A program analysis perspective

Probabilistic Programming

Collaborators

Johannes Borgstorm (Uppsala University)
Arun Chaganty (Stanford University)
Guillaume Claret (ENS, Paris)

Andy Gordon (MSR Cambridge)

Akash Lal (MSR India)

Selva Samuel (MSR India)

Background

"Usual” programs in “usual” languages, such as C,
Java, C#, LISP or Scheme with two added
features:

The ability to sample from a distribution

The ability to condition values of variables

through observations

Goal of a ,orobabilistic program: succinctly specify
a probability distribution

Goal of inference: infer the distribution specified
by a probabilistic program

Simple probabilistic program

bool c1, c2;
cl = Bernoulli(®@.5);
c2 = Bernoulli(®@.5);

- = O O

_ O =k O

1/4
1/4
1/4
1/4

Probabilistic program with

conditioning

bool c1, c2;
cl = Bernoulli(®@.5);

c2 = Bernoulli(0.5); 0 0 0

observe(cl || c2); 0 1 1/3
1 0 1/3
1 1 1/3

Bayesian networks (BNs)

A Bayesian network is a DAG in which every
node is a conditional probability
distribution (CPD) ...

Example BN (from PGM book)

06 04 0.6 04

id° 0.3 04. 0.3
il d! 0.05 0.25 0.7
il d® 09 0.08 0.02
i 0.95 0.05

ildl 05 03 0.2 ‘
il 02 08

g 01 09 P(d° i1, g3,s1, 1Y) = 0.6 X 0.3 X 0.02 X 0.8 X 0.01
2 04 0.6

g3 0.99 0.01

Q
w

BNs as PPs

d = Discrete({0.6, 0.4});
i = Discrete({0.7, 0.3});
//grade
if(i==0 && d==0)
g = Discrete({0.3, 0.4, 0.3});
else if(i==0 && d==1)
g = Discrete({0.05, 0.25, 0.7});
else if(i==1 && d==0)
g = Discrete({0.9, 0.08, 0.02});
else g = Discrete({0.5, 0.3, 0.2});
//SAT
if (i==0) s = Discrete({0.95, 0.05})
else s = Discrete({0.2, 0.8})
//Letter
if(g==1) 1 = Discrete({0.1, 0.9})
else if (g==2) 1 = Discrete({0.4, 0.6})
else if (g==3) 1 = Discrete({0.99, 0.01})

Markov chains

B AP= (try, fail, succ
D — (S, Sinit; P; L) L(So)(:)Q/)/f)
S = {S(), 51,52, 53} Ls1) = {try'}l
o — L(s3) = {fail},
init — 20 L(s3) = {succ}
1
0 1 0 0]
p_|0 001 001 098
(1 o0 0 0 1
0 0 0 1.

(example: courtesy David Parker's course)

MCs as PPs

int nextState(int curState) {
bool coin = Bernoulii(@.5);

0 switch (curState){
case(9):
0.5 0.5 if (coin) return 1 else return 2;
case(1l):
if (coin) return 3 else return 4;
0.5 1 2 0.5 case(2):
if (coin) return 5 else return 6;
0.5 0.5 0.5 0.5 case(3):
if (coin) return 1 else return 11;
case(4):
3 4 5 6 if (coin) return 12 else return 13;
case(5):
0.5 0.5 0.5 0.5 0.5 0.5 if (coin) return 14 else return 15;
case(6):
if (coin) return 15 else return 16;
}
}
1 1 1 1 1 1 main() {
int x = 0;
Knuth-Yao's technique to get a fair while (x < 11) { x = nextState(x); }
die from fair coin tosses return (x);

}

Halo multiplayer

How are skills modeled?
Player A beats Player B

skillA > skillB?

