n$$

# Precision is closely linked to given partitioning

$$t = 0;$$
  
 $z = 0;$   
 $z = 1;$   
 $z = x + w;$   
 $z = y + w;$   
 $z = z + w;$   
 $z = z + w;$   
 $z = z + w;$ 

# Precision is closely linked to given partitioning (3)

$$t = 0;$$
  
 $z = 0;$   
 $y = 1;$   
 $y = 0;$   
 $y = 1;$   
 $y = 0;$   
 $y =$ 



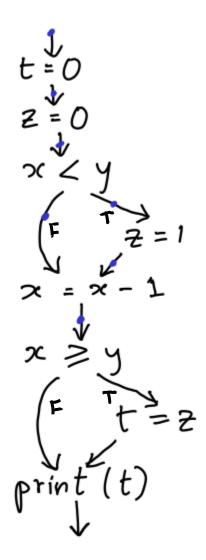
## Summary of Hong et al.

- Obtains more precise slices than standard slicing, by excluding certain infeasible paths
- Handles loops cleanly
- Precision is linked to given partitioning Q
  - Partitioning needs to be selected carefully, based on statements in program
  - In general, a bigger Q gives better precision (at the expense of slicing time)
  - Other work exists to infer suitable Q automatically from program by iterative refinement
    - However, in the context of verification, not slicing

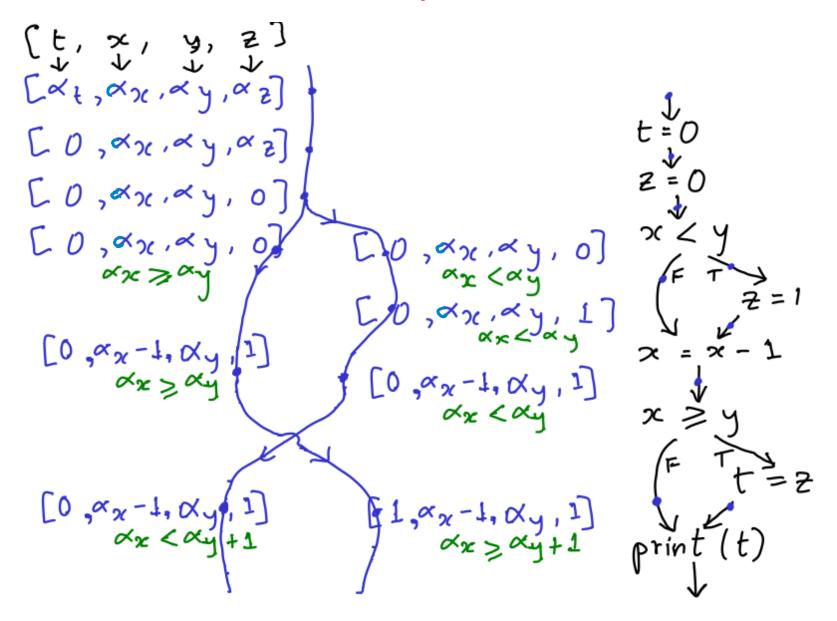
## An approach based on symbolic execution [Jaffar et al., '12]

- Explodes control-flow graph by symbolically executing all possible paths in the program
- Does not require Q as input
- Basic idea
  - During execution, at each point
    - Have a symbolic store, which tracks current values of variables as expressions on program's initial parameters
    - Have path constraint, which is a predicate on the initial parameters that needs to hold for path p to be feasible
  - If p is  $s1 \rightsquigarrow sn$ , and  $sn \rightarrow sp$  and  $sn \rightarrow sq$ , split execution into two paths  $s1 \rightsquigarrow sp$  and  $s1 \rightsquigarrow sq$ .

