
Ashutosh Trivedi – 1 of 39

CSE, IIT BOMBAY

Streaming String Transducers
Towards a Theory of Regular Transformations

Ashutosh Trivedi

Department of Computer Science and Engineering,
IIT Bombay

Formal Methods Update Meeting, IIT Delhi (July 27—28, 2013)

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 2 of 39

Theory of Regular Languages

Regular Languages of Finite Strings
ϕ : Σ∗ → {0, 1}

MSO logic Finite state automata

Logically Computational model

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 3 of 39

Finite State Automata
Automaton accepting strings of even length:

Estart O

0, 1

0, 1

Automaton accepting strings with an even number of 1’s:

Estart O

0

1

1

0

Automaton accepting even strings (multiple of 2):

Estart O

0

1

0

1

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 4 of 39

Monadic Second Order Logic (MSO) over Graphs

– The structure is
(N , E , La, Lb, . . . , Lk)

The domain (set of nodes) Edge relation E ⊆ N × N

Some unary predicates La, Lb, . . . , Lk ⊆ N partitioning N

– Strings are interpreted structures: e.g. ({1, . . . , 10},E , La, Lb, Lc)

s = a b b a b c a b c c

La = { 1, 4, 7}
Lb = { 2, 3, 5, 8}
Lc = { 6, 9, 10}

– Formulas are defined inductively:
– first-order variables: x , y , z ranging over nodes
– second-order variables: X ,Y ,Z ranging over node sets
– Atomic formulas: E(x , y), La(x), x = y and x ∈ X , ...
– Boolean connectives: ϕ1 ∧ ϕ2, ¬ϕ3, ...
– First-order quantification: ∃x .ϕ
– Second-order quantification: ∃X .ϕ

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 4 of 39

Monadic Second Order Logic (MSO) over Graphs

– The structure is
(N , E , La, Lb, . . . , Lk)

The domain (set of nodes) Edge relation E ⊆ N × N

Some unary predicates La, Lb, . . . , Lk ⊆ N partitioning N
– Strings are interpreted structures: e.g. ({1, . . . , 10},E , La, Lb, Lc)

s = a b b a b c a b c c

La = { 1, 4, 7}
Lb = { 2, 3, 5, 8}
Lc = { 6, 9, 10}

– Formulas are defined inductively:
– first-order variables: x , y , z ranging over nodes
– second-order variables: X ,Y ,Z ranging over node sets
– Atomic formulas: E(x , y), La(x), x = y and x ∈ X , ...
– Boolean connectives: ϕ1 ∧ ϕ2, ¬ϕ3, ...
– First-order quantification: ∃x .ϕ
– Second-order quantification: ∃X .ϕ

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 4 of 39

Monadic Second Order Logic (MSO) over Graphs

– The structure is
(N , E , La, Lb, . . . , Lk)

The domain (set of nodes) Edge relation E ⊆ N × N

Some unary predicates La, Lb, . . . , Lk ⊆ N partitioning N
– Strings are interpreted structures: e.g. ({1, . . . , 10},E , La, Lb, Lc)

s = a b b a b c a b c c

La = { 1, 4, 7}
Lb = { 2, 3, 5, 8}
Lc = { 6, 9, 10}

– Formulas are defined inductively:
– first-order variables: x , y , z ranging over nodes
– second-order variables: X ,Y ,Z ranging over node sets
– Atomic formulas: E(x , y), La(x), x = y and x ∈ X , ...
– Boolean connectives: ϕ1 ∧ ϕ2, ¬ϕ3, ...
– First-order quantification: ∃x .ϕ
– Second-order quantification: ∃X .ϕ

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 5 of 39

Examples

Set of strings with an even number of letters:

Estart O

0, 1

0, 1

– Consider two sets of positions Even and Odd.

– Both sets are disjoint.

– First position is in Odd and the last position is in Even.

– For each position in Even the next position (if exists) is in Odd and
vice-versa.

∃Odd .∃Even.

(∀x .((x ∈ Odd)→ ¬(x ∈ Even) ∧ ((x ∈ Even)→ ¬(x ∈ Odd)))

∧First(x)→ (x ∈ Odd)

∧Last(x)→ (x ∈ Even)

∀x∀y((x ∈ Odd) ∧ E (x , y))→ y ∈ Even

∀x∀y((x ∈ Even) ∧ E (x , y))→ y ∈ Odd).