TrueSkill

float skillA, skillB, skillC;
float perfAl, perfBl, perfB2,
perfC2, perfA3, perfC3;

skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);

// first game: A vs B, A won
perfAl = Gaussian(skillA, 15);
perfBl = Gaussian(skillB, 15);
observe(perfAl > perfBl);

// second game: B vs C, B won
perfB2 = Gaussian(skillA, 15);
perfC2 = Gaussian(skillB, 15);
observe(perfB2 > perfC2);

// third game: A vs C, A won
perfA3 = Gaussian(skillA, 15);
perfC3 = Gaussian(skillB, 15);
observe(perfA3 > perfC3);

Sample perfA from a
noisy skillA distribution

Sample perfB from a
noisy skillB distribution

if perfA > perfB then
A wins else B wins

skillA = Gaussian(102.1,7.8)
skillB = Gaussian(100.0,7.6)
skillC = Gaussian(97.9,7.8)

Goal of inference

Infer the distribution specified by a
probabilistic program

What does this formally mean?

Explore techniques to pertorm inference

Restricted model: Boolean

Probabilistic Programs (BPP)

reR
x € Vars
T ::= bool
uop = not
bop ::=and | or
D = | Txl,Xz, ...,xn
E =

| x

C

E,bop E,

uop E
S =

x:=F

x = Bernoulli(r)

observe(E)

skip

51;52

if E then S;else S,

while E do S
P:=DS

types
unary operators

binary operators
declaration

expressions
variable
constant

binary operation
unary operation

statements

deterministic assignment
Bernoulli assignment
observe

skip

sequential composition
conditional composition
loop

programs

Operational semantics of BPPs

States: g, valuation to all variables
X1,X2, .., Xn

Set of all states: I'

Configuration: (o, statement)

Operational semantics of BPPs ...

(0,x == E) > (c[x « o(E)], skip)

(g,x = Bernoulli(r)) »" (o|x « true], skip)

(0,x := Bernoulli(r)) -7 (o[x « false], skip)

(0,x := observe(E)) - (o, skip),if o0(E) = true

(o, skip; S) -1 (o, S)

(g,51;S,) =P (¢,5";S,),if (0,5;) =P (¢',S")

(0,if E then Syelse S,) - (0,S,),if o(E) = true

(0,if E then Syelse S,) - (0,S,),if o(E) = false
(o,while E do S) -! (o, skip),if o(E) = false
(o,while E do S) - (0,S;while E do S),if o(E) = true

Run w = (gy, Sy) =P (0,S;) =P2 - =Pn (g, skip)
Prob(w) = p1p3 *** Dn

Prob(o) = z Prob(w)

{w|lw is a run that ends in state o}

Semantics for general probabilistic

programs

Easy to add more general types (int, real)
and continuous distributions
Semantics can still be defined using

measure theory

Johannes Borgstrom, Andrew D. Gordon, Michael
Greenberg, James Margetson, Jurgen Van Gael.
Measure Transformer Semantics for Bayesian Machine
Learning. ESOP 2011

Inference inspired by program

analysis

Static analysis techniques, inspired by data
flow analysis

Dynamic analysis techniques, inspired by
symbolic execution (and weakest
preconditions)

'terative refinement techniques, inspired by
CEGAR verification framework

Bayesian inference using data flow

analysis

bool cl1, c2;

cl = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(cl || c2);
return (cl, c2);

cl = Bernoulli(0.5) c2 = Bernoulli(0.5)

t 1/2
fo1/2
observe(cl || c2)
Normalize
t t 1/3 t ot 1/4
t f 1/3 - | 1/4

f t 1/3 f t 1/4

N =h T

= o+ h T

1/4
1/4
1/4
1/4

Data flow analysis with ADDs

bool c1, c2;

cl = Bernoulli(0.5);
c2 = Bernoulli(@.5);
observe(cl || c2);
return (cl, c2);

cl = Bernoulli(0.5)

c2 = Bernoulli (0.5)

l

1 /4

observe(cl || c2)

Inference using data flow analysis

Algorithm Post(p, S)
Input: An input (fi)stribution p over the states of the program P, and a
statement S

Output: Output distribution over the states of the program P

1: switch(S)
2: casex =E:

