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Theory of Regular Languages

Regular Languages of Finite Strings
ϕ : Σ∗ → {0, 1}

MSO logic Finite state automata

Logically Computational model

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 3 of 39

Finite State Automata
Automaton accepting strings of even length:

Estart O

0, 1

0, 1

Automaton accepting strings with an even number of 1’s:

Estart O

0

1

1

0

Automaton accepting even strings (multiple of 2):

Estart O

0

1

0

1
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Monadic Second Order Logic (MSO) over Graphs

– The structure is
( N , E , La, Lb, . . . , Lk )

The domain (set of nodes) Edge relation E ⊆ N × N

Some unary predicates La, Lb, . . . , Lk ⊆ N partitioning N

– Strings are interpreted structures: e.g. ({1, . . . , 10},E , La, Lb, Lc)

s = a b b a b c a b c c

La = { 1, 4, 7}
Lb = { 2, 3, 5, 8}
Lc = { 6, 9, 10}

– Formulas are defined inductively:
– first-order variables: x , y , z ranging over nodes
– second-order variables: X ,Y ,Z ranging over node sets
– Atomic formulas: E(x , y), La(x), x = y and x ∈ X , ...
– Boolean connectives: ϕ1 ∧ ϕ2, ¬ϕ3, ...
– First-order quantification: ∃x .ϕ
– Second-order quantification: ∃X .ϕ
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Examples

Set of strings with an even number of letters:

Estart O

0, 1

0, 1

– Consider two sets of positions Even and Odd.

– Both sets are disjoint.

– First position is in Odd and the last position is in Even.

– For each position in Even the next position (if exists) is in Odd and
vice-versa.

∃Odd .∃Even.

(∀x .((x ∈ Odd)→ ¬(x ∈ Even) ∧ ((x ∈ Even)→ ¬(x ∈ Odd)))

∧First(x)→ (x ∈ Odd)

∧Last(x)→ (x ∈ Even)

∀x∀y((x ∈ Odd) ∧ E (x , y))→ y ∈ Even

∀x∀y((x ∈ Even) ∧ E (x , y))→ y ∈ Odd).
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Theory of Regular Languages

Regular Languages of Finite Strings
ϕ : Σ∗ → {0, 1}

MSO logic Finite state automata

Logically Computational model

Equi-expressiveness [Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962]

Theorem ([Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1962])

A language of finite strings is accepted by a finite state automaton iff it is
MSO-definable.

Why bother?

– new tools to solve problems in logic

– revolutionized the field of automata theory as Büchi initiated the study of
equivalent finite state models for MSO over infinite strings.
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Theory of Regular Languages

Regular Languages of ω-Strings
ϕ : Σ∞ → {0, 1}

MSO logic Büchi, Muller automata

Logically Computational model

Equi-expressiveness [Büchi, 1962, McNaughton, 1966]

Theorem ([Büchi, 1962, McNaughton, 1966])

An language of infinite strings is accepted by a Muller automaton iff it is
MSO-definable.

Since then the theory of regular languages has been lifted to languages of
Trees [Rabin, 1969], partial-orders [Thomas, 1995], and more.

Can we go beyond Languages!
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Theory of Regular Transformations

Regular Transformations of Finite Strings
ϕ : Σ∗ → Γ∗

MSO logic [Courcelle, 1994] Finite state transducers

Logically Computational model

– MSO-definable transformations can be naturally extended to define
transformations for more general structures

– Unfortunately, two-way finite state transducers can not naturally be
generalized with such ease

– Also, it would be nice to have a one-way (streaming) transducer precisely
capturing the class of MSO-definable transformations
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Streaming String Transducers

– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
e.g.

– imperative programs manipulating heap-allocated lists
– functional programs using tail recursion
– commonly used routines include insert, delete, and reverse.

– decidable (PSPACE) functional equivalence and verification (pre/post
condition) problem

– first one-way (streaming) transducer model that precisely captures the
MSO-definable transformations

– SSTs naturally generalize to model transformation of more general
structures

– string-to-tree [Alur and D’Antoni, 2012],
– tree-to-tree [Alur and D’Antoni, 2012],
– ω-string to ω-strings [Alur et al., 2012],
– ω-string to ω-trees [Alur et al., 2013b].
– strings to costs [Alur et al., 2013a]

Theory of regular transformations
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– Alur and Černý introduced streaming string transducers (SSTs) to model
and analyze single-pass list processing programs [Alur and Černý, 2010],
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Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion
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Transformations of Finite Strings

– A transformation from Σ to Γ is a (partial) function f : Σ∗ → Γ∗.

