A program analysis perspective

Probabilistic Programming

Aditya V. Nori Sriram K. Rajamani Microsoft Research India

Collaborators

- Johannes Borgstorm (Uppsala University)
- Arun Chaganty (Stanford University)
- Guillaume Claret (ENS, Paris)
- Andy Gordon (MSR Cambridge)
- Akash Lal (MSR India)
- Selva Samuel (MSR India)

Background

"Usual" programs in "usual" languages, such as C, Java, C#, LISP or Scheme with two added features:

- 1. The ability to sample from a distribution
- 2. The ability to condition values of variables through observations

Goal of a probabilistic program: succinctly specify a probability distribution

Goal of inference: infer the distribution specified by a probabilistic program

Simple probabilistic program

bool c1, c2; c1 = Bernoulli(0.5); c2 = Bernoulli(0.5);

<i>c</i> 1	<i>c</i> 2	<i>P</i> (<i>c</i> 1, <i>c</i> 2)
0	0	1/4
0	1	1/4
1	0	1/4
1	1	1/4

Probabilistic program with conditioning

bool c1, c2; c1 = Bernoulli(0.5); c2 = Bernoulli(0.5); observe(c1 || c2);

<i>c</i> 1	<i>c</i> 2	<i>P</i> (<i>c</i> 1, <i>c</i> 2)
0	0	0
0	1	1/3
1	0	1/3
1	1	1/3

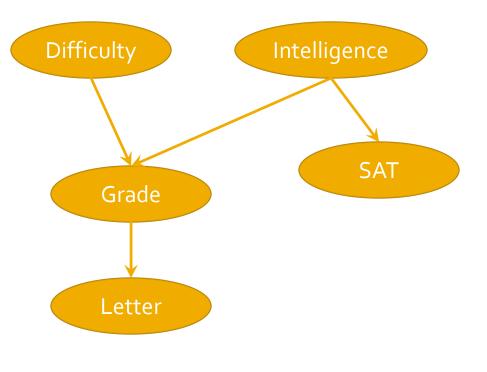
Bayesian networks (BNs)

 A Bayesian network is a DAG in which every node is a conditional probability distribution (CPD) ...

Example BN (from PGM book)

		<i>d</i> ⁰ 0.6	<i>d</i> ¹ 0.4	Di	fficulty			ntellig	ence		i ⁰ 0.6	<i>i</i> ¹ 0.4	
	g^{1}	g^2	g^3										
i^0, d^0	0.3	04.	0.3		Grad				SAT				
i^1, d^1	0.05	0.25	0.7			Je							
i^1, d^0	0.9	0.08	0.02						<i>s</i> ⁰	<i>s</i> ¹			
i^1, d^1	0.5	0.3	0.2		Lett	or		i ⁰	0.95	0.05			
					Lett	er		i ¹	0.2	0.8			
					10	l^1							
				0		0.9	D(40 ·	131	11) 0	(0 2			
				-		0.6	P(a°,1	-,g°,s1,	$l^{1}) = 0.0$	6 × 0.3	× 0.02	x 0.8 ×	. (
						9 0.01							

BNs as PPs



```
d = Discrete({0.6, 0.4});
i = Discrete({0.7, 0.3});
//grade
if(i==0 && d==0)
  g = Discrete({0.3, 0.4, 0.3});
else if(i==0 && d==1)
  g = Discrete(\{0.05, 0.25, 0.7\});
else if(i==1 && d==0)
  g = Discrete(\{0.9, 0.08, 0.02\});
else g = Discrete({0.5, 0.3, 0.2});
//SAT
if (i==0) s = Discrete({0.95, 0.05})
else s = Discrete(\{0.2, 0.8\})
//Letter
if(g==1) l = Discrete({0.1, 0.9})
else if (g=2) l = Discrete({0.4, 0.6})
else if (g==3) l = Discrete({0.99, 0.01})
```