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 5 of 39

Examples

Set of strings with an even number of letters:

Estart O

0, 1

0, 1

– Consider two sets of positions Even and Odd.

– Both sets are disjoint.

– First position is in Odd and the last position is in Even.

– For each position in Even the next position (if exists) is in Odd and
vice-versa.

∃Odd .∃Even.

(∀x .((x ∈ Odd)→ ¬(x ∈ Even) ∧ ((x ∈ Even)→ ¬(x ∈ Odd)))

∧First(x)→ (x ∈ Odd)

∧Last(x)→ (x ∈ Even)

∀x∀y((x ∈ Odd) ∧ E (x , y))→ y ∈ Even

∀x∀y((x ∈ Even) ∧ E (x , y))→ y ∈ Odd).

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 6 of 39

Theory of Regular Languages

Regular Languages of Finite Strings
ϕ : Σ∗ → {0, 1}

MSO logic Finite state automata

Logically Computational model

Equi-expressiveness [Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962]

Theorem ([Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962])

A language of finite strings is accepted by a finite state automaton iff it is
MSO-definable.

Why bother?

– new tools to solve problems in logic

– revolutionized the field of automata theory as Büchi initiated the study of
equivalent finite state models for MSO over infinite strings.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 6 of 39

Theory of Regular Languages

Regular Languages of Finite Strings
ϕ : Σ∗ → {0, 1}

MSO logic Finite state automata

Logically Computational model

Equi-expressiveness [Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962]

Theorem ([Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962])

A language of finite strings is accepted by a finite state automaton iff it is
MSO-definable.

Why bother?

– new tools to solve problems in logic

– revolutionized the field of automata theory as Büchi initiated the study of
equivalent finite state models for MSO over infinite strings.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 7 of 39

Theory of Regular Languages

Regular Languages of ω-Strings
ϕ : Σ∞ → {0, 1}

MSO logic Büchi, Muller automata

Logically Computational model

Equi-expressiveness [Büchi, 1962, McNaughton, 1966]

Theorem ([Büchi, 1962, McNaughton, 1966])

An language of infinite strings is accepted by a Muller automaton iff it is
MSO-definable.

Since then the theory of regular languages has been lifted to languages of
Trees [Rabin, 1969], partial-orders [Thomas, 1995], and more.

Can we go beyond Languages!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 7 of 39

Theory of Regular Languages

Regular Languages of ω-Strings
ϕ : Σ∞ → {0, 1}

MSO logic Büchi, Muller automata

Logically Computational model

Equi-expressiveness [Büchi, 1962, McNaughton, 1966]

Theorem ([Büchi, 1962, McNaughton, 1966])

An language of infinite strings is accepted by a Muller automaton iff it is
MSO-definable.

Since then the theory of regular languages has been lifted to languages of
Trees [Rabin, 1969], partial-orders [Thomas, 1995], and more.

Can we go beyond Languages!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 7 of 39

Theory of Regular Languages

Regular Languages of ω-Strings
ϕ : Σ∞ → {0, 1}

MSO logic Büchi, Muller automata

Logically Computational model

Equi-expressiveness [Büchi, 1962, McNaughton, 1966]

Theorem ([Büchi, 1962, McNaughton, 1966])

An language of infinite strings is accepted by a Muller automaton iff it is
MSO-definable.

Since then the theory of regular languages has been lifted to languages of
Trees [Rabin, 1969], partial-orders [Thomas, 1995], and more.

Can we go beyond Languages!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 8 of 39

Theory of Regular Transformations

Regular Transformations of Finite Strings
ϕ : Σ∗ → Γ∗

MSO logic [Courcelle, 1994] Finite state transducers

Logically Computational model

– MSO-definable transformations can be naturally extended to define
transformations for more general structures

– Unfortunately, two-way finite state transducers can not naturally be
generalized with such ease

– Also, it would be nice to have a one-way (streaming) transducer precisely
capturing the class of MSO-definable transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 8 of 39

Theory of Regular Transformations

Regular Transformations of Finite Strings
ϕ : Σ∗ → Γ∗

MSO logic [Courcelle, 1994] (two-way) Finite state transducers

Logically Computational model

Equi-expressiveness [Engelfriet and Hoogeboom, 2001]