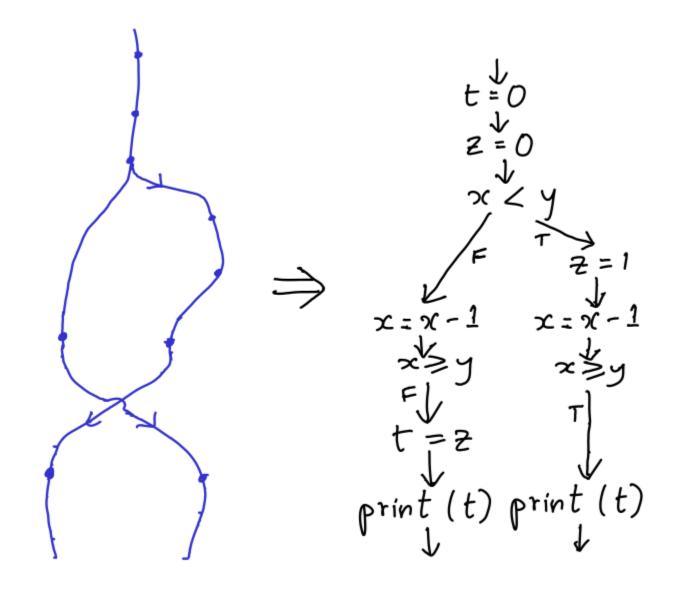
### Illustration of symbolic execution



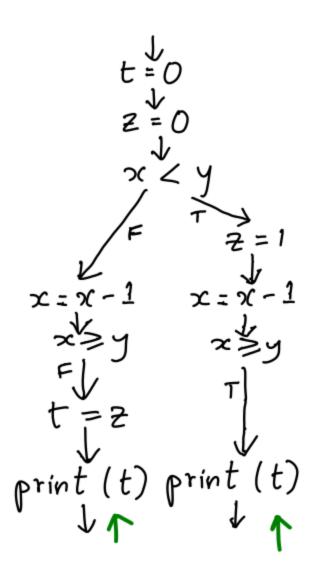
### Illustration of symbolic execution



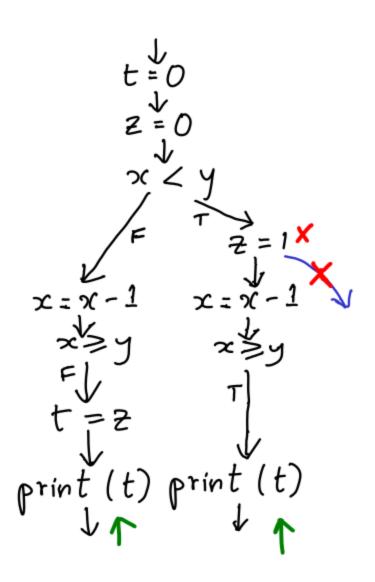
### Symbolic paths → exploded flow graph



### Now, perform standard slicing



### Now, perform standard slicing



### So what do we have ...

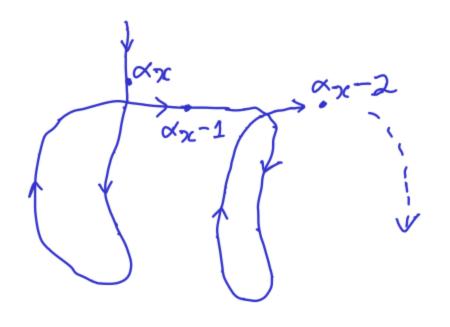
- Fully automated. Does not need partitioning Q.
- Precise even on examples like the complex one seen earlier (involving x = x + w; y = y + w;)
- However, problem with loops

### The problem with loops

```
t = 0;
2 = 0;
while (x < m) {
  y (x < y)
      2 = 1;
  x = x - 1;
if(x \ge y)
   t=2;
print (t);
```

