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The problem of program slicing

e Given a program P, and a statement ¢ (the criterion),
identify statements and conditionals in the program that
are relevant to the variables that occurinc

— A conditional is relevant if modifying the conditional could
disturb the values of the variables in ¢ from what’s expected
(on any input)

— A statement is relevant if modifying its rhs could disturb the
values of the variables at ¢

* Intuitively, a slice is a projection of P that’s behaviorally
equivalent to P wrt what’s observable at ¢
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An example
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Applications of slicing

e Software understanding tools

 Software maintenance tools
— Clone detection
— Merging back different variants of a program

— Decomposition of monolithic programs into coherent
functionalities (e.g., sum-product example)

— Recovering independent threads from sequential program
 Compilers and verification tools

— Improves scalability, by identifying portion of program
that’s relevant to a property that needs to be checked
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Control flow graph
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Flow dependence relation

sl—>s2 if

e s1defines a variable v

e sZ2usesv

* there is a control-flow path
from s1 to s2 along which
no other statement defines v




Flow dependences




Control dependence relation

sl —>s2 if
e s1isa conditional
* s2is definitely reachable along one branch out of s1

* there is a path along the other branch along which s2
is not reached



Flow + control dependences




Basic slicing technique

From P, construct flow dependence relation F and
control dependence relation C

Obtain reflexive-transitive closure R of (F U C)

3. Slice={s| <s, c>in R}, where cis given criterion
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lllustration of slicing

print (P
U 2
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lllustration of slicing

Raghavan Komondoor, Precise slicing

12



A more complex example

t=0;, v
z2:=0,
lJ(?ccj) v/

2=1;
x =1,

A{(Dc >4)
t=2;,
wint (£);

f 0
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Basic technique yields imprecise slice
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Need to rule out infeasible paths

[Hong et al., “95] achieve this by code duplication

* Take a set of predicates Q (on program variables) as
input

* Make up to 212l copies of each statement, one for
each combination of predicate evaluations

* |dentify feasible paths in this “exploded” flow graph

* Then, apply usual slicing technique on this exploded
graph
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Exploded flow graph
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Adding edges in exploded flow graph

Edge (1) not present
because in state —pl
X <y cannot True

Edge (2) not present
for similar reason

Edge (3) not present
because:

Program in state p1l
remains in same state
after executing
“x=x-1"
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Precision is closely linked to given
partitioning
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Precision is closely linked to given
partitioning ®
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Summary of Hong et al.

* Obtains more precise slices than standard slicing, by
excluding certain infeasible paths

* Handles loops cleanly

* Precision is linked to given partitioning Q

— Partitioning needs to be selected carefully, based on
statements in program

— In general, a bigger Q gives better precision (at the
expense of slicing time)

— Other work exists to infer suitable Q automatically from
program by iterative refinement

* However, in the context of verification, not slicing



An approach based on symbolic

execution [Jaffar et al., ‘12]

e Explodes control-flow graph by symbolically
executing all possible paths in the program

* Does not require Q as input

* Basic idea
— During execution, at each point

* Have a symbolic store, which tracks current values of variables as
expressions on program’s initial parameters

* Have path constraint, which is a predicate on the initial
parameters that needs to hold for path p to be feasible

— If pis s1~vsn, and sn — sp and sn—> sq, split execution
into two paths s1~»sp and s1~» sq.
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lllustration of symbolic execution
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lllustration of symbolic execution
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Now, perform standard slicing
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Now, perform standard slicing

J

xzo-1 XA

e
\

28



So what do we have ...

* Fully automated. Does not need partitioning Q.

* Precise even on examples like the complex one seen
earlier (involving x =x +w; y =y + w;)

* However, problem with loops
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The problem with loops

r =0
z =0,
hide (<) §
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The problem with loops

=0
2z =0, X =2
whide (7‘ <™ 5 oo~ 1 e
I?f (7c < 9) \2
2=1; N
x=x-1
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The exploded flow graph
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Slicing
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Imprecise slicing ®
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Our approach [Komondoor ‘13]

* Objectives
— Fully precise in loop-free fragments, without relying on
user-provided partitioning
— Use user-provided partitioning only when “crossing” loop
iterations

— Handle programs that access and manipulate linked data
structures
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We use PIM

e Whatis PIM?
— A graph/term representation for C programs

— An equational logic and rewrite system on terms
* Embodies the full concrete operational semantics of C

* Applications
— Precise constrained slicing
— Partial evaluation
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fragment addr ]

Example PIM term| \¢
x=1; [ Store ceIIFEa(x) — [ j_]%

V=X+2;
[ sequential
composition

if (x ==2)
Z=Y,
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Our notation

éa(x) )"7(,13%

o (%)
34l 9 "N* 21%

X
I
[E

V=X+2

/a (%)
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Slicing via term simplification in PIM

T~
v = (x < 50) o) \\y}(]‘alse)
y + 1"/’—‘\ yv+1;
X=x—1; o) >=x - 1;

(x=100)my (x =100) m vy
i Criterion ]
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Summary of PIM’s approach

Convert the (program + criterion) into a store
lookup

Rewrite/simplify the store lookup term

Identify subterms in the program on which
simplified term is dependent

. These terms constitute the slice

Fully precise in loop-free fragments. No partitioning
required as input.
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Slicing a loop

while (x > n) { ©
y = (x < 50) o)
y+2;
y = (x > 150) o
v+1; o]
X=X-—1; O
}

(x=100) @ vy
i Criterion]
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Abstract lattice for given example
T
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Ilteration
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Ilteration 2

Y
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Ilteration 3

y = (x < 50)
y+2;

y = (x > 150)
y+1;
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Final slice

while (x > n) {

y = (x < 50)
y+2;

y = (x > 150)
y+1;
X=xXx-—1;

}
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Our approach, at each iteration

Use abstract predicates, of the form s /', where s
is a fragment and / is an element of a user-provided

abstract lattice L

Convert concrete guards in criteria to abstract
guards at the beginning of each iteration

Rewrite term using extended PIM rewrite rules
Then, use dependences to obtain the slice
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Ensuring termination

* If given lattice is finite
— Assuming no heap, finite number of addresses.

— Therefore, there is a bound on total number of possible
abstract-guarded criteria.

 If lattice is finite-height

— Whenever we generate a new criterionc = | {¥] v,

If we had previously generated a criterion /' (¥} v
then modify cto (/ U /') {¥] v.
— This also bounds the total number of possible criteria.
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Example

Y afteriterat'ior; Y =)0~
x =>(@>e~>® x—>(e~>®

// x points to a singly-linked

// list

y = null;

while (x.d I=k){ @
t=y;
Yy =X,
X = X.next;
y.next =t;

@
X
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Another example

if (x% 2==1) o)
z=z+1;
while (x < n)
X=X+ 2;
if (x% 2 ==0)
y=2+2;

@
y
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Summary of our approach

Fully precise slicing in loop-free fragments

Slicing of loops: Precision linked to user-provided
lattice

We address loops that traverse heap structures
Support partial evaluation also

Technical contribution
— Integrate abstract interpretation with term rewriting

— May be useful in other applications where term rewriting
is used
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