– MSO-definable transformations can be naturally extended to define
transformations for more general structures

– Unfortunately, two-way finite state transducers can not naturally be
generalized with such ease

– Also, it would be nice to have a one-way (streaming) transducer precisely
capturing the class of MSO-definable transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 8 of 39

Theory of Regular Transformations

Regular Transformations of Finite Strings
ϕ : Σ∗ → Γ∗

MSO logic [Courcelle, 1994] (two-way) Finite state transducers

Logically Computational model

Equi-expressiveness [Engelfriet and Hoogeboom, 2001]

– MSO-definable transformations can be naturally extended to define
transformations for more general structures

– Unfortunately, two-way finite state transducers can not naturally be
generalized with such ease

– Also, it would be nice to have a one-way (streaming) transducer precisely
capturing the class of MSO-definable transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 8 of 39

Theory of Regular Transformations

Regular Transformations of Finite Strings
ϕ : Σ∗ → Γ∗

MSO logic [Courcelle, 1994] (two-way) Finite state transducers

Logically Computational model

Equi-expressiveness [Engelfriet and Hoogeboom, 2001]

– MSO-definable transformations can be naturally extended to define
transformations for more general structures

– Unfortunately, two-way finite state transducers can not naturally be
generalized with such ease

– Also, it would be nice to have a one-way (streaming) transducer precisely
capturing the class of MSO-definable transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 9 of 39

Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 9 of 39

Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 9 of 39

Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 9 of 39

Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 9 of 39

Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations
Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 10 of 39

Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 11 of 39

Transformations of Finite Strings

– A transformation from Σ to Γ is a (partial) function f : Σ∗ → Γ∗.

– Generalizes the concept of a language f : Σ∗ → {0, 1}.
– Example:

– an 7→ anbn

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1,
– swapping transformation, e.g. α#β 7→ β#α,
– look-ahead based transformations, e.g.

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– A transducer is an abstract machine defining a transformation.

– Transducers generalize the concept of automata

– Similar to languages, a transformation can also be defined using logic,
most notably Monadic second-order logic (MSO) over finite strings.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 11 of 39

Transformations of Finite Strings

– A transformation from Σ to Γ is a (partial) function f : Σ∗ → Γ∗.

– Generalizes the concept of a language f : Σ∗ → {0, 1}.
– Example:

– an 7→ anbn

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1,
– swapping transformation, e.g. α#β 7→ β#α,
– look-ahead based transformations, e.g.

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– A transducer is an abstract machine defining a transformation.

– Transducers generalize the concept of automata

– Similar to languages, a transformation can also be defined using logic,
most notably Monadic second-order logic (MSO) over finite strings.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 11 of 39

Transformations of Finite Strings

– A transformation from Σ to Γ is a (partial) function f : Σ∗ → Γ∗.

– Generalizes the concept of a language f : Σ∗ → {0, 1}.
– Example:

– an 7→ anbn

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1,
– swapping transformation, e.g. α#β 7→ β#α,
– look-ahead based transformations, e.g.

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– A transducer is an abstract machine defining a transformation.

– Transducers generalize the concept of automata

– Similar to languages, a transformation can also be defined using logic,
most notably Monadic second-order logic (MSO) over finite strings.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 12 of 39

MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f1 : Σ∗ → Σ∗

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 12 of 39

MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f1 : Σ∗ → Σ∗

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 13 of 39

MSO-definable Transformations

input:

copy 1:

copy 2:

a a a b # b a # a

a a a b b a

a a a b # b a # a

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 13 of 39

MSO-definable Transformations

input:

copy 1:

copy 2:

a a a b # b a # a

a a a b b a

a a a b # b a # a

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 14 of 39

MSO-definable Transformations

– an 7→ anbn X

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1, X

– swapping transformation, e.g. α#β 7→ β#α, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations

Which transducers accept same class of transformations?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 14 of 39

MSO-definable Transformations

– an 7→ anbn X

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1, X

– swapping transformation, e.g. α#β 7→ β#α, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations

Which transducers accept same class of transformations?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 15 of 39

Deterministic Generalized Sequential Machines

Example: For all strings containing a #, replace all a with b.

1start 2

a |b

α |α

#|#

a |b

α |α
†Here α stands for any symbol other than a.