3: return /10.2 p(o")
(016" [x—" (E)]=0}

4: case x = Bernoulli(r):

5

return Ao. (r X Z{o’w’[x o true] = a}p(o') +(1-7)

p(a")
{d'lo'[x « false] = o}
6: case observe(E):
7: return do.ite(o(E), p(0),0)
8: case skip:
9: returnp
10: case S1; So:
11: p’ = Post(p,Sy);
12: return Post(p,S")
13:case if E then S;else S,:
14: p; = Ao.ite(o(E), p(0),0);
15: ps=do. ite(J(E), O,p(a));
16: return Ag.(Post(p, S1)(0) + Post(py, S;)(0)
17:case while E do S:
18: pp=1L;pc = p;
19: while (pp * pc)do
20: pp = pc;
21: p. = Post(p,if E then S else skip)
22: end while
23: return p,
24: end switch

Can “merge” at join points
without losing precision
Loops can be handled using
fixpoints

Theorem: If the Post
algorithm terminates, then it
IS guaranteed to compute the
exact distribution specified by
the probabilistic program

Empirical results

Benchmark | Parameters SHENOY-SHAFER | HUGIN EC-HUGIN REC-cOND | OrPENBUGS as EP ADD
(seconds) (seconds) (seconds) | (seconds) | (seconds) (seconds) | (seconds) | (seconds)
3tudents s=10, c=10, t=4 0.38 0.40 0.41 0.53 1 0.588 1.57 0.11
p=4 0. LI:I 0.41 0.41 0.50 1 T.7 1.09 0. 1‘3
Friends p=>5 2.7 2.66 3.37 9.62 13 1 12.06 0.4
p =6 J_ 1 1 1 1 1 27.3 1. 75:
n=10 0.28 0.26 0.29 0.33 3 1 1.58 0.15
Compare n=20 0.33 0.31 0.30 0.37 2 1 2.34 0.16
n=100 0.53 0.55 0.52 0,92 G 1 12.58 2.15

Efficiently sampling probabilistic

programs via program analysis

Run the program multiple times and
compute statistics over resulting samples
(BLOG, Church)

Efficiently run the program without
rejecting samples (based on importance
sampling)

Dynamic analysis

Decompose program into “simple”
straight-line programs

Efficiently sample from these straight-line
programs by executing them

Combine results in order to compute
expectations

The key equation

Enlx] =) P(t)Eg, [

* Estimate E [x] using importance sampling
and Djikstra’s weakest preconditions

 Estimate P(mr;) using importance sampling

* Able to prove convergence (even for
programs with unbounded recursion!)

The Qi algorithm

(1, Ky, K5)

: [1 := Explore(m, kq)
Q=0

. form; €lldo

(6,y) = Estimate(m;, k,)
Q=QuU{8,y)}

. end for

. return ()

Explore(m;, k)
1: m; = pp_to_np(m;)

2: I ={}

3: F ={0y}

4: d =d,

5: loop

6: (C,F) = Execute(n;,F,d)
7 [MI:=1uC

8: if |ll| = k then

9

break
10: else
11: d =d+56
12: endif
13: end loop

14: returnll

Pearl’s burglar alarm example

int alarm() {
char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
char phoneWorking =
(earthquake)? Bernoulli(©.6) : Bernoulli(©.99);
char maryWakes;
if (alarm && earthquake)
maryWakes = Bernoulli(0.8);
else if (alarm)
maryWakes = Bernoulli(0.6);
else maryWakes = Bernoulli(0.2);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

Explore = Symbolic execution

int alarm() {
char earthquake = Bernoulli(@.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
char phonelWorking =
(earthquake)? Bernoulli(@.6) : Bernoulli(0.99);
char maryWakes;
if (alarm && earthquake)
maryWakes = Bernoulli(0.8);
else if (alarm)
maryWakes = Bernoulli(0.6);
else maryWakes = Bernoulli(0.2);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

int alarm() {
char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
observe(earthquake);
char phoneWorking = Bernoulli(0.6);
observe(alarm && earthquake);
char maryWakes = Bernoulli(0.8);
char called = maryWakes && phoneWorking;
observe(called);
return burglary;