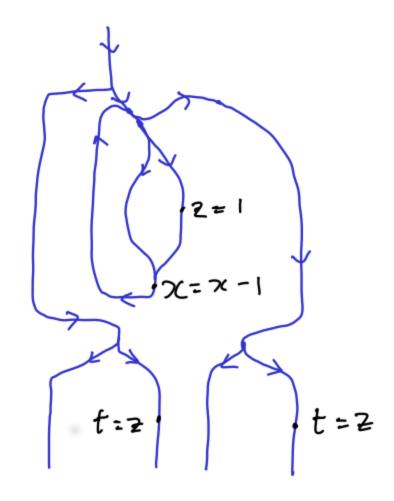
### The problem with loops

$$t=0;$$
  
 $z=0;$   
while  $(x < y)$   
 $z=1;$   
 $z=1;$ 



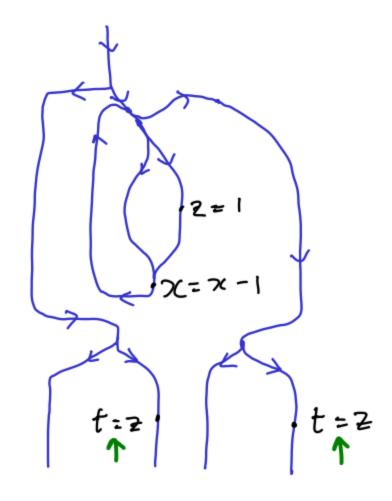
### The exploded flow graph

$$t=0;$$
  
 $z=0;$   
while  $(x < x)$   
 $z=1;$   
 $z=1;$ 



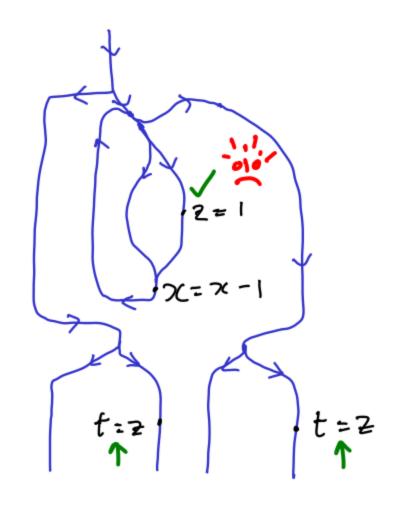
### Slicing

$$t=0;$$
  
 $z=0;$   
while  $(x < x)$   
 $z=1;$   
 $z=1;$ 



### Imprecise slicing (3)

$$t=0;$$
  
 $z=0;$   
while  $(x < x)$   
 $z=1;$   
 $z=1;$ 



## Our approach [Komondoor '13]

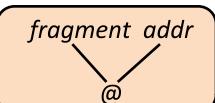
#### Objectives

- Fully precise in loop-free fragments, without relying on user-provided partitioning
- Use user-provided partitioning only when "crossing" loop iterations
- Handle programs that access and manipulate linked data structures

### We use PIM

- What is PIM?
  - A graph/term representation for C programs
  - An equational logic and rewrite system on terms
    - Embodies the full concrete operational semantics of C
- Applications
  - Precise constrained slicing
  - Partial evaluation

