
50 years of the Krohn-Rhodes theorem

Kamal Lodaya

The Institute of Mathematical Sciences, Chennai

50 years of IMSc



Awkward example (Pitts and Stark 1998)

class K1 (m1:comm → comm) =
local int x; init x := 0;
method m1(c) =
(x := 1; c; if x 6= 1 then diverge)
end K1

class K2 (m2:comm → comm) =
local int x; init x := 0;
method m2(c) = (c)
end K2

Claim. K1, K2 have the same meaning.
How do we prove this?



More awkward example (Dreyer et al 2010)

class K1 (m1:comm → comm) =
local int x; init x := 0;
method m1(c) =
(x := 0; c; x := 1; c; if x 6= 1 then diverge)
end K1

class K2 (m2:comm → comm)
local int x; init x := 0;
method m2(c) = (c;c)
end K2

Claim. K1, K2 have the same meaning.
How do we prove this?

Solved by (Dreyer, Neis and Birkedal, ICFP 2010) using
operational methods, and by (Reddy and Dunphy, Icalp 2012)
using denotational methods.



More awkward example (Dreyer et al 2010)

class K1 (m1:comm → comm) =
local int x; init x := 0;
method m1(c) =
(x := 0; c; x := 1; c; if x 6= 1 then diverge)
end K1

class K2 (m2:comm → comm)
local int x; init x := 0;
method m2(c) = (c;c)
end K2

Claim. K1, K2 have the same meaning.
How do we prove this?
Solved by (Dreyer, Neis and Birkedal, ICFP 2010) using
operational methods, and by (Reddy and Dunphy, Icalp 2012)
using denotational methods.



Some dates

I Reddy and Dunphy in 2012 extend a semantics developed
by (Reynolds, 1981) and (Oles, 1985)

I They use the idea of parametric polymorphism developed
by (Reynolds, IFIP 1983), first used in this kind of
semantics by (O’Hearn and Tennent, 1992)

I Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in (Tait, 1967)

I Bisimulation developed by Park around 1980 is a close
relative of logical relations

I An earlier idea was zigzag relations in van Benthem’s
thesis, 1974, 1983

I van Benthem’s definition is a relational generalization of
that of p-morphisms in Segerberg’s thesis, 1968, 1970

I One of the first ideas in this direction is that of weak
homomorphisms of automata (Ginzburg and Yoeli, 1965)

I The corresponding idea of division of monoids appears in
the theses of Krohn and of Rhodes, 1962



Some dates

I Reddy and Dunphy in 2012 extend a semantics developed
by (Reynolds, 1981) and (Oles, 1985)

I They use the idea of parametric polymorphism developed
by (Reynolds, IFIP 1983), first used in this kind of
semantics by (O’Hearn and Tennent, 1992)

I Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in (Tait, 1967)

I Bisimulation developed by Park around 1980 is a close
relative of logical relations

I An earlier idea was zigzag relations in van Benthem’s
thesis, 1974, 1983

I van Benthem’s definition is a relational generalization of
that of p-morphisms in Segerberg’s thesis, 1968, 1970

I One of the first ideas in this direction is that of weak
homomorphisms of automata (Ginzburg and Yoeli, 1965)

I The corresponding idea of division of monoids appears in
the theses of Krohn and of Rhodes, 1962



Some dates

I Reddy and Dunphy in 2012 extend a semantics developed
by (Reynolds, 1981) and (Oles, 1985)

I They use the idea of parametric polymorphism developed
by (Reynolds, IFIP 1983), first used in this kind of
semantics by (O’Hearn and Tennent, 1992)

I Parametricity uses logical relations developed in Plotkin’s
notes, 1973, based on ideas in (Tait, 1967)

I Bisimulation developed by Park around 1980 is a close
relative of logical relations

I An earlier idea was zigzag relations in van Benthem’s
thesis, 1974, 1983

I van Benthem’s definition is a relational generalization of
that of p-morphisms in Segerberg’s thesis, 1968, 1970

I One of the first ideas in this direction is that of weak
homomorphisms of automata (Ginzburg and Yoeli, 1965)

I The corresponding idea of division of monoids appears in
the theses of Krohn and of Rhodes, 1962