Markov chains

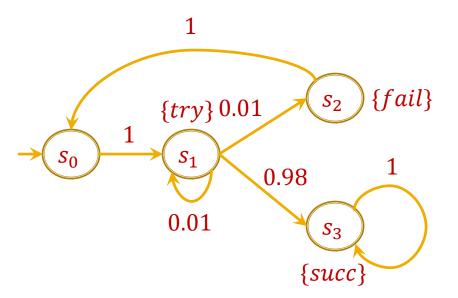
$$D = (S, s_{init}, P, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$s_{init} = s_0$$

$$AP = (try, fail, succ) L(s_0) = Ø, L(s_1) = {try}, L(s_2) = {fail}, L(s_3) = {succ}$$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



(example: courtesy David Parker's course)

MCs as PPs



```
int nextState( int curState) {
  bool coin = Bernoulii(0.5);
  switch (curState){
    case(0):
      if (coin) return 1 else return 2;
    case(1):
      if (coin) return 3 else return 4;
    case(2):
      if (coin) return 5 else return 6;
    case(3):
      if (coin) return 1 else return 11;
    case(4):
      if (coin) return 12 else return 13;
    case(5):
      if (coin) return 14 else return 15;
    case(6):
      if (coin) return 15 else return 16;
  }
main() {
  int x = 0;
  while (x < 11) \{ x = nextState(x); \}
  return (x);
```

Halo multiplayer

- How are skills modeled?
- Player A beats Player B
 - skillA > skillB?

TrueSkill

```
float skillA, skillB, skillC;
float perfA1, perfB1, perfB2,
      perfC2, perfA3, perfC3;
skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);
// first game: A vs B, A won
perfA1 = Gaussian(skillA, 15);
perfB1 = Gaussian(skillB, 15);
observe(perfA1 > perfB1);
// second game: B vs C, B won
perfB2 = Gaussian(skillA, 15);
perfC2 = Gaussian(skillB, 15);
observe(perfB2 > perfC2);
// third game: A vs C, A won
perfA3 = Gaussian(skillA, 15);
perfC3 = Gaussian(skillB, 15);
observe(perfA3 > perfC3);
```

- Sample *perfA* from a noisy *skillA* distribution
- Sample *perfB* from a noisy *skillB* distribution
- if *perfA* > *perfB* then
 A wins else B wins

skillA = Gaussian(102.1,7.8)
skillB = Gaussian(100.0,7.6)
skillC = Gaussian(97.9,7.8)

Goal of inference

- Infer the distribution specified by a probabilistic program
- What does this formally mean?
- Explore techniques to perform inference

Restricted model: Boolean Probabilistic Programs (BPP)

 $r \in \mathbb{R}$ $x \in Vars$ T ::= bool uop ::= not bop ::= and | or $D ::= | Tx_1, x_2, ..., x_n$

 $E ::= | x | c | C | E_1 bop E_2 | uop E$

 $S ::= |x \coloneqq E| \\ |x \coloneqq Bernoulli(r)| \\ observe(E) \\ |skip| \\ S_1; S_2 \\ if E then S_1else S_2 \\ |while E do S|$

P ::= D S

types unary operators binary operators declaration

expressions variable constant binary operation unary operation

statements deterministic assignment Bernoulli assignment observe skip sequential composition conditional composition loop

programs

Operational semantics of BPPs

- States: σ , valuation to all variables x_1, x_2, \dots, x_n
- Set of all states: Γ
- Configuration: (σ, statement)

Operational semantics of BPPs ...

 $\begin{array}{l} \langle \sigma, x \coloneqq E \rangle \rightarrow^{1} \langle \sigma[x \leftarrow \sigma(E)], skip \rangle \\ \langle \sigma, x \coloneqq Bernoulli(r) \rangle \rightarrow^{r} \langle \sigma[x \leftarrow true], skip \rangle \\ \langle \sigma, x \coloneqq Bernoulli(r) \rangle \rightarrow^{1-r} \langle \sigma[x \leftarrow false], skip \rangle \\ \langle \sigma, x \coloneqq observe(E) \rangle \rightarrow^{1} \langle \sigma, skip \rangle, if \sigma(E) = true \\ \langle \sigma, skip; S \rangle \rightarrow^{1} \langle \sigma, S \rangle \\ \langle \sigma, S_{1}; S_{2} \rangle \rightarrow^{p} \langle \sigma', S'; S_{2} \rangle, if \langle \sigma, S_{1} \rangle \rightarrow^{p} \langle \sigma', S' \rangle \\ \langle \sigma, if \ E \ then \ S_{1}else \ S_{2} \rangle \rightarrow^{1} \langle \sigma, S_{1} \rangle, if \ \sigma(E) = true \\ \langle \sigma, if \ E \ then \ S_{1}else \ S_{2} \rangle \rightarrow^{1} \langle \sigma, S_{2} \rangle, if \ \sigma(E) = false \\ \langle \sigma, while \ E \ do \ S \rangle \rightarrow^{1} \langle \sigma, S; while \ E \ do \ S \rangle, if \ \sigma(E) = true \\ \end{array}$