– Generalizes the concept of a language f : Σ∗ → {0, 1}.
– Example:

– an 7→ anbn

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1,
– swapping transformation, e.g. α#β 7→ β#α,
– look-ahead based transformations, e.g.

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– A transducer is an abstract machine defining a transformation.

– Transducers generalize the concept of automata

– Similar to languages, a transformation can also be defined using logic,
most notably Monadic second-order logic (MSO) over finite strings.
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MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f1 : Σ∗ → Σ∗

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u.
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MSO-definable Transformations

input:

copy 1:

copy 2:

a a a b # b a # a

a a a b b a

a a a b # b a # a

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))
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MSO-definable Transformations

– an 7→ anbn X

– anbm 7→ a2n−1bm

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an 7→ anan−1 . . . a1, X

– swapping transformation, e.g. α#β 7→ β#α, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations

Which transducers accept same class of transformations?
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Deterministic Generalized Sequential Machines

Example: For all strings containing a #, replace all a with b.

1start 2

a |b

α |α

#|#

a |b

α |α
†Here α stands for any symbol other than a.

– Extend finite automata with output

– Can express local transformations

– Can not express reverse, swap, or regular look-ahead

– Non-deterministic variants can express regular look-ahead
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2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains a # then u else u

1start
2 3

6

a or b |ε,R

#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

†Here α stands for any symbol except end markers.

– Extend two-way finite automata with output
– Allowing transitions based on regular look-ahead do not increase

expressiveness (Chytil and Jakl [1977])
– Two-way finite-state transducers capture the same class of

MSO-definable transformations (Engelfriet and Hoogeboom [2001])
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b

b
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b
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#
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a
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a

a
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a

a

head

a

head

a

head

a a

head

a b
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b b
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1start
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2

2

3
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6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b b

head

b #

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b #

head

# b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2

3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

# b

head

b a

head

a

a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b a

head

a a

head

a

a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start
2

2 3

3

6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a a

head

a a

head

a

head

a

head

a a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b a

head

a a

head

a

a

head

a

head

a

head

a a

head

a

b

head

b #

head

# b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

# b

head

b a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a b

head

b #

head

# b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b #

head

# b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b #

head

# b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b b

head

b #

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

# b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b

b

head

b a

head

1start

1start

2

2 3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 17 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains # then u else u

`

`

head

a

head

a

b

head

b

b

head

b

#

head

#

b

head

b

a

head

a

a

head

a

a

head

a

head

a

head

a

a

head

a

b

head

b

#

head

#

b

head

b

b

head

b a

head

1start

1start

2

2

3

3
6

6

a, b |ε,R
#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 18 of 39

2-Way Deterministic Finite State Transducers

Example: u 7→ if u contains a # then u else u

1start
2 3

6

a or b |ε,R

#|ε,R a |ε, L

α |ε,R α |α, L

`

4 5a |ε, L

α|ε, L

` |ε,R

α|α,R

a

†Here α stands for any symbol except end markers.

– Extend two-way finite automata with output
– Allowing transitions based on regular look-ahead do not increase

expressiveness (Chytil and Jakl [1977])
– Two-way finite-state transducers capture the same class of

MSO-definable transformations (Engelfriet and Hoogeboom [2001])
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Transducers: Streaming String Transducers

Example: u 7→ if u contains a # then u else u

1/ystart 2/x

α
∣∣ (x , y) := (αx , yα)

#|(x , y) := (#x , ε)

α
∣∣ (x , y) := (αx , ε)

†Here α stands for any symbol except end markers.

– Extend deterministic finite-state automata with string variables

– String variables are updated in a copyless fashion

– Output is given as a function of states to copyless concatenation of string
variables
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Expressiveness of Streaming String Transducers

Theorem ([Alur and Černý, 2011])

A transformation of finite strings is accepted by a streaming string transducer
iff it is MSO-definable.

MSOT
Two-Way Transducers

with Regular Look-ahead

Two-Way TransducersSST

Engelfriet and Hoogeboom[2001]

Engelfriet and Hoogeboom[2001]

Chytil and Jakl[1977]

(Shepherdson), Alur and Černý[2011]

Alur and Černý[2011]
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Properties of Regular Transformations

– Characterized by

– MSO,
– (deterministic) two-way finite-state transducers, and
– (deterministic) streaming string transducers.

