
A program analysis perspective

Aditya V. Nori Sriram K. Rajamani
Microsoft Research India

 Johannes Borgstorm (Uppsala University)

 Arun Chaganty (Stanford University)

 Guillaume Claret (ENS, Paris)

 Andy Gordon (MSR Cambridge)

 Akash Lal (MSR India)

 Selva Samuel (MSR India)

“Usual” programs in “usual” languages, such as C,
Java, C#, LISP or Scheme with two added
features:
1. The ability to sample from a distribution
2. The ability to condition values of variables

through observations

Goal of a probabilistic program: succinctly specify
a probability distribution

Goal of inference: infer the distribution specified
by a probabilistic program

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

0 0 1/4

0 1 1/4

1 0 1/4

1 1 1/4

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

0 0 0

0 1 1/3

1 0 1/3

1 1 1/3

 A Bayesian network is a DAG in which every

node is a conditional probability

distribution (CPD) …

Difficulty Intelligence

Grade
SAT

Letter

𝑑0 𝑑1

0.6 0.4

𝑖0 𝑖1

0.6 0.4

𝑔1 𝑔2 𝑔3

𝑖0, 𝑑0 0.3 04. 0.3

𝑖1, 𝑑1 0.05 0.25 0.7

𝑖1, 𝑑0 0.9 0.08 0.02

𝑖1, 𝑑1 0.5 0.3 0.2

𝑙0 𝑙1

𝑔1 0.1 0.9

𝑔2 0.4 0.6

𝑔3 0.99 0.01

𝑠0 𝑠1

𝑖0 0.95 0.05

𝑖1 0.2 0.8

𝑃 𝑑0, 𝑖1, 𝑔3, 𝑠1, 𝑙1 = 0.6 × 0.3 × 0.02 × 0.8 × 0.01

Difficulty Intelligence

Grade
SAT

Letter

d = Discrete({0.6, 0.4});
i = Discrete({0.7, 0.3});
//grade
if(i==0 && d==0)

g = Discrete({0.3, 0.4, 0.3});
else if(i==0 && d==1)

g = Discrete({0.05, 0.25, 0.7});
else if(i==1 && d==0)

g = Discrete({0.9, 0.08, 0.02});
else g = Discrete({0.5, 0.3, 0.2});
//SAT
if (i==0) s = Discrete({0.95, 0.05})
else s = Discrete({0.2, 0.8})
//Letter
if(g==1) l = Discrete({0.1, 0.9})
else if (g==2) l = Discrete({0.4, 0.6})
else if (g==3) l = Discrete({0.99, 0.01})

𝐷 = 𝑆, 𝑠𝑖𝑛𝑖𝑡, 𝑃, 𝐿
𝑆 = 𝑠0, 𝑠1, 𝑠2, 𝑠3
𝑠𝑖𝑛𝑖𝑡 = 𝑠0

AP= 𝑡𝑟𝑦, 𝑓𝑎𝑖𝑙, 𝑠𝑢𝑐𝑐
𝐿 𝑠0 = ∅,
𝐿 𝑠1 = {𝑡𝑟𝑦},
𝐿 𝑠2 = {𝑓𝑎𝑖𝑙},
𝐿 𝑠3 = {𝑠𝑢𝑐𝑐}

𝑃 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠0 𝑠1

𝑠2

𝑠3

1

1

1

0.01

0.98

0.01

{𝑡𝑟𝑦} {𝑓𝑎𝑖𝑙}

{𝑠𝑢𝑐𝑐}
(example: courtesy David Parker’s course)

int nextState(int curState) {
bool coin = Bernoulii(0.5);
switch (curState){

case(0):
if (coin) return 1 else return 2;

case(1):
if (coin) return 3 else return 4;

case(2):
if (coin) return 5 else return 6;

case(3):
if (coin) return 1 else return 11;

case(4):
if (coin) return 12 else return 13;

case(5):
if (coin) return 14 else return 15;

case(6):
if (coin) return 15 else return 16;

}
}
main() {

int x = 0;
while (x < 11) { x = nextState(x); }
return (x);

}

0

1 2

3 4 5 6

11 1612 13 14 15

0.5 0.5

0.50.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

1 1 1 1 1 1

Knuth−Yao’s technique to get a fair

die from fair coin tosses

 How are skills modeled?