$$\begin{aligned} \operatorname{\mathsf{Run}} \omega &= \langle \sigma_0, S_0 \rangle \to^{p_1} \langle \sigma_1, S_1 \rangle \to^{p_2} \cdots \to^{p_n} \langle \sigma_n, skip \rangle \\ \operatorname{\mathsf{Prob}}(\omega) &= p_1 p_2 \cdots p_n \\ \\ \operatorname{\mathsf{Prob}}(\sigma) &= \sum_{\{\omega \mid \omega \text{ is a run that ends in state } \sigma\}} \operatorname{\mathsf{Prob}}(\omega) \end{aligned}$$

Semantics for general probabilistic programs

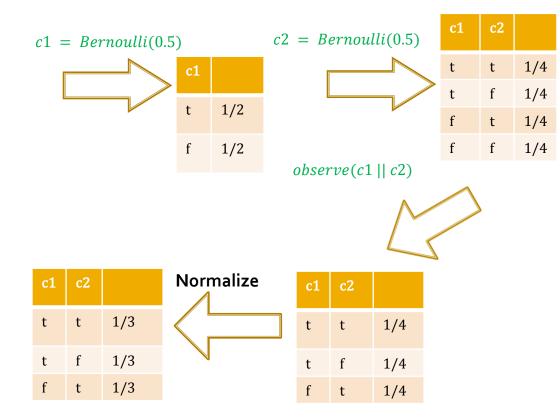
- Easy to add more general types (int, real) and continuous distributions
- Semantics can still be defined using measure theory
 - Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, Jurgen Van Gael. Measure Transformer Semantics for Bayesian Machine Learning. ESOP 2011

Inference inspired by program analysis

- Static analysis techniques, inspired by data flow analysis
- Dynamic analysis techniques, inspired by symbolic execution (and weakest preconditions)
- Iterative refinement techniques, inspired by CEGAR verification framework

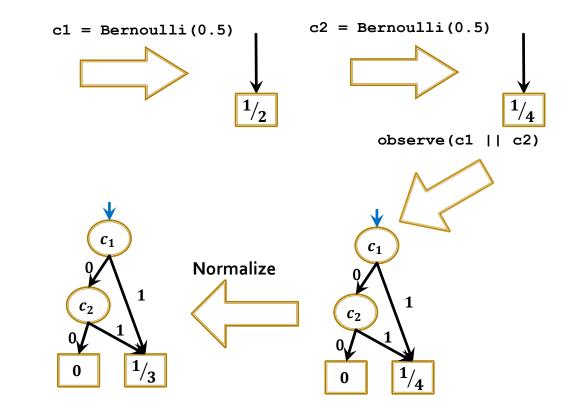
Bayesian inference using data flow analysis

```
bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return (c1, c2);
```



Data flow analysis with ADDs

```
bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return (c1, c2);
```