– They are closed under sequential composition

– Equivalence problem, deciding the equivalence of two regular
transformations, is decidable.

– Type checking problem, deciding whether image of a given regular set I
under a regular transformation T is contained in another given regular set
O i.e. T (I ) ⊆ O, is decidable.

– Both problems are in PSPACE for streaming-string
transducers [Alur and Černý, 2011]
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Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion
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Transformations of Infinite Strings

– A transformation from Σ to Γ is a (partial) function f : Σω → Γω.

– Generalizes the concept of an ω-language f : Σω → {0, 1}.
– Example:

– an#ω 7→ anbn#ω

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b
– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u,
– swapping transformation, e.g. α#β#u 7→ β#α#u,
– look-ahead based transformations,

– replace each a with b if the string contains a #.
– replace each a with b if the string contains a prime number of #.

– MSO on infinite strings can be used to define transformations on infinite
strings [Courcelle, 1994]

– What classes of finite-state transducers have equal expressive power?

– What decision problems about MSO-definable transformations of
infinite strings can be solved?
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MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f2 : Σω → Σω

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u and v ∈ {a, b}ω.

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 24 of 39

MSO-definable Transformations

Definition (Defining Transformation using MSO)

A transformation using MSO is specified by:

– input and output alphabets;

– an MSO formula specifying the domain of the transformation;

– output string is specified using a finite number of copies of nodes of input
string graph;

– the node labels are specified using MSO formulas; and

– the existence of edges between nodes of various copies is specified using
MSO formulas

Example

Let Σ = {a, b,#}. Consider a transformation f2 : Σω → Σω

u1#u2# . . . un−1#un#v 7→ u1u1# . . .#unun#v .

where u is reverse of u and v ∈ {a, b}ω.

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 25 of 39

MSO-definable Transformations

input:

copy 1:

copy 2:

a b b b # b a # aω

a b b b b a

a b b b # b a # aω

– Σ = Γ = {a, b,#}, C = {1, 2}, and
– Node Label Formulas

– Labelc1α (x) = Labelinpα (x) ∧ ¬Labelinp# (x) ∧ reach#(x)

– Labelc2α (x) = Labelinpα (x)

– Edge Label Formulas
– Edgec1,c1(x , y) = Edgeinp(y , x) ∧ Labelinp? (x) ∧ Labelinp? (y).
– Edgec2,c2(x , y) =

Edgeinp(x , y) ∧ (¬Labelinp# (x)∨(Labelinp# (x)∧¬reach#(x)))

– Edge1,2(x , y)=(x=y)∧(first(x)∨∃z(Labelinp# (z)∧Edgeinp(z , x)))

– Edge2,1(x , y)=Labelinp# (x) ∧ reach#(x) ∧ (∃z(Edgeinp(y , z) ∧
Labelinp# (z))) ∧ (∀z((path(x , z) ∧ path(z , y)) → ¬Labelinp# (z)))
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MSO-definable Transformations

– an#ω 7→ anbn#ω X

– anbω 7→ a2n−1bω

– local transformations, e.g., delete each a, repeat every b X

– reverse transformation, i.e. a1a2 . . . an#u 7→ anan−1 . . . a1#u, X

– swapping transformation, e.g. α#β#u 7→ β#α#u, X

– look-ahead based transformations, e.g.

– replace each a with b if the string contains a # X
– replace each a with b if the string contains a prime number of #

Regular Transformations on Infinite Strings

Which transducers accept the same class of transformations?
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Deterministic Generalized Sequential Machines

Example: For all strings containing a #, replace all a with b.

1start 2

a |b

α |α

#|#

a |b

α |α
†Here α stands for any symbol other than a.

– Extend Muller automata with output

– Can express local transformations

– Can not express transformations such as reverse or swap
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2-Way Transducers with Look-Ahead

Example: Reverse the sub-string before the first #

1start
2 3

6

is hash() |ε #|ε, L

α |ε,R α |α, L

` |ε,R

α |ε,R

4¬ is hash() |ε #|#,R

α |α,R

– Extend two-way Muller automata with output

– Allowing ω-regular look-ahead increases expressiveness

– Two-way finite-state transducers with ω-regular look-ahead capture the
same class of transformations as MSO.
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SSTs with Muller Acceptance Condition

Example: Reverse the sub-string before the first #

1/ystart 2/x

α
∣∣ (x , y) := (αx , yα)

#|(x , y) := (#x , ε)

β
∣∣ (x , y) := (xβ, ε)

†Here α is any symbol except #, while β is any symbol.