– Extend finite automata with output

– Can express local transformations

– Can not express reverse, swap, or regular look-ahead

– Non-deterministic variants can express regular look-ahead

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 16 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains a # then u else u

1start
2 3

6

a or b |ε,R

#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

†Here α stands for any symbol except end markers.

– Extend two-way finite automata with output
– Allowing transitions based on regular look-ahead do not increase

expressiveness (Chytil and Jakl [1977])
– Two-way finite-state transducers capture the same class of

MSO-definable transformations (Engelfriet and Hoogeboom [2001])

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b b

head

b #

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b #

head

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

b

head

b a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b a

head

a a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b a

head

a a

head

a

a

head

a

head

a

head

a a

head

a

b

head

b #

head

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

b

head

b a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a b

head

b #

head

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b #

head

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b #

head

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b b

head

b #

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b

b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b

b

head

b a

head

1start

1start

2

2

3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 18 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains a # then u else u

1start
2 3

6

a or b |ε,R

#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

†Here α stands for any symbol except end markers.

– Extend two-way finite automata with output
– Allowing transitions based on regular look-ahead do not increase

expressiveness (Chytil and Jakl [1977])
– Two-way finite-state transducers capture the same class of

MSO-definable transformations (Engelfriet and Hoogeboom [2001])

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 19 of 39

Transducers: Streaming String Transducers

Example: u 7→ if u contains a # then u else u

1/ystart 2/x

α
∣∣ (x , y) := (αx , yα)

#|(x , y) := (#x , ε)

α
∣∣ (x , y) := (αx , ε)

†Here α stands for any symbol except end markers.

– Extend deterministic finite-state automata with string variables

– String variables are updated in a copyless fashion

– Output is given as a function of states to copyless concatenation of string
variables

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 20 of 39

Expressiveness of Streaming String Transducers

Theorem ([Alur and Černý, 2011])

A transformation of finite strings is accepted by a streaming string transducer
iff it is MSO-definable.

MSOT
Two-Way Transducers

with Regular Look-ahead

Two-Way TransducersSST

Engelfriet and Hoogeboom[2001]

Engelfriet and Hoogeboom[2001]

Chytil and Jakl[1977]

(Shepherdson), Alur and Černý[2011]

Alur and Černý[2011]

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 21 of 39

Properties of Regular Transformations

– Characterized by

– MSO,
– (deterministic) two-way finite-state transducers, and
– (deterministic) streaming string transducers.

– They are closed under sequential composition

– Equivalence problem, deciding the equivalence of two regular
transformations, is decidable.

– Type checking problem, deciding whether image of a given regular set I
under a regular transformation T is contained in another given regular set
O i.e. T (I) ⊆ O, is decidable.

– Both problems are in PSPACE for streaming-string
transducers [Alur and Černý, 2011]

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 22 of 39

Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 23 of 39

Transformations of Infinite Strings

– A transformation from Σ to Γ is a (partial) function f : Σω → Γω.

– Generalizes the concept of an ω-language f : Σω → {0, 1}.
– Example:

– an#ω 7→ anbn#ω

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u,
– swapping transformation, e.g. α#β#u 7→ β#α#u,
– look-ahead based transformations,

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– MSO on infinite strings can be used to define transformations on infinite
strings [Courcelle, 1994]

– What classes of finite-state transducers have equal expressive power?

– What decision problems about MSO-definable transformations of
infinite strings can be solved?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 23 of 39

Transformations of Infinite Strings

– A transformation from Σ to Γ is a (partial) function f : Σω → Γω.

– Generalizes the concept of an ω-language f : Σω → {0, 1}.
– Example:

– an#ω 7→ anbn#ω

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u,
– swapping transformation, e.g. α#β#u 7→ β#α#u,
– look-ahead based transformations,

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– MSO on infinite strings can be used to define transformations on infinite
strings [Courcelle, 1994]

– What classes of finite-state transducers have equal expressive power?

– What decision problems about MSO-definable transformations of
infinite strings can be solved?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 23 of 39

Transformations of Infinite Strings

– A transformation from Σ to Γ is a (partial) function f : Σω → Γω.