Inference using data flow analysis

```
Algorithm Post(\rho, S)
Input: An input distribution \rho over the states of the program P, and a
statement S
Output: Output distribution over the states of the program P
1: switch(S)
2: case x \coloneqq E:
      return \lambda \sigma. \sum_{\{\sigma' | \sigma' [x \leftarrow \sigma'(E)] = \sigma\}} \rho(\sigma')
4: case x \coloneqq Bernoulli(r):
     return \lambda \sigma. (r \times \sum_{\{\sigma' | \sigma' [x \leftarrow true] = \sigma\}} \rho(\sigma') + (1 - r)
                \sum
                                   \rho(\sigma')
х
   \{\sigma' | \sigma' [x \leftarrow false] = \sigma\}
6: case observe(E):
7: return \lambda \sigma. ite(\sigma(E), \rho(\sigma), 0)
8: case skip:
9: return \rho
10: case S_1; S_2:
11: \rho' = Post(\rho, S_1);
12: return Post(\rho, S')
13: case if E then S_1 else S_2:
14: \rho_t = \lambda \sigma. ite(\sigma(E), \rho(\sigma), 0);
15: \rho_f = \lambda \sigma. ite(\sigma(E), 0, \rho(\sigma));
16: return \lambda \sigma. (Post(\rho_t, S_1)(\sigma) + Post(\rho_f, S_2)(\sigma)
17: case while E do S:
18: \rho_n = \bot; \rho_c = \rho;
19: while (\rho_p \neq \rho_c) do
20: \rho_p = \rho_c;
21: \rho_c = Post(\rho, if E then S else skip)
22: end while
23: return \rho_c
24: end switch
```

- Can "merge" at join points without losing precision
- Loops can be handled using fixpoints
- Theorem: If the *Post* algorithm terminates, then it is guaranteed to compute the exact distribution specified by the probabilistic program

Empirical results

Benchmark	Parameters	SHENOY-SHAFER	HUGIN	ZC-HUGIN	REC-COND	OpenBugs	GS	EP	ADD
		(seconds)	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)	(seconds)
Students	s=10, c=10, t=4	0.38	0.40	0.41	0.53	\perp	0.88	1.57	0.11
	p=4	0.40	0.41	0.41	0.50	4	7.7	4.09	0.19
Friends	p=5	2.75	2.66	3.37	9.62	18	\perp	12.06	0.42
	p =6	\perp	\perp	\perp	\perp	\perp	\perp	27.3	4.78
	n=10	0.28	0.26	0.29	0.33	3	\perp	1.58	0.15
Compare	n=20	0.33	0.31	0.30	0.37	2	\perp	2.34	0.16
	n=100	0.53	0.55	0.52	0.92	6	\perp	12.58	2.15

Efficiently sampling probabilistic programs via program analysis

- Run the program multiple times and compute statistics over resulting samples (BLOG, Church)
- Efficiently run the program without rejecting samples (based on importance sampling)

Dynamic analysis

- Decompose program into "simple" straight-line programs
- II. Efficiently *sample* from these straight-line programs by *executing* them
- III. Combine results in order to compute expectations

The key equation

 $E_{\Pi}[x] = \sum_{i} P(\pi_i) E_{\pi_i}[x]$

- Estimate $E_{\pi_i}[x]$ using importance sampling and Djikstra's weakest preconditions
- Estimate $P(\pi_i)$ using importance sampling
- Able to prove convergence (even for programs with unbounded recursion!)

The Qi algorithm

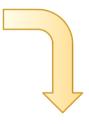
 $Qi(\pi, \kappa_1, \kappa_2)$ 1: $\Pi \coloneqq Explore(\pi, \kappa_1)$ 2: $\Omega \coloneqq \emptyset$ 3: $for \pi_i \in \Pi \ do$ 4: $(\theta, y) \coloneqq Estimate(\pi_i, \kappa_2)$ 5: $\Omega \coloneqq \Omega \cup \{(\theta, y)\}$ 6: end for7: $return \overline{\Omega}$ *Explore*(π_i, κ) 1: $\pi_i^* \coloneqq pp_to_np(\pi_i)$ 2: $\Pi \coloneqq \{\}$ 3: $F \coloneqq \{\sigma_0\}$ 4: $d \coloneqq d_0$ 5: *loop* 6: $(C,F) \coloneqq Execute(\pi_i^*,F,d)$ 7: $\Pi \coloneqq \Pi \cup C$ 8: *if* $|\Pi| \ge \kappa$ *then* break 9: 10: *else* 11: $d \coloneqq d + \delta$ 12: *endif* 13: end loop 14: *return* П