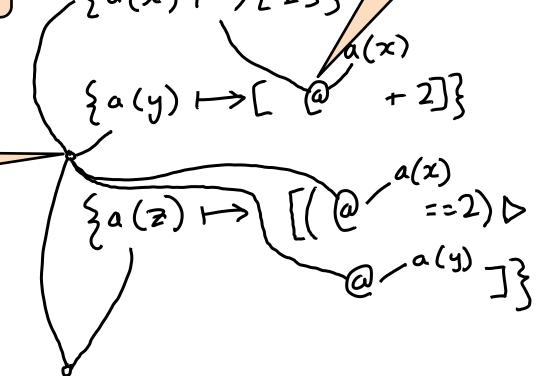
Example PIM term



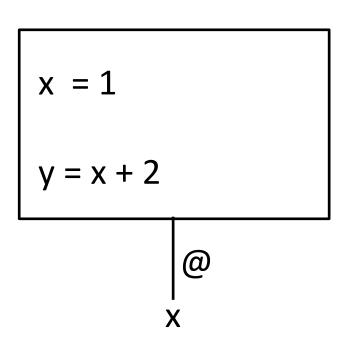
$$x = 1;$$
 Store cell

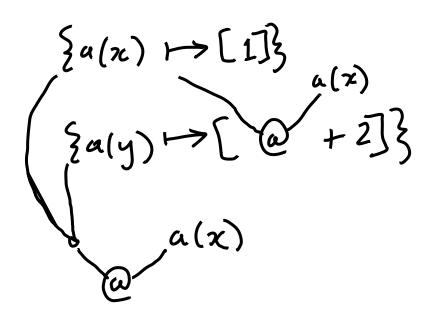
 $y = x + 2;$  sequential composition

if  $(x == 2)$ 
 $z = y;$ 

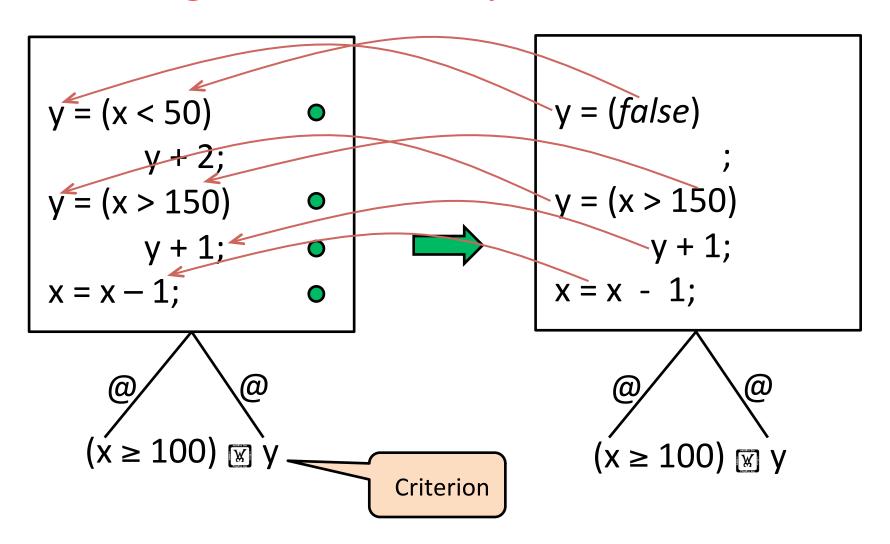


#### Our notation





### Slicing via term simplification in PIM



## Summary of PIM's approach

- Convert the (program + criterion) into a store lookup
- 2. Rewrite/simplify the store lookup term
- Identify subterms in the program on which simplified term is dependent
- 4. These terms constitute the slice

Fully precise in loop-free fragments. No partitioning required as input.

### Slicing a loop

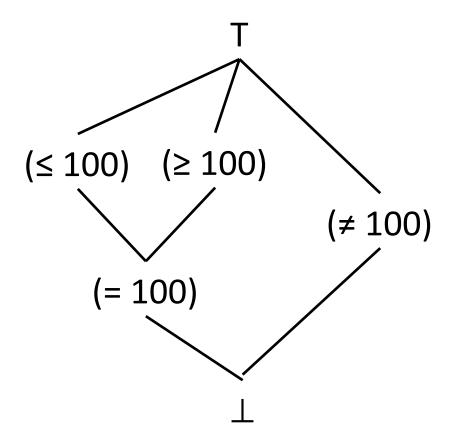
```
while (x > n) {
  y = (x < 50)
    y + 2;
  y = (x > 150)
    y + 1;
  x = x - 1;
}
```