– Generalizes the concept of an ω-language f : Σω → {0, 1}.
– Example:

– an#ω 7→ anbn#ω

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u,
– swapping transformation, e.g. α#β#u 7→ β#α#u,
– look-ahead based transformations,

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– MSO on infinite strings can be used to define transformations on infinite
strings [Courcelle, 1994]

– What classes of finite-state transducers have equal expressive power?

– What decision problems about MSO-definable transformations of
infinite strings can be solved?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 24 of 39

MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f2 : Σω → Σω

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u and v ∈ {a, b}ω.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 24 of 39

MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f2 : Σω → Σω

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u and v ∈ {a, b}ω.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 25 of 39

MSO-definable Transformations

input:

copy 1:

copy 2:

a b b b # b a # aω

a b b b b a

a b b b # b a # aω

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 25 of 39

MSO-definable Transformations

input:

copy 1:

copy 2:

a b b b # b a # aω

a b b b b a

a b b b # b a # aω

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 26 of 39

MSO-definable Transformations

– an#ω 7→ anbn#ω X

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u, X

– swapping transformation, e.g. α#β#u 7→ β#α#u, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations on Infinite Strings

Which transducers accept the same class of transformations?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 26 of 39

MSO-definable Transformations

– an#ω 7→ anbn#ω X

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u, X

– swapping transformation, e.g. α#β#u 7→ β#α#u, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations on Infinite Strings

Which transducers accept the same class of transformations?

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 27 of 39

Deterministic Generalized Sequential Machines

Example: For all strings containing a #, replace all a with b.

1start 2

a |b

α |α

#|#

a |b

α |α
†Here α stands for any symbol other than a.

– Extend Muller automata with output

– Can express local transformations

– Can not express transformations such as reverse or swap

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 28 of 39

2-Way Transducers with Look-Ahead

Example: Reverse the sub-string before the first #

1start
2 3

6

is hash() |ε #|ε, L

α |ε,R α |α, L

` |ε,R

α |ε,R

4¬ is hash() |ε #|#,R

α |α,R

– Extend two-way Muller automata with output

– Allowing ω-regular look-ahead increases expressiveness

– Two-way finite-state transducers with ω-regular look-ahead capture the
same class of transformations as MSO.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 29 of 39

SSTs with Muller Acceptance Condition

Example: Reverse the sub-string before the first #

1/ystart 2/x

α
∣∣ (x , y) := (αx , yα)

#|(x , y) := (#x , ε)

β
∣∣ (x , y) := (xβ, ε)

†Here α is any symbol except #, while β is any symbol.

– Extend Muller automata with string variables

– String variables are updated in a copyless fashion

– Output is given as a function of set of states to copyless concatenation of
string variables

– We enforce syntactic restrictions that ascertain that output string is
always an infinite string

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 30 of 39

Expressiveness of Streaming String Transducers

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 31 of 39

Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simulate all look-aheads in parallel

– look-ahead ∼ universal transitions in an alternating Muller automaton

– use Miyano-Hayashi like construction to remove universality

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 32 of 39

Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simulate all runs in parallel

– functionality ⇒ at most |Q| runs have to be simulated in parallel

– use |Q| copies of each variable x ∈ X

– may introduce variable copy

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 33 of 39

Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– most technical result

– based on the notion of dependency graphs

– states are sufficient abstractions of dependency graphs

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 34 of 39

Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simple extension of the finite string case

– uses two domain copies for each variable

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 35 of 39

Equivalence Problem

Theorem
Equivalence problem is decidable in PSPACE for streaming-string transducers
on infinite strings.

T1 and T2 are inequivalent iff dom(T1) 6= dom(T2) or

dom(T1) = dom(T2) and ∃u ∈ dom(T1), ∃i ≥ 0 such that T1(u)[i] 6= T2(u)[i]

1. domain equivalence can be checked in PSPACE.

2. if domains are equivalent, then check existence of u

– reduction to emptiness of reversal-bounded counter machines (NLogSpace,
Ibarra)

– product construction to simulate runs of T1 and T2 on the same inputs
– guess a position i and check that there is a mismatch
– as outputs are not produced synchronously, counters are used to retrieve

the letters at position i in both outputs
– construction ensures that finite runs can be extended to infinite accepting

runs that do not modify the letters at position i

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 35 of 39

Equivalence Problem

Theorem
Equivalence problem is decidable in PSPACE for streaming-string transducers
on infinite strings.