Pearl's burglar alarm example

```
int alarm() {
  char earthquake = Bernoulli(0.001);
  char burglary = Bernoulli(0.01);
  char alarm = earthquake || burglary;
  char phoneWorking =
    (earthquake)? Bernoulli(0.6) : Bernoulli(0.99);
  char maryWakes;
  if (alarm && earthquake)
    maryWakes = Bernoulli(0.8);
 else if (alarm)
    maryWakes = Bernoulli(0.6);
 else maryWakes = Bernoulli(0.2);
  char called = maryWakes && phoneWorking;
  observe(called);
  return burglary;
}
```

Explore \equiv Symbolic execution

```
int alarm() {
    char earthquake = Bernoulli(0.001);
    char burglary = Bernoulli(0.01);
    char alarm = earthquake || burglary;
    char phoneWorking =
        (earthquake)? Bernoulli(0.6) : Bernoulli(0.99);
    char maryWakes;
    if (alarm && earthquake)
        maryWakes = Bernoulli(0.8);
    else if (alarm)
        maryWakes = Bernoulli(0.6);
    else maryWakes = Bernoulli(0.2);
    char called = maryWakes && phoneWorking;
    observe(called);
    return burglary;
```



```
int alarm() {
    char earthquake = Bernoulli(0.001);
    char burglary = Bernoulli(0.01);
    char alarm = earthquake || burglary;
    observe(earthquake);
    char phoneWorking = Bernoulli(0.6);
    observe(alarm && earthquake);
    char maryWakes = Bernoulli(0.8);
    char called = maryWakes && phoneWorking;
    observe(called);
    return burglary;
```

```
}
```

Sampling from straight-line programs

- Need to ensure that samples drawn from primitive distributions satisfy observations
- "Hoist" conditions to the primitive distributions and sample from resulting conditional distributions

Djikstra's weakest precondition in action

Statement	WP
earthquake = Bernoulli(0.001)	earthquake
<pre>burglary = Bernoulli(0.001)</pre>	earthquake
alarm = earthquake burglary	$alarm \wedge earthquake$
observe(earthquake)	$alarm \land earthquake$
<pre>phoneWorking = Bernoulli(0.6);</pre>	$alarm \land earthquake \land phoneWorking$
<pre>observe(alarm && earthquake);</pre>	phoneWorking
<pre>maryWakes = Bernoulli(0.8);</pre>	$maryWakes \land phoneWorking$
<pre>called = maryWakes && phoneWorking</pre>	called
<pre>observe(called);</pre>	true
return burglary;	true

Evaluation: benchmarks

Name	Description
Grass Model	Small model relating the probability of rain, having observed a wet lawn
Burglar Alarm	Described earlier
Noisy OR	Given a DAG, each node is a noisy-or of its parents. Find the posterior marginal probability of a node, given observations
Red Light Game	Planning-as-inference example in which the probability of winning the game given the action is modeled. Notably, this program exhibits unbounded recursion

Evaluation: results

Name	Algorithm	Samples (Rej.)	Estimated value	Time (sec)
Grass Model	Exact Qi Church	600 600 (940)	0.7079 0.70107±1e-4 0.70391±1e-4	1.1 4.9
Burglar Alarm	Exact Qi Church	30 200 (1925)	0.0743 0.0743±0 0.0675±3e-4	1.0 12.7
Noisy OR	Exact Qi Church	2000 5000 (16573)	0.4626 0.465±1e-4 0.463±3e-4	1.9 84.3
Red Light Game	Exact Qi Church	200 200 (24732)	0.75 0.7683±0 0.5985±7e-4	7.1 163.1

Relational learning

Inferring relationships from a data corpus using *probabilistic formulas* as specifications

Examples

Advisor-Advisee inference: Academic department data, papers coauthored by faculty and students, courses taught, teaching assistants

Bibliography inference:

Noisy bibliographic data from internet, different abbreviations of author names, conference names and paper titles, spelling errors and other variations in various words

Probabilistic formulas

Probabilistic formula is of the form $W : \varphi$ Real number $0 \le w \le 1$ Formula in FOL

- Logic + Probability provides the tools to express specifications for inference
- Logic used to capture intuitions about how new relationships can be derived from existing relationships
- Probability used to model uncertainty and incompleteness (in our understanding), and presence of noise (in data)