Some dates

I 1954-55 Edwin Moore and George Mealy (automata)
I 1956 Stephen Kleene (expressions)
I 1957-58 John Myhill and Anil Nerode (monoids)
I 1958 Michael Rabin and Dana Scott (automata)
I 1960-62 Richard Büchi (logic)
I 1962-65 Kenneth Krohn and John Rhodes (monoids)
I 1965 Marcel-Paul Schützenberger (monoids)
I 1966 Robert McNaughton (logic)
I 1965-66 Stål Aanderaa and Arto Salomaa (expressions)
I 1966 Corrado Böhm and Giuseppe Jacopini (expressions)
I 1970 Charles Wells (categories)



Transition systems and monoids

I (Q, δ : Q × A→ Q)

I Alternately δ : A→ QQ

I Morphism δ∗ : (A∗, ., ε)→ (QQ, ◦, Id)
δ∗(ε) = Id , δ∗(wx) = δ∗(w)δ∗(x)

I Subset construction: (Q, δ ⊆ Q × A×Q), morphism
δ∗ : (A∗, ., ε)→ (℘(Q ×Q), ◦, Id)

I Right action (Q, .) of monoid A∗ acting on Q
q.1 = q,q.(wx) = (q.w).x

I Product construction: Given (P, .) and (Q, .), right action
on P ×Q given by (p,q).a = (p.a,q.a)

I L ⊆ A∗ is recognized by L = (δ∗)−1({q0} ×Qf )

I Generalizing, L recognized by morphism h from a finitely
generated monoid into monoid S if for some Sf ⊆ S,
L = h−1(Sf )



Transition systems and monoids

I (Q, δ : Q × A→ Q)

I Alternately δ : A→ QQ

I Morphism δ∗ : (A∗, ., ε)→ (QQ, ◦, Id)
δ∗(ε) = Id , δ∗(wx) = δ∗(w)δ∗(x)

I Subset construction: (Q, δ ⊆ Q × A×Q), morphism
δ∗ : (A∗, ., ε)→ (℘(Q ×Q), ◦, Id)

I Right action (Q, .) of monoid A∗ acting on Q
q.1 = q,q.(wx) = (q.w).x

I Product construction: Given (P, .) and (Q, .), right action
on P ×Q given by (p,q).a = (p.a,q.a)

I L ⊆ A∗ is recognized by L = (δ∗)−1({q0} ×Qf )

I Generalizing, L recognized by morphism h from a finitely
generated monoid into monoid S if for some Sf ⊆ S,
L = h−1(Sf )



Transition systems and monoids

I (Q, δ : Q × A→ Q)

I Alternately δ : A→ QQ

I Morphism δ∗ : (A∗, ., ε)→ (QQ, ◦, Id)
δ∗(ε) = Id , δ∗(wx) = δ∗(w)δ∗(x)

I Subset construction: (Q, δ ⊆ Q × A×Q), morphism
δ∗ : (A∗, ., ε)→ (℘(Q ×Q), ◦, Id)

I Right action (Q, .) of monoid A∗ acting on Q
q.1 = q,q.(wx) = (q.w).x

I Product construction: Given (P, .) and (Q, .), right action
on P ×Q given by (p,q).a = (p.a,q.a)

I L ⊆ A∗ is recognized by L = (δ∗)−1({q0} ×Qf )

I Generalizing, L recognized by morphism h from a finitely
generated monoid into monoid S if for some Sf ⊆ S,
L = h−1(Sf )



Mealy machines and transducers

I (Q, δ, β : Q × A→ B∗)
I Alternately β : A→ (B∗)Q

I Morphism β∗ : (A∗, ., ε)→ ((B∗)Q, ◦, ε),
β∗(ε)(q) = ε, β∗(wx)(q) = β∗(w)(q)β∗(x)(δ∗(w)(q))

I Right actions (Q, ., ∗), monoid A∗ acting on (B∗)Q

q ∗ 1 = 1,q ∗ (wx) = (q ∗ w)((q.w) ∗ x), realizing a
sequential function from A∗ to B∗

I Alternately right action of monoid A∗ acting on (B∗)Q ×Q
(f ,q).1 = (f ,q), (f ,q).(wx) = (f (q)(w)f (q.w)(x), (q.w).x)



Composition of Mealy machines

I Let MBC = (P, ., ∗) realize a sequential function from B∗ to
C∗ and MAB = (Q, ., ∗) realize a sequential function from
A∗ to B∗

I Their composition from A∗ to C∗ is realized by (P ×Q, ., ∗)
(p,q).a = (p.(q ∗ a),q.a), (p,q) ∗ a = p ∗ (q ∗ a)