 Player A beats Player B

 𝑠𝑘𝑖𝑙𝑙𝐴 > 𝑠𝑘𝑖𝑙𝑙𝐵?

float skillA, skillB, skillC;
float perfA1, perfB1, perfB2,

perfC2, perfA3, perfC3;
skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);

// first game: A vs B, A won
perfA1 = Gaussian(skillA, 15);
perfB1 = Gaussian(skillB, 15);
observe(perfA1 > perfB1);

// second game: B vs C, B won
perfB2 = Gaussian(skillA, 15);
perfC2 = Gaussian(skillB, 15);
observe(perfB2 > perfC2);

// third game: A vs C, A won
perfA3 = Gaussian(skillA, 15);
perfC3 = Gaussian(skillB, 15);
observe(perfA3 > perfC3);

 Sample 𝑝𝑒𝑟𝑓𝐴 from a

noisy 𝑠𝑘𝑖𝑙𝑙𝐴 distribution

 Sample 𝑝𝑒𝑟𝑓𝐵 from a

noisy 𝑠𝑘𝑖𝑙𝑙𝐵 distribution

 if 𝑝𝑒𝑟𝑓𝐴 > 𝑝𝑒𝑟𝑓𝐵 then

A wins else B wins

𝑠𝑘𝑖𝑙𝑙𝐴 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(102.1,7.8)
𝑠𝑘𝑖𝑙𝑙𝐵 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 100.0,7.6
𝑠𝑘𝑖𝑙𝑙𝐶 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(97.9, 7.8)

 Infer the distribution specified by a

probabilistic program

 What does this formally mean?

 Explore techniques to perform inference

𝑟 ∈ ℝ
𝑥 ∈ 𝑉𝑎𝑟𝑠
Τ ∷= 𝑏𝑜𝑜𝑙 types
𝑢𝑜𝑝 ∷= 𝑛𝑜𝑡 unary operators
𝑏𝑜𝑝 ∷= 𝑎𝑛𝑑 | 𝑜𝑟 binary operators
𝐷 ∷= | Τ𝑥1, x2, … , 𝑥𝑛 declaration

E ∷= expressions
| 𝑥 variable
| c constant
|E1𝑏𝑜𝑝 𝐸2 binary operation
|𝑢𝑜𝑝 E unary operation

𝑆 ∷= statements
|𝑥 ≔ 𝐸 deterministic assignment
|𝑥 ≔ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟) Bernoulli assignment
|𝑜𝑏𝑠𝑒𝑟𝑣𝑒(𝐸) observe
|𝑠𝑘𝑖𝑝 skip
|𝑆1; 𝑆2 sequential composition
|𝑖𝑓 𝐸 𝑡ℎ𝑒𝑛 𝑆1𝑒𝑙𝑠𝑒 𝑆2 conditional composition
|𝑤ℎ𝑖𝑙𝑒 𝐸 𝑑𝑜 𝑆 loop

𝑃 ∷= D S programs

 States: 𝜎, valuation to all variables

𝑥1, 𝑥2, … , 𝑥𝑛

 Set of all states: Γ

 Configuration: 〈𝜎, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡〉

𝜎, 𝑥 ≔ 𝐸 →1 〈𝜎 𝑥 ← 𝜎 𝐸 , 𝑠𝑘𝑖𝑝〉
𝜎, 𝑥 ≔ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑟 →𝑟 〈𝜎 𝑥 ← 𝑡𝑟𝑢𝑒 , 𝑠𝑘𝑖𝑝〉
𝜎, 𝑥 ≔ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑟 →1−𝑟 〈𝜎 𝑥 ← 𝑓𝑎𝑙𝑠𝑒 , 𝑠𝑘𝑖𝑝〉
𝜎, 𝑥 ≔ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝐸 →1 𝜎, 𝑠𝑘𝑖𝑝 , 𝑖𝑓 𝜎 𝐸 = 𝑡𝑟𝑢𝑒
𝜎, 𝑠𝑘𝑖𝑝; 𝑆 →1 〈𝜎, 𝑆〉
𝜎, 𝑆1; 𝑆2 →