T1 and T2 are inequivalent iff dom(T1) 6= dom(T2) or

dom(T1) = dom(T2) and ∃u ∈ dom(T1), ∃i ≥ 0 such that T1(u)[i] 6= T2(u)[i]

1. domain equivalence can be checked in PSPACE.

2. if domains are equivalent, then check existence of u

– reduction to emptiness of reversal-bounded counter machines (NLogSpace,
Ibarra)

– product construction to simulate runs of T1 and T2 on the same inputs
– guess a position i and check that there is a mismatch
– as outputs are not produced synchronously, counters are used to retrieve

the letters at position i in both outputs
– construction ensures that finite runs can be extended to infinite accepting

runs that do not modify the letters at position i

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 36 of 39

Type-Checking Problem

Theorem
Type-checking, deciding whether image of a given regular set I under a regular
transformation T is contained in another given regular set O i.e. T (I) ⊆ O, is
decidable in PSPACE for streaming-string transducers on infinite strings.

– Check whether T is defined for all strings of u, i.e. dom(T) ⊆ I .

– A Muller automaton recognizing the domain of T can be constructed in
linear time, and therefore I ⊆ dom(T) can be checked in PSPACE.

– Next we check the language L = {u ∈ Σω | u ∈ I ,T (u) 6∈ O} for
emptiness.

– The language L can be defined by a Muller automaton AL that simulates
automaton AI and T on the input string, and AO on the output of T .

– This can be done by computing functions τ such that for all states q of
AO and all variables x ∈ X , τ(q, x) is the state of AO after evaluating the
current value of x , starting from state q.

– The size of AL is exponential in AI , AO and T , and its emptiness can be
decided in PSPACE.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 36 of 39

Type-Checking Problem

Theorem
Type-checking, deciding whether image of a given regular set I under a regular
transformation T is contained in another given regular set O i.e. T (I) ⊆ O, is
decidable in PSPACE for streaming-string transducers on infinite strings.

– Check whether T is defined for all strings of u, i.e. dom(T) ⊆ I .

– A Muller automaton recognizing the domain of T can be constructed in
linear time, and therefore I ⊆ dom(T) can be checked in PSPACE.

– Next we check the language L = {u ∈ Σω | u ∈ I ,T (u) 6∈ O} for
emptiness.

– The language L can be defined by a Muller automaton AL that simulates
automaton AI and T on the input string, and AO on the output of T .

– This can be done by computing functions τ such that for all states q of
AO and all variables x ∈ X , τ(q, x) is the state of AO after evaluating the
current value of x , starting from state q.

– The size of AL is exponential in AI , AO and T , and its emptiness can be
decided in PSPACE.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 36 of 39

Type-Checking Problem

Theorem
Type-checking, deciding whether image of a given regular set I under a regular
transformation T is contained in another given regular set O i.e. T (I) ⊆ O, is
decidable in PSPACE for streaming-string transducers on infinite strings.

– Check whether T is defined for all strings of u, i.e. dom(T) ⊆ I .

– A Muller automaton recognizing the domain of T can be constructed in
linear time, and therefore I ⊆ dom(T) can be checked in PSPACE.

– Next we check the language L = {u ∈ Σω | u ∈ I ,T (u) 6∈ O} for
emptiness.

– The language L can be defined by a Muller automaton AL that simulates
automaton AI and T on the input string, and AO on the output of T .

– This can be done by computing functions τ such that for all states q of
AO and all variables x ∈ X , τ(q, x) is the state of AO after evaluating the
current value of x , starting from state q.

– The size of AL is exponential in AI , AO and T , and its emptiness can be
decided in PSPACE.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 37 of 39

Properties of Regular Transformations

– Characterized by

– MSO,
– two-way finite-state transducers with ω-regular look-ahead, and
– streaming string transducers

– They are closed under sequential composition

Theorem
Equivalence and type-checking problems are decidable in PSPACE for
streaming-string transducers on infinite strings.

Corollary

Equivalence of MSO-transducers on infinite strings is decidable.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 37 of 39

Properties of Regular Transformations

– Characterized by

– MSO,
– two-way finite-state transducers with ω-regular look-ahead, and
– streaming string transducers

– They are closed under sequential composition

Theorem
Equivalence and type-checking problems are decidable in PSPACE for
streaming-string transducers on infinite strings.

