A survey of techniques for
precise program slicing

Komondoor V. Raghavan
Indian Institute of Science, Bangalore



The problem of program slicing

e Given a program P, and a statement ¢ (the criterion),
identify statements and conditionals in the program that
are relevant to the variables that occurinc

— A conditional is relevant if modifying the conditional could
disturb the values of the variables in ¢ from what’s expected
(on any input)

— A statement is relevant if modifying its rhs could disturb the
values of the variables at ¢

* Intuitively, a slice is a projection of P that’s behaviorally
equivalent to P wrt what’s observable at ¢

Raghavan Komondoor, Precise slicing



An example

sum = O,
@rao( = 1,
L= L

whi e (t'é‘ﬂf
Sum = Sum + 17

q)(c)A - G)VOJ * [;

[ = i+l)

ér;n"' (s wv\B/'

vint (prod);
grt P "

Raghavan Komondoor, Precise slicing

NSNS

NN



Applications of slicing

e Software understanding tools

 Software maintenance tools
— Clone detection
— Merging back different variants of a program

— Decomposition of monolithic programs into coherent
functionalities (e.g., sum-product example)

— Recovering independent threads from sequential program
 Compilers and verification tools

— Improves scalability, by identifying portion of program
that’s relevant to a property that needs to be checked

Raghavan Komondoor, Precise slicing



Control flow graph

sum = O;
?rooqz 1;
L= L

whil (¢<m) 3

Sum = Sum + 1/

Q)(dJ = PTOJ * l..;

[ = i-’-l)

3

fr;n‘l— (S UMB/'
(?rfwt' Cibrod)/

Raghavan Komondoor, Precise slicing



Flow dependence relation

sl—>s2 if

e s1defines a variable v

e sZ2usesv

* there is a control-flow path
from s1 to s2 along which
no other statement defines v




Flow dependences




Control dependence relation

sl —>s2 if
e s1isa conditional
* s2is definitely reachable along one branch out of s1

* there is a path along the other branch along which s2
is not reached



Flow + control dependences




Basic slicing technique

From P, construct flow dependence relation F and
control dependence relation C

Obtain reflexive-transitive closure R of (F U C)

3. Slice={s| <s, c>in R}, where cis given criterion

Raghavan Komondoor, Precise slicing 10



lllustration of slicing

print (P
U 2

Raghavan Komondoor, Precise slicing

11



lllustration of slicing

Raghavan Komondoor, Precise slicing

12



A more complex example

t=0;, v
z2:=0,
lJ(?ccj) v/

2=1;
x =1,

A{(Dc >4)
t=2;,
wint (£);

f 0

Raghavan Komondoor, Precise slicing

13



Basic technique yields imprecise slice

Raghavan omondaoor, Frecise slicin

14



Need to rule out infeasible paths

[Hong et al., “95] achieve this by code duplication

* Take a set of predicates Q (on program variables) as
input

* Make up to 212l copies of each statement, one for
each combination of predicate evaluations

* |dentify feasible paths in this “exploded” flow graph

* Then, apply usual slicing technique on this exploded
graph

Raghavan Komondoor, Precise slicing 15



Exploded flow graph
= O=3pt= "x <y’

~pl =0 -0 pl
I \
z =0 2z =0
L J
x < xéj

Raghavan Komondoor, Precise slicing



Adding edges in exploded flow graph

Edge (1) not present
because in state —pl
X <y cannot True

Edge (2) not present
for similar reason

Edge (3) not present
because:

Program in state p1l
remains in same state
after executing
“x=x-1"



Raghavan omondaoor, Frecise slicin

Loops

18



19



Precision is closely linked to given
partitioning

Raghavan Komondoor, Precise slicing



Precision is closely linked to given
partitioning ®

2_..0- x £ xéj T .
4 (7 < 4) FC h;ﬂ
~x %)(i.lw > =xN+W x= Z+W<L/
/ 10l
(j': Ljd-v\-)/' v ‘J/ >< ¢
Joy+w
(== ﬂ) )g

Raghavan Komondoor, Precise slicing 21



Summary of Hong et al.

* Obtains more precise slices than standard slicing, by
excluding certain infeasible paths

* Handles loops cleanly

* Precision is linked to given partitioning Q

— Partitioning needs to be selected carefully, based on
statements in program

— In general, a bigger Q gives better precision (at the
expense of slicing time)

— Other work exists to infer suitable Q automatically from
program by iterative refinement

* However, in the context of verification, not slicing



An approach based on symbolic

execution [Jaffar et al., ‘12]

e Explodes control-flow graph by symbolically
executing all possible paths in the program

* Does not require Q as input

* Basic idea
— During execution, at each point

* Have a symbolic store, which tracks current values of variables as
expressions on program’s initial parameters

* Have path constraint, which is a predicate on the initial
parameters that needs to hold for path p to be feasible

— If pis s1~vsn, and sn — sp and sn—> sq, split execution
into two paths s1~»sp and s1~» sq.