I Internalizing the intermediate alphabet we get a right
action (B∗)Q × A∗ acting on the product P ×Q using
(p,q).(f ,a) = (p.f (q),q.a)

I If MBC ,MAB are minimal automata, we can think of their
state sets P,Q as being equivalence classes labelled by
(B∗)Q and A∗ respectively, hence (B∗)A∗

and A∗

I More generally, given monoids S and T , we have to
consider for the composition ST × T



Wreath product of monoids

I Let (P,S) and (Q,T ) be transformation monoids, more
generally S a monoid and T a right action on a set Q

I Define F = SQ and let (tf )(q) = f (qt) for t ∈ T be the right
action T on Q seen as a left action by T on F

I Now we get a monoid F × T with a right action F × T (so
just a monoid, not necessarily a transformation monoid)
(f , t).(g,u) = (f .(tg), t .u)

I Associative, so F × T is a monoid under this operation

I More generally such a submonoid of ST × T is called the
wreath product monoid S o T

I (Straubing 1979) If S recognizes L and T recognizes K ,
there is a sequential function (realized by a transducer) τ
such that S o T recognizes τ−1(L) ∩ K

I Example: Sequential composition K ;L



Wreath product of monoids

I Let (P,S) and (Q,T ) be transformation monoids, more
generally S a monoid and T a right action on a set Q

I Define F = SQ and let (tf )(q) = f (qt) for t ∈ T be the right
action T on Q seen as a left action by T on F

I Now we get a monoid F × T with a right action F × T (so
just a monoid, not necessarily a transformation monoid)
(f , t).(g,u) = (f .(tg), t .u)

I Associative, so F × T is a monoid under this operation
I More generally such a submonoid of ST × T is called the

wreath product monoid S o T
I (Straubing 1979) If S recognizes L and T recognizes K ,

there is a sequential function (realized by a transducer) τ
such that S o T recognizes τ−1(L) ∩ K

I Example: Sequential composition K ;L



Covering of automata and division of monoids

I M = (Q, .) is covered by M ′ = (Q′, .), written M ≤ M ′, if
there is a partial onto function f : Q′ → Q such that when
f (q′).a is defined, it is equal to f (q′.a)

I M = (Q, .) is covered by M ′ = (Q′, .), written M ≤ M ′, if
there is an onto relation r ⊆ Q′ ×Q such that
r(q′).a ⊆ r(q′.a)

I Generalizing, monoid S divides monoid T , written S ≤ T , if
S is the morphic image of a submonoid of T

Theorem (Jordan 1870, Hölder 1890, Krohn-Rhodes)

1. Every finite group can be written as a composition series of
simple groups which are its factors.

2. This is unique upto permutation and isomorphism.
3. Every finite group divides a series of wreath products of

simple groups which divide it; that is, G ≤ G1 oG2 o · · · oGn,
where each Gi is a simple group dividing G.



Covering of automata and division of monoids

I M = (Q, .) is covered by M ′ = (Q′, .), written M ≤ M ′, if
there is a partial onto function f : Q′ → Q such that when
f (q′).a is defined, it is equal to f (q′.a)

I M = (Q, .) is covered by M ′ = (Q′, .), written M ≤ M ′, if
there is an onto relation r ⊆ Q′ ×Q such that
r(q′).a ⊆ r(q′.a)

I Generalizing, monoid S divides monoid T , written S ≤ T , if
S is the morphic image of a submonoid of T

Theorem (Jordan 1870, Hölder 1890, Krohn-Rhodes)

1. Every finite group can be written as a composition series of
simple groups which are its factors.

2. This is unique upto permutation and isomorphism.
3. Every finite group divides a series of wreath products of

simple groups which divide it; that is, G ≤ G1 oG2 o · · · oGn,
where each Gi is a simple group dividing G.



Decomposition

Theorem (Kleene 1956)
The language of any finite automaton can be described by a
regular expression using letters, sequencing, choice and
iteration operations.

Theorem (Krohn and Rhodes 1962, 1963, 1965)
Every finite monoid divides a series of wreath products of
simple groups and the groupfree monoid U2; that is,
S ≤ G11 o · · · oG1j1 o U11 o · · · o U1k1 o · · · oGn1 o · · · oGnjn o Un1 o · · · o Unkn ,
where each Gij is a simple group dividing S and each Uij is a
copy of U2.

Theorem (Böhm and Jacopini 1966)
Every flowchart program can be converted into an equivalent
program using only assignments, sequencing, choice
(if-then-else) and iteration (while-do) commands.