Corollary

Equivalence of MSO-transducers on infinite strings is decidable.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 37 of 39

Properties of Regular Transformations

– Characterized by

– MSO,
– two-way finite-state transducers with ω-regular look-ahead, and
– streaming string transducers

– They are closed under sequential composition

Theorem
Equivalence and type-checking problems are decidable in PSPACE for
streaming-string transducers on infinite strings.

Corollary

Equivalence of MSO-transducers on infinite strings is decidable.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 38 of 39

Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

Summary

– Introduction of streaming string transducers renewed the interest in the
study of regular transformations

– Streaming string transducers naturally extend from strings to more
general structures, while conserving MSO equivalence.

– Streaming-string transducer models are robust: closed under bounded
copy, functional nondeterminism, and regular look-ahead.

– Important verification problems like functional equivalence and pre/post
condition type-checking are decidable for streaming string transducers.

– A number of open problems!

Thank You!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

Summary

– Introduction of streaming string transducers renewed the interest in the
study of regular transformations

– Streaming string transducers naturally extend from strings to more
general structures, while conserving MSO equivalence.

– Streaming-string transducer models are robust: closed under bounded
copy, functional nondeterminism, and regular look-ahead.

– Important verification problems like functional equivalence and pre/post
condition type-checking are decidable for streaming string transducers.

– A number of open problems!

Thank You!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

Summary

– Introduction of streaming string transducers renewed the interest in the
study of regular transformations

– Streaming string transducers naturally extend from strings to more
general structures, while conserving MSO equivalence.

– Streaming-string transducer models are robust: closed under bounded
copy, functional nondeterminism, and regular look-ahead.

– Important verification problems like functional equivalence and pre/post
condition type-checking are decidable for streaming string transducers.

– A number of open problems!

Thank You!

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

Alur, A. and Černý, P. (2011).
Streaming transducers for algorithmic verification of single-pass
list-processing programs.
In POPL, pages 599–610.

Alur, R. and Černý, P. (2010).
Expressiveness of streaming string transducers.
In FSTTCS, volume 8, pages 1–12.

Alur, R. and D’Antoni, L. (2012).
Streaming tree transducers.
In ICALP (2), pages 42–53.

Alur, R., D’Antoni, L., Deshmukh, J. V., Raghothaman, M., and Yuan, Y.
(2013a).
Regular functions and cost register automata.
In LICS.

Alur, R., Durand-Gasselin, A., and Trivedi, A. (2013b).
From monadic second-order definable string transformations to
transducers.
In LICS.

Alur, R., Filiot, E., and Trivedi, A. (2012).

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

Regular transformations of infinite strings.
In LICS, pages 65–74.

Büchi, J. R. (1960).
Weak second-order arithmetic and finite automata.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
6(1–6):66–92.

Büchi, J. R. (1962).
On a decision method in restricted second-order arithmetic.
In Int. Congr. for Logic Methodology and Philosophy of Science, pages
1–11. Standford University Press, Stanford.

Courcelle, B. (1994).
Monadic second-order definable graph transductions: a survey.
Theoretical Computer Science, 126(1):53–75.

Elgot, C. C. (1961).
Decision problems of finite automata design and related arithmetics.
In Transactions of the American Mathematical Society, 98(1):21–51.

Engelfriet, J. and Hoogeboom, H. J. (2001).
MSO definable string transductions and two-way finite-state transducers.
ACM Trans. Comput. Logic, 2:216–254.

Ashutosh Trivedi Streaming String Transducers

Ashutosh Trivedi – 39 of 39

McNaughton, R. (1966).
Testing and generating infinite sequences by a finite automaton.
Inform. Contr., 9:521–530.

Rabin, M. O. (1969).
Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 1(35).

Thomas, W. (1995).
On the synthesis of strategies in infinite games.
In STACS, volume 900 of LNCS, pages 1–13. Springer.

Trakhtenbrot, B. A. (1962).
Finite automata and monadic second order logic.
Siberian Mathematical Journal, 3:101–131.

Ashutosh Trivedi Streaming String Transducers

	Regular Transformations of Finite Strings
	Regular Transformations of Infinite Strings
	Conclusion