– Extend Muller automata with string variables

– String variables are updated in a copyless fashion

– Output is given as a function of set of states to copyless concatenation of
string variables

– We enforce syntactic restrictions that ascertain that output string is
always an infinite string
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Expressiveness of Streaming String Transducers

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]
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Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simulate all look-aheads in parallel

– look-ahead ∼ universal transitions in an alternating Muller automaton

– use Miyano-Hayashi like construction to remove universality
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Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simulate all runs in parallel

– functionality ⇒ at most |Q| runs have to be simulated in parallel

– use |Q| copies of each variable x ∈ X

– may introduce variable copy
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Miyano and Hayashi’ 84[Alur and Černý, 2011]

– most technical result

– based on the notion of dependency graphs

– states are sufficient abstractions of dependency graphs
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Proof Sketch

Theorem
A transformation of infinite strings is accepted by a streaming string
transducer iff it is MSO-definable.

MSOT
Two-Way Transducers

with Look-ahead

Functional NSSTs

with Look-ahead

Functional NSSTsSSTs with Bounded CopySST

EH01
Shepherdson

Miyano and Hayashi’ 84[Alur and Černý, 2011]

– simple extension of the finite string case

– uses two domain copies for each variable
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Equivalence Problem

Theorem
Equivalence problem is decidable in PSPACE for streaming-string transducers
on infinite strings.

T1 and T2 are inequivalent iff dom(T1) 6= dom(T2) or

dom(T1) = dom(T2) and ∃u ∈ dom(T1), ∃i ≥ 0 such that T1(u)[i ] 6= T2(u)[i ]

1. domain equivalence can be checked in PSPACE.

2. if domains are equivalent, then check existence of u

– reduction to emptiness of reversal-bounded counter machines (NLogSpace,
Ibarra)

– product construction to simulate runs of T1 and T2 on the same inputs
– guess a position i and check that there is a mismatch
– as outputs are not produced synchronously, counters are used to retrieve

the letters at position i in both outputs
– construction ensures that finite runs can be extended to infinite accepting

runs that do not modify the letters at position i
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Type-Checking Problem

Theorem
Type-checking, deciding whether image of a given regular set I under a regular
transformation T is contained in another given regular set O i.e. T (I ) ⊆ O, is
decidable in PSPACE for streaming-string transducers on infinite strings.

– Check whether T is defined for all strings of u, i.e. dom(T ) ⊆ I .

– A Muller automaton recognizing the domain of T can be constructed in
linear time, and therefore I ⊆ dom(T ) can be checked in PSPACE.

– Next we check the language L = {u ∈ Σω | u ∈ I ,T (u) 6∈ O} for
emptiness.

– The language L can be defined by a Muller automaton AL that simulates
automaton AI and T on the input string, and AO on the output of T .

– This can be done by computing functions τ such that for all states q of
AO and all variables x ∈ X , τ(q, x) is the state of AO after evaluating the
current value of x , starting from state q.

– The size of AL is exponential in AI , AO and T , and its emptiness can be
decided in PSPACE.
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Properties of Regular Transformations

– Characterized by

– MSO,
– two-way finite-state transducers with ω-regular look-ahead, and
– streaming string transducers

– They are closed under sequential composition

Theorem
Equivalence and type-checking problems are decidable in PSPACE for
streaming-string transducers on infinite strings.

Corollary

Equivalence of MSO-transducers on infinite strings is decidable.
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Regular Transformations of Finite Strings

Regular Transformations of Infinite Strings

Conclusion

Ashutosh Trivedi Streaming String Transducers



Ashutosh Trivedi – 39 of 39

Summary

– Introduction of streaming string transducers renewed the interest in the
study of regular transformations

– Streaming string transducers naturally extend from strings to more
general structures, while conserving MSO equivalence.

– Streaming-string transducer models are robust: closed under bounded
copy, functional nondeterminism, and regular look-ahead.

– Important verification problems like functional equivalence and pre/post
condition type-checking are decidable for streaming string transducers.

– A number of open problems!

Thank You!
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