PIM does not terminate while computing precise slice

$$(x = 100) \times y$$

Criterion

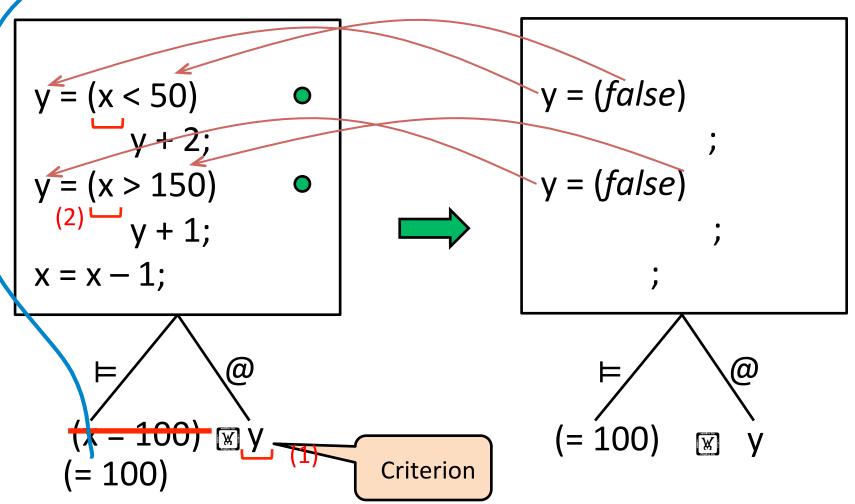
# Abstract lattice for given example



(Tracks only value of x)

### Iteration 1

(≥ 100) w x



abstract weakest pre-

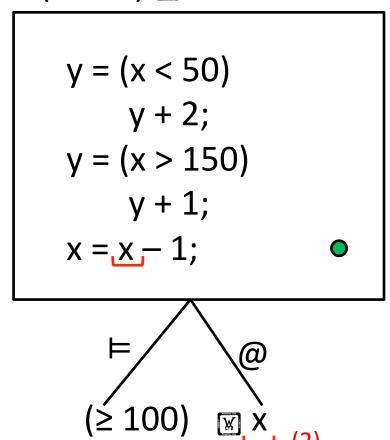
#### Iteration 2

- (1) (≥ 100) ⋈ y
- (2)  $(\geq 100) \times x$

$$y = (x < 50)$$
 $y + 2;$ 
 $y = (x > 150)$ 
 $y + 1;$ 
 $x = x - 1;$ 

#### Iteration 3

(2) 
$$(\ge 100) \times x$$



#### Final slice

```
while (x > n) {
  y = (x < 50)
    y + 2;
  y = (x > 150)
    y + 1;
  x = x - 1;
}
```

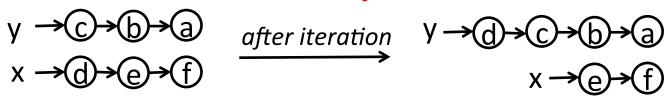
### Our approach, at each iteration

- Use abstract predicates, of the form `s ⊨ I', where s
  is a fragment and I is an element of a user-provided
  abstract lattice L
- Convert concrete guards in criteria to abstract guards at the beginning of each iteration
- Rewrite term using extended PIM rewrite rules
- Then, use dependences to obtain the slice

### **Ensuring termination**

- If given lattice is finite
  - Assuming no heap, finite number of addresses.
  - Therefore, there is a bound on total number of possible abstract-guarded criteria.
- If lattice is finite-height
  - Whenever we generate a new criterion  $c \equiv I \boxtimes v$ , If we had previously generated a criterion  $I' \boxtimes v$  then modify c to  $(I \sqcup I') \boxtimes v$ .
  - This also bounds the total number of possible criteria.

### Example



```
// x points to a singly-linked
while (x.d != k
  x = x.next;
  y.next = t;
           @
```

# Another example

## Summary of our approach

- Fully precise slicing in loop-free fragments
- Slicing of loops: Precision linked to user-provided lattice
- We address loops that traverse heap structures
- Support partial evaluation also
- Technical contribution
  - Integrate abstract interpretation with term rewriting
  - May be useful in other applications where term rewriting is used