𝑝 𝜎′, 𝑆′; 𝑆2 , 𝑖𝑓 𝜎, 𝑆1 →
𝑝 𝜎′, 𝑆′

𝜎, 𝑖𝑓 𝐸 𝑡ℎ𝑒𝑛 𝑆1𝑒𝑙𝑠𝑒 𝑆2 →
1 𝜎, 𝑆1 , 𝑖𝑓 𝜎 𝐸 = 𝑡𝑟𝑢𝑒

𝜎, 𝑖𝑓 𝐸 𝑡ℎ𝑒𝑛 𝑆1𝑒𝑙𝑠𝑒 𝑆2 →
1 𝜎, 𝑆2 , 𝑖𝑓 𝜎 𝐸 = 𝑓𝑎𝑙𝑠𝑒

𝜎, 𝑤ℎ𝑖𝑙𝑒 𝐸 𝑑𝑜 𝑆 →1 𝜎, 𝑠𝑘𝑖𝑝 , 𝑖𝑓 𝜎 𝐸 = 𝑓𝑎𝑙𝑠𝑒
𝜎,𝑤ℎ𝑖𝑙𝑒 𝐸 𝑑𝑜 𝑆 →1 𝜎, 𝑆; 𝑤ℎ𝑖𝑙𝑒 𝐸 𝑑𝑜 𝑆 , 𝑖𝑓 𝜎 𝐸 = 𝑡𝑟𝑢𝑒

Run 𝜔 = 𝜎0, S0 →
𝑝1 𝜎1, S1 →

𝑝2 ⋯ →𝑝𝑛 𝜎𝑛, 𝑠𝑘𝑖𝑝
𝑃𝑟𝑜𝑏 𝜔 = 𝑝1𝑝2⋯𝑝𝑛

𝑃𝑟𝑜𝑏 𝜎 =

{𝜔∣𝜔 𝑖𝑠 𝑎 𝑟𝑢𝑛 𝑡ℎ𝑎𝑡 𝑒𝑛𝑑𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝜎}

𝑃𝑟𝑜𝑏(𝜔)

 Easy to add more general types (int, real)

and continuous distributions

 Semantics can still be defined using

measure theory
 Johannes Borgström, Andrew D. Gordon, Michael

Greenberg, James Margetson, Jurgen Van Gael.

Measure Transformer Semantics for Bayesian Machine

Learning. ESOP 2011

 Static analysis techniques, inspired by data

flow analysis

 Dynamic analysis techniques, inspired by

symbolic execution (and weakest

preconditions)

 Iterative refinement techniques, inspired by

CEGAR verification framework

𝑐1 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)

𝑜𝑏𝑠𝑒𝑟𝑣𝑒(𝑐1 || 𝑐2)

𝑐2 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)

Normalize

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return (c1, c2);

c1

t 1/2

f 1/2

c1 c2

t t 1/4

t f 1/4

f t 1/4

f f 1/4

c1 c2

t t 1/4

t f 1/4

f t 1/4

c1 c2

t t 1/3

t f 1/3

f t 1/3

𝒄𝟏

𝒄𝟐

 𝟏 𝟑𝟎

0

𝟏

0 𝟏

 𝟏 𝟐

0

𝒄𝟏

𝒄𝟐

 𝟏 𝟒𝟎

0

𝟏

𝟏

c1 = Bernoulli(0.5)

observe(c1 || c2)

c2 = Bernoulli(0.5)

Normalize

 𝟏 𝟒

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return (c1, c2);

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑃𝑜𝑠𝑡 𝜌, 𝑆
𝐼𝑛𝑝𝑢𝑡: An input distribution ρ over the states of the program P, and a
statement S
𝑂𝑢𝑡𝑝𝑢𝑡: Output distribution over the states of the program 𝑃
1: 𝑠𝑤𝑖𝑡𝑐ℎ 𝑆
2: 𝑐𝑎𝑠𝑒 𝑥 ≔ 𝐸:

3: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜆𝜎.
{𝜎′∣𝜎′[𝑥←𝜎′ 𝐸]=𝜎}

𝜌(𝜎′)

4: 𝑐𝑎𝑠𝑒 𝑥 ≔ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑟 :

5: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜆𝜎. (𝑟 ×
𝜎′ 𝜎′ 𝑥 ← 𝑡𝑟𝑢𝑒 = 𝜎

𝜌 𝜎′ + 1 − 𝑟

×

𝜎′ 𝜎′ 𝑥 ← 𝑓𝑎𝑙𝑠𝑒 = 𝜎

𝜌(𝜎′)

6: 𝑐𝑎𝑠𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝐸 :
7: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜆𝜎. 𝑖𝑡𝑒 𝜎 𝐸 , 𝜌 𝜎 , 0
8: 𝑐𝑎𝑠𝑒 𝑠𝑘𝑖𝑝:
9: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜌
10: 𝑐𝑎𝑠𝑒 𝑆1; 𝑆2:
11: 𝜌′ = 𝑃𝑜𝑠𝑡 𝜌, 𝑆1 ;
12: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑠𝑡(𝜌, 𝑆′)
13: 𝑐𝑎𝑠𝑒 𝑖𝑓 𝐸 𝑡ℎ𝑒𝑛 𝑆1𝑒𝑙𝑠𝑒 𝑆2:
14: 𝜌𝑡 = 𝜆𝜎. 𝑖𝑡𝑒 𝜎 𝐸 , 𝜌 𝜎 , 0 ;

15: 𝜌𝑓= 𝜆𝜎. 𝑖𝑡𝑒 𝜎 𝐸 , 0, 𝜌 𝜎 ;

16: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜆𝜎. (𝑃𝑜𝑠𝑡 𝜌𝑡 , 𝑆1 𝜎 + 𝑃𝑜𝑠𝑡(𝜌𝑓 , 𝑆2)(𝜎)

17: 𝑐𝑎𝑠𝑒 𝑤ℎ𝑖𝑙𝑒 𝐸 𝑑𝑜 𝑆:
18: 𝜌𝑝=⊥; 𝜌𝑐 = 𝜌;

19: 𝑤ℎ𝑖𝑙𝑒 𝜌𝑝 ≠ 𝜌𝑐 𝑑𝑜

20: 𝜌𝑝 = 𝜌𝑐 ;

21: 𝜌𝑐 = 𝑃𝑜𝑠𝑡 𝜌, 𝑖𝑓 𝐸 𝑡ℎ𝑒𝑛 𝑆 𝑒𝑙𝑠𝑒 𝑠𝑘𝑖𝑝
22: 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
23: 𝑟𝑒𝑡𝑢𝑟𝑛 𝜌𝑐
24: 𝑒𝑛𝑑 𝑠𝑤𝑖𝑡𝑐ℎ

• Can “merge” at join points

without losing precision

• Loops can be handled using

fixpoints

• Theorem: If the 𝑃𝑜𝑠𝑡
algorithm terminates, then it

is guaranteed to compute the

exact distribution specified by

the probabilistic program

 Run the program multiple times and

compute statistics over resulting samples

(BLOG, Church)

 Efficiently run the program without

rejecting samples (based on importance

sampling)

I. Decompose program into “simple”

straight-line programs

II. Efficiently sample from these straight-line

programs by executing them

III. Combine results in order to compute

expectations

𝐸Π 𝑥 =

𝑖

𝑃 𝜋𝑖 𝐸𝜋𝑖[𝑥]

• Estimate 𝐸𝜋𝑖[𝑥] using importance sampling

and Djikstra’s weakest preconditions

• Estimate 𝑃 𝜋𝑖 using importance sampling

• Able to prove convergence (even for

programs with unbounded recursion!)

𝑄𝑖 𝜋, 𝜅1, 𝜅2
1: Π ≔ 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 𝜋, 𝜅1
2: Ω ≔ ∅
3: 𝒇𝒐𝒓 𝜋𝑖 ∈ Π 𝒅𝒐
4: 𝜃, 𝑦 ≔ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝜋𝑖 , 𝜅2
5: Ω ≔ Ω ∪ 𝜃, 𝑦
6: 𝒆𝒏𝒅 𝒇𝒐𝒓
7: 𝒓𝒆𝒕𝒖𝒓𝒏 Ω

𝐸𝑥𝑝𝑙𝑜𝑟𝑒 𝜋𝑖 , 𝜅

1: 𝜋𝑖
∗ ≔ 𝑝𝑝_𝑡𝑜_𝑛𝑝(𝜋𝑖)