More on probabilistic formulas

$$w: \neg \varphi = (1-w): \varphi$$

Formulas of the form $0: \varphi$ and $1: \varphi$ are called **axioms**

Example: De-duplicating citation data

Axioms

 $\begin{bmatrix} Sinc \\ 1.0 : (\forall b_0 \Rightarrow SameBib(b_0, b_0)) \\ 1.0 : (\forall b_0 b_1 . SameBib(b_0, b_1) \Rightarrow SameBib(b_1, b_0)) \\ 1.0 : (\forall b_0 b_1 b_2 . SameBib(b_0, b_1) \land SameBib(b_1, b_2) \Rightarrow SameBib(b_0, b_2)) \\ \end{bmatrix}$ $\begin{bmatrix} Rela \\ Same \\ Same \\ SameAuthor(BibAuthor(b_0), BibAuthor(b_1)) \\ \exists 1.0 : (\forall b_0 b_1 . SameBib(b_0, b_1) \Rightarrow SameTitle(BibTitle(b_0), BibTitle(b_1)) \\ \end{bmatrix}$

Probabilistic formula (part of spec): $0.9: (\forall b_0 b_1 . SameAuthor(BibAuthor(b_0), BibAuthor(b_1))$ $\land SameTitle(BibTitle(b_0), BibTitle(b_1)) \Rightarrow SameBib(b_0, b_1))$

Example: De-duplicating citation data

```
for b0 in Bibs {
      for b1 in Bibs {
[Sind
        if (b0 == b1) {
          observe(BibAuthor(b0) == BibAuthor(b1));
Dom
          observe(BibTitle(b0) == BibTitle(b1));
Rela
        }
Sam
Goa
        if (Bernoulli(0.9))
          if (BibAuthor(b0) == BibAuthor(b1) &&
              BibTitle(b0) == BibTitle(b1))
            observe(b0 == b1);
       }
    }
```

Markov Logic Network [Domingos et al]

A world ω is a valuation to all the relations R

An evidence ε is a valuation to some of the relations in R

The formulas F define a probability distribution over the likely worlds

Goal of MLN inference is to compute the most likely world (one with maximum probability), given evidence *e*

MAP inference, formally defined

Given a world ω, and a formula w: f, let Φ(ω, f) be w if otherwise
The weight or lit is: Π_{f∈F} Φ(ω, f)

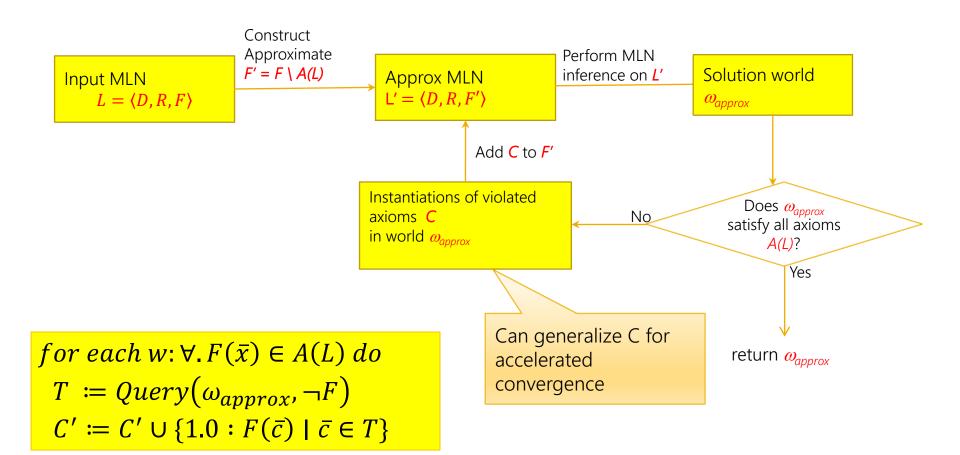
MAP solution: world with maximum weight

From WalkSAT to Quantifiers

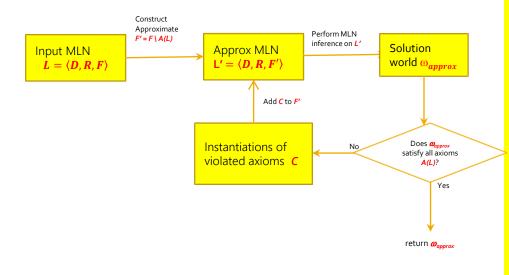
- Quantified formulas are handled by instantiating them over the domain (this is called "grounding")
- Grounding is very expensive and slows down WalkSAT considerably
- Axioms (e.g. equivalence, congruence etc.) usually have lots of quantifiers

Key idea: Can use CEGAR to lazily instantiate axioms

CEGAR for MAP



Why does this produce the correct MAP solution?