Raghavan Komondoor, Precise slicing 23



lllustration of symbolic execution

(:t ')C, Y,

D“k 9‘9( 49
L0, < Y
L0 ,%x . Yy, 0]

Raghavan Komondoor, Precise slicing

24



lllustration of symbolic execution

Raghavan Komondoor, Precise slicing

25



Raghavan Komondoor, Precise slic

Symbolic paths — exploded flow graph

ing 26



Now, perform standard slicing

J
xzo-1 xzof-1
e

\

27



Now, perform standard slicing

J

xzo-1 XA

e
\

28



So what do we have ...

* Fully automated. Does not need partitioning Q.

* Precise even on examples like the complex one seen
earlier (involving x =x +w; y =y + w;)

* However, problem with loops

Raghavan Komondoor, Precise slicing

29



The problem with loops

r =0
z =0,
hide (<) §

Raghavan Komondoor, Precise slicing

30



The problem with loops

=0
2z =0, X =2
whide (7‘ <™ 5 oo~ 1 e
I?f (7c < 9) \2
2=1; N
x=x-1

Raghavan Komondoor, Precise slicing 31



The exploded flow graph

32



Slicing

33



Imprecise slicing ®

34



Our approach [Komondoor ‘13]

* Objectives
— Fully precise in loop-free fragments, without relying on
user-provided partitioning
— Use user-provided partitioning only when “crossing” loop
iterations

— Handle programs that access and manipulate linked data
structures

Raghavan Komondoor, Precise slicing

35



We use PIM

e Whatis PIM?
— A graph/term representation for C programs

— An equational logic and rewrite system on terms
* Embodies the full concrete operational semantics of C

* Applications
— Precise constrained slicing
— Partial evaluation

Raghavan Komondoor, Precise slicing

36



fragment addr ]

Example PIM term| \¢
x=1; [ Store ceIIFEa(x) — [ j_]%

V=X+2;
[ sequential
composition

if (x ==2)
Z=Y,

Raghavan Komondoor, Precise slicing 37



Our notation

éa(x) )"7(,13%

o (%)
34l 9 "N* 21%

X
I
[E

V=X+2

/a (%)

Raghavan Komondoor, Precise slicing 38



Slicing via term simplification in PIM

T~
v = (x < 50) o) \\y}(]‘alse)
y + 1"/’—‘\ yv+1;
X=x—1; o) >=x - 1;

(x=100)my (x =100) m vy
i Criterion ]

Raghavan Komondoor, Precise slicing

39



Summary of PIM’s approach

Convert the (program + criterion) into a store
lookup

Rewrite/simplify the store lookup term

Identify subterms in the program on which
simplified term is dependent

. These terms constitute the slice

Fully precise in loop-free fragments. No partitioning
required as input.

Raghavan Komondoor, Precise slicing 40



Slicing a loop

while (x > n) { ©
y = (x < 50) o)
y+2;
y = (x > 150) o
v+1; o]
X=X-—1; O
}

(x=100) @ vy
i Criterion]

Raghavan Komondoor, Precise slicing

41



Abstract lattice for given example
T

(< 100)4(\

\/ (# 100)

(= 1{/

1

(Tracks only value of x)

Raghavan Komondoor, Precise slicing

42



Ilteration

1

(2)—

y=(i,<50) o) ?
—>

y=(x>150) e

y+1,

S

~y = (false

)

L
(D i Criterion]

abstract weakest pre-

condition

(= 100)

o\

éE

Y

43



Ilteration 2

Y

Raghavan Komondoor, Precise

slicin

g

44



Ilteration 3

y = (x < 50)
y+2;

y = (x > 150)
y+1;

Raghavan Komondoor, Precise slicing 45



Final slice

while (x > n) {

y = (x < 50)
y+2;

y = (x > 150)
y+1;
X=xXx-—1;

}

46



Our approach, at each iteration

Use abstract predicates, of the form s /', where s
is a fragment and / is an element of a user-provided

abstract lattice L

Convert concrete guards in criteria to abstract
guards at the beginning of each iteration

Rewrite term using extended PIM rewrite rules
Then, use dependences to obtain the slice

Raghavan Komondoor, Precise slicing 47



Ensuring termination

* If given lattice is finite
— Assuming no heap, finite number of addresses.

— Therefore, there is a bound on total number of possible
abstract-guarded criteria.

 If lattice is finite-height

— Whenever we generate a new criterionc = | {¥] v,

If we had previously generated a criterion /' (¥} v
then modify cto (/ U /') {¥] v.
— This also bounds the total number of possible criteria.

Raghavan Komondoor, Precise slicing 48



Example

Y afteriterat'ior; Y =)0~
x =>(@>e~>® x—>(e~>®

// x points to a singly-linked

// list

y = null;

while (x.d I=k){ @
t=y;
Yy =X,
X = X.next;
y.next =t;

@
X

Raghavan Komondoor, Precise slicing

49



Another example

if (x% 2==1) o)
z=z+1;
while (x < n)
X=X+ 2;
if (x% 2 ==0)
y=2+2;

@
y

Raghavan Komondoor, Precise slicing

50



Summary of our approach

Fully precise slicing in loop-free fragments

Slicing of loops: Precision linked to user-provided
lattice

We address loops that traverse heap structures
Support partial evaluation also

Technical contribution
— Integrate abstract interpretation with term rewriting

— May be useful in other applications where term rewriting
is used

Raghavan Komondoor, Precise slicing 51