2: Π ≔ {}

3: 𝐹 ≔ 𝜎0

4: 𝑑 ≔ 𝑑0

5: 𝒍𝒐𝒐𝒑

6: 𝐶, 𝐹 ≔ 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝜋𝑖
∗, 𝐹, 𝑑

7: Π ≔ Π ∪ 𝐶

8: 𝒊𝒇 Π ≥ 𝜅 𝒕𝒉𝒆𝒏

9: 𝒃𝒓𝒆𝒂𝒌

10: 𝒆𝒍𝒔𝒆

11: 𝑑 ≔ 𝑑 + δ

12: 𝒆𝒏𝒅𝒊𝒇

13: 𝒆𝒏𝒅 𝒍𝒐𝒐𝒑

14: 𝒓𝒆𝒕𝒖𝒓𝒏 Π

int alarm() {
char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
char phoneWorking =
(earthquake)? Bernoulli(0.6) : Bernoulli(0.99);

char maryWakes;
if (alarm && earthquake)
maryWakes = Bernoulli(0.8);

else if (alarm)
maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

}

int alarm() {
char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
char phoneWorking =
(earthquake)? Bernoulli(0.6) : Bernoulli(0.99);

char maryWakes;
if (alarm && earthquake)
maryWakes = Bernoulli(0.8);

else if (alarm)
maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

int alarm() {
char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
observe(earthquake);
char phoneWorking = Bernoulli(0.6);
observe(alarm && earthquake);
char maryWakes = Bernoulli(0.8);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

}

 Need to ensure that samples drawn from

primitive distributions satisfy observations

 “Hoist” conditions to the primitive

distributions and sample from resulting

conditional distributions

Statement WP

earthquake = Bernoulli(0.001) 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

burglary = Bernoulli(0.001) 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

alarm = earthquake || burglary 𝑎𝑙𝑎𝑟𝑚 ∧ 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

observe(earthquake) 𝑎𝑙𝑎𝑟𝑚 ∧ 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒

phoneWorking = Bernoulli(0.6); 𝑎𝑙𝑎𝑟𝑚 ∧ 𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 ∧ 𝑝ℎ𝑜𝑛𝑒𝑊𝑜𝑟𝑘𝑖𝑛𝑔

observe(alarm && earthquake); 𝑝ℎ𝑜𝑛𝑒𝑊𝑜𝑟𝑘𝑖𝑛𝑔

maryWakes = Bernoulli(0.8); 𝑚𝑎𝑟𝑦𝑊𝑎𝑘𝑒𝑠 ∧ 𝑝ℎ𝑜𝑛𝑒𝑊𝑜𝑟𝑘𝑖𝑛𝑔

called = maryWakes && phoneWorking 𝑐𝑎𝑙𝑙𝑒𝑑

observe(called); 𝑡𝑟𝑢𝑒

return burglary; 𝑡𝑟𝑢𝑒

Name Description

Grass Model Small model relating the probability of rain,

having observed a wet lawn

Burglar Alarm Described earlier

Noisy OR Given a DAG, each node is a noisy-or of its

parents. Find the posterior marginal probability of

a node, given observations

Red Light Game Planning-as-inference example in which the

probability of winning the game given the action

is modeled. Notably, this program exhibits

unbounded recursion

Name Algorithm Samples

(Rej.)

Estimated value Time (sec)

Grass Model Exact

Qi
Church

600
600 (940)

0.7079
0.70107±1e-4
0.70391±1e-4

1.1
4.9

Burglar Alarm Exact

Qi
Church

30
200 (1925)

0.0743
0.0743±0
0.0675±3e-4

1.0
12.7

Noisy OR Exact

Qi
Church

2000
5000
(16573)

0.4626
0.465±1e-4
0.463±3e-4

1.9
84.3

Red Light Game Exact

Qi
Church

200
200 (24732)

0.75
0.7683±0
0.5985±7e-4

7.1
163.1

Inferring relationships
from a data corpus
using probabilistic
formulas as
specifications

Examples

Advisor-Advisee inference: Academic

department data, papers

coauthored by faculty and

students, courses taught, teaching

assistants

Bibliography inference:

Noisy bibliographic data from

internet, different abbreviations of

author names, conference names

and paper titles , spelling errors

and other variations in various

words

Probabilistic formula

is of the form

𝑤 ∶ 𝜑

• Logic + Probability provides the

tools to express specifications for

inference

• Logic used to capture intuitions

about how new relationships can

be derived from existing

relationships

• Probability used to model

uncertainty and incompleteness

(in our understanding), and

presence of noise (in data)

Real number

0 ≤ 𝑤 ≤ 1
Formula in

FOL

𝑤 ∶ ¬ 𝜑 = (1 − 𝑤) ∶ 𝜑

Formulas of the form 0: 𝜑 and 1: 𝜑 are called

axioms

[Singla-Domingos, ICDM ‘06]

Domains: paper, author, title

Relations: Author(paper, author), Title(paper, title),

SameBib(paper, paper), SameAuthor(author, author), SameTitle(title, title).

Goal: Estimate equivalence classes over authors, papers, titles

Probabilistic formula (part of spec):
0.9: (∀𝑏0𝑏1 . 𝑆𝑎𝑚𝑒𝐴𝑢𝑡ℎ𝑜𝑟 𝐵𝑖𝑏𝐴𝑢𝑡ℎ𝑜𝑟 𝑏0 , 𝐵𝑖𝑏𝐴𝑢𝑡ℎ𝑜𝑟 𝑏1
∧ 𝑆𝑎𝑚𝑒𝑇𝑖𝑡𝑙𝑒 𝐵𝑖𝑏𝑇𝑖𝑡𝑙𝑒 𝑏0 , 𝐵𝑖𝑏𝑇𝑖𝑡𝑙𝑒 𝑏1 ⇒ 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏0, 𝑏1)

Axioms
1.0 ∶ (∀𝑏_0 ⇒ 𝑆𝑎𝑚𝑒𝐵𝑖𝑏(𝑏_0, 𝑏_0))
1.0 ∶ (∀𝑏_0𝑏_1 . 𝑆𝑎𝑚𝑒𝐵𝑖𝑏(𝑏_0, 𝑏_1) ⇒ 𝑆𝑎𝑚𝑒𝐵𝑖𝑏(𝑏_1, 𝑏_0))
1.0 ∶ (∀𝑏0𝑏1𝑏2. 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏0, 𝑏1 ∧ 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏1, 𝑏2 ⇒ 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏0, 𝑏2)

1.0: (∀𝑏0𝑏1 . 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏0, 𝑏1
⇒ 𝑆𝑎𝑚𝑒𝐴𝑢𝑡ℎ𝑜𝑟 𝐵𝑖𝑏𝐴𝑢𝑡ℎ𝑜𝑟 𝑏0 , 𝐵𝑖𝑏𝐴𝑢𝑡ℎ𝑜𝑟 𝑏1
1.0: (∀𝑏0𝑏1 . 𝑆𝑎𝑚𝑒𝐵𝑖𝑏 𝑏0, 𝑏1 ⇒ 𝑆𝑎𝑚𝑒𝑇𝑖𝑡𝑙𝑒 𝐵𝑖𝑏𝑇𝑖𝑡𝑙𝑒 𝑏0 , 𝐵𝑖𝑏𝑇𝑖𝑡𝑙𝑒 𝑏1

[Singla-Domingos, ICDM ‘06]

Domains: paper, author, title

Relations: Author(paper, author), Title(paper, title),

SameBib(paper, paper), SameAuthor(author, author), SameTitle(title, title).

Goal: Estimate equivalence classes over authors, papers, titles

for b0 in Bibs {

for b1 in Bibs {

if (b0 == b1) {

observe(BibAuthor(b0) == BibAuthor(b1));

observe(BibTitle(b0) == BibTitle(b1));

}

if (Bernoulli(0.9))

if (BibAuthor(b0) == BibAuthor(b1) &&

BibTitle(b0) == BibTitle(b1))

observe(b0 == b1);

}

}

MLN is a triple of the form
𝐿 = 𝐷, 𝑅, 𝐹

Where
 𝐷 is a set of domains
 𝑅 is a set of relations
 𝐹 is a set of probabilistic

formulas

A world  is a valuation to all the
relations 𝑅

An evidence 𝜀 is a valuation to some of
the relations in 𝑅

The formulas F define a probability
distribution over the likely worlds

Goal of MLN inference is to compute
the most likely world (one with
maximum probability), given evidence 𝜀

 Given a world 𝜔, and a formula w: 𝑓, let

Φ 𝜔, 𝑓 be 𝑤 if 𝜔 satisfies 𝑓, 1 − 𝑤
otherwise

 The weight or likelihood of 𝜔
is: 𝑓∈𝐹Φ(𝜔, 𝑓)

 MAP solution: world with maximum weight

This problem is NP-hard.