 $L_1 = \langle D, R, F \cup C_1 \rangle$ $L_2 = \langle D, R, F \cup C_2 \rangle$ Suppose C_1 and C_2 contain only axioms, and C_1 $\subseteq C_2$

If a world w has a *weight* p in L_2 , and satisfies all the axioms in $C_2 \setminus C_1$, then it has the same *weight* in L_1 as well.

 $weight(MAP(L_1)) \ge weight(MAP(L_2))$

If world w is an MAP solution for L_1 and it satisfies all axioms in $C_2 \setminus C_1$, then w is an MAP solution for L_2

Evaluation

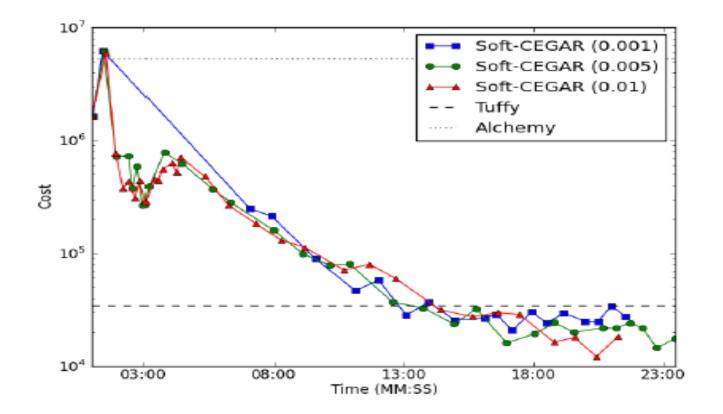
	AR	ER	IE	RC
#relations	14	14	19	5
#formula	24	3.8K	1.1K	32
#axioms	6	7	3	2
#atoms	88K	20K	81K	9860
#evidence-atoms	65K	676	613K	430K
#query-atoms	188	400	400	400

Application MLN and dataset statistics

Method	Iterations	Time	Solution Cost					
Advisor Recommendation								
SOFT-CEGAR	18	06:44	3669.50					
TUFFY	1	-	*					
ALCHEMY	-	-	*					
	Entity Res	olution						
SOFT-CEGAR	8	13:06	28112.24					
TUFFY	1	15:13	34416.97					
ALCHEMY	1	16:17	5287838.62					
I	nformation E	Extraction	1					
SOFT-CEGAR	3	17:46	109.40					
TUFFY	1	55:49	3944.29					
ALCHEMY	-	-	*					
Relational Classification								
SOFT-CEGAR	2	05:00	870.37					
TUFFY	1	05:42	874.63					
ALCHEMY	-	-	*					

Empirical evaluation of SOFT-CEGAR

Evaluation: Entity Resolution (ER)



Cora dataset: 1295 citations and 132 distinct research papers

Summary

- Probabilistic programs: Succinct ways of specifying probabilistic models
- Probabilistic inference using program analysis:
 - Aditya V. Nori, Gil Hur, Sriram K. Rajamani, Selva Samuel. Semantics Sensitive Sampling. Draft under review
 - Gil Hur, Aditya V. Nori, Sriram K. Rajamani. Program Transformations for Probabilistic Inference. Draft under review
 - Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently Sampling Probabilistic Programs via Program Analysis. In AISTATS '13: Artificial Intelligence and Statistics, April 2013
 - Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon and Johannes Borgström. Bayesian Inference Using Data Flow Analysis. In ESEC-FSE '13: Foundations of Software Engineering, August 2013
 - Arun T. Chaganty, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. Combining Relational Learning with SMT Solvers using CEGAR. In CAV '13: Computer Aided Verification, July 2013
 - Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgström, Guillaume Claret, Thore Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A Model-Learner Pattern for Bayesian Reasoning. In POPL '13: Principles of Programming Languages, January 2013