Stochastic search algorithms such as

WalkSAT work well in practice.

 Quantified formulas are handled by instantiating
them over the domain (this is called “grounding”)

 Grounding is very expensive and slows down
WalkSAT considerably

 Axioms (e.g. equivalence, congruence etc.) usually
have lots of quantifiers

Key idea:

Can use CEGAR to lazily instantiate axioms

Perform MLN

inference on L’Input MLN
𝐿 = 𝐷, 𝑅, 𝐹

Approx MLN
L’ = 𝐷, 𝑅, 𝐹′

Construct

Approximate

F’ = F \ A(L) Solution world

approx

Does approx

satisfy all axioms

A(L)?

Yes

return approx

No

Instantiations of violated

axioms C

in world approx

Add C to F’

Can generalize C for

accelerated

convergence

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤: ∀. 𝐹 𝑥 ∈ 𝐴 𝐿 𝑑𝑜

𝑇 ≔ 𝑄𝑢𝑒𝑟𝑦 𝜔𝑎𝑝𝑝𝑟𝑜𝑥, ¬𝐹

𝐶′ ≔ 𝐶′ ∪ {1.0 ∶ 𝐹 𝑐 ∣ 𝑐 ∈ 𝑇}

𝐿1 = 𝐷, 𝑅, 𝐹 ∪ 𝐶1
𝐿2 = 𝐷, 𝑅, 𝐹 ∪ 𝐶2

Suppose 𝐶1 and 𝐶2 contain only axioms, and 𝐶1
⊆ 𝐶2

If a world 𝑤 has a weight 𝑝 in 𝐿2, and satisfies all
the axioms in 𝐶2 ∖ 𝐶1, then it has the same weight
in 𝐿1as well.

weight(MAP(𝐿1)) ≥ weight(MAP(𝐿2))

If world w is an MAP solution for 𝐿1 and it satisfies
all axioms in 𝐶2 ∖ 𝐶1, then 𝑤 is an MAP solution for
𝐿2

Input MLN
𝑳 = 𝑫,𝑹, 𝑭

Approx MLN
L’ = 𝑫,𝑹, 𝑭′

Construct
Approximate
F’ = F \ A(L)

Perform MLN
inference on L’ Solution

world 𝒂𝒑𝒑𝒓𝒐𝒙

Does approx

satisfy all axioms
A(L)?

Yes

return approx

NoInstantiations of

violated axioms C

Add C to F’

Application MLN and dataset statistics

Empirical evaluation of SOFT-CEGAR

 Cora dataset: 1295 citations and 132 distinct research papers

 Probabilistic programs: Succinct ways of specifying probabilistic
models

 Probabilistic inference using program analysis:
 Aditya V. Nori, Gil Hur, Sriram K. Rajamani, Selva Samuel. Semantics Sensitive

Sampling. Draft under review

 Gil Hur, Aditya V. Nori, Sriram K. Rajamani. Program Transformations for Probabilistic
Inference. Draft under review

 Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently Sampling
Probabilistic Programs via Program Analysis. In AISTATS '13: Artificial Intelligence and
Statistics, April 2013

 Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon and Johannes
Borgström. Bayesian Inference Using Data Flow Analysis. In ESEC-FSE '13: Foundations
of Software Engineering, August 2013

 Arun T. Chaganty, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. Combining
Relational Learning with SMT Solvers using CEGAR. In CAV '13: Computer Aided
Verification, July 2013

 Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgström, Guillaume Claret, Thore
Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A Model-Learner
Pattern for Bayesian Reasoning. In POPL '13: Principles of Programming Languages,
January 2013