Sampling from straight-line

programs

Need to ensure that samples drawn from
primitive distributions satisfy observations

"Hoist” conditions to the primitive
distributions and sample from resulting
conditional distributions

Djikstra’s weakest precondition in

action

earthquake = Bernoulli(0.001) earthquake

burglary = Bernoulli(0.001) earthquake

alarm = earthquake || burglary alarm A earthquake
observe(earthquake) alarm A earthquake
phonelWorking = Bernoulli(0.6); alarm A earthquake N phoneWorking
observe(alarm && earthquake); phoneWorking
maryWakes = Bernoulli(0.8); maryWakes A phoneWorking
called = maryWakes && phoneWorking called
observe(called); true

return burglary; true

Evaluation: benchmarks

Grass Model

Burglar Alarm
Noisy OR

Red Light Game

Small model relating the probability of rain,
having observed a wet lawn

Described earlier

Given a DAG, each node is a noisy-or of its
parents. Find the posterior marginal probability of
a node, given observations

Planning-as-inference example in which the
probability of winning the game given the action
is modeled. Notably, this program exhibits
unbounded recursion

Evaluation: results

Grass Model Exact 0.7079
Qi 600 0.70107+1e-4 1.1
Church 600 (940) 0.70391+1e-4 4.9

Burglar Alarm Exact 0.0743
Qi 30 0.0743+0 1.0
Church 200 (1925) 0.0675+3e-4 12.7
Noisy OR Exact 0.4626
Qi 2000 0.465+1e-4 1.9
Church 5000 0.463+3e-4 84.3
(16573)
Red Light Game Exact 0.75
Qi 200 0.7683+10 7.1

Church 200 (24732) 0.5985+7e-4 163.1

Relational learning

Examples
Advisor-Advisee inference: Academic
Inferring relationships department data, papers
coauthored by faculty and
frqm a data C.O.I'p.US students, courses taught, teaching
using probabllistic assistants

formulas as Bibliography inference:
ificati Noisy bibliographic data from
SpeCI ICations internet, different abbreviations of
author names, conference names
and paper titles , spelling errors
and other variations in various
words

Probabilistic formulas

Probabilistic formula
Is of the form

w . @

Logic + Probability provides the
tools to express specifications for
inference

Logic used to capture intuitions
about how new relationships can
be derived from existing
relationships

Probability used to model
uncertainty and incompleteness
(in our understanding), and
presence of noise (in data)

More on probabilistic formulas

wiag = (1-w): ¢

Formulas of the form 0: ¢ and 1: ¢ are called
axioms

Example: De-duplicating citation

data

Axioms
[Sinc 1.0 : (Vb_0 = SameBib(b_0,b_0))
"1.0 : (Vb_Ob_1.SameBib(b_0,b_1) = SameBib(b_1,b_0))
1.0 : (Vbybb,.SameBib(by, by) A SameBib(by, b,) = SameBib(by, b,))

Don

Rela 1.0: (Vbyb, . SameBib(by, by)
S5am 5 g ameAuthor(BibAuthor(by), BibAuthor(b,))
(02 1.0: (vbyb, . SameBib(by, by) = SameTitle(BibTitle(b), BibTitle(b,))

Probabilistic formula (part of spec):
0.9: (Vbyb, .S ameAuthor(BibAuthor(bO), BibAuthor(bl))
A SameTitle(BibTitle(by), BibTitle(b,)) = SameBib(by, b))

Example: De-duplicating citation

data

for b@® in Bibs {
[Sinc for bl in Bibs {
" if (b == bl) {

Don observe(BibAuthor(b@) == BibAuthor(bl));
Rela observe(BibTitle(b®) == BibTitle(bl));
Sam }

Goa

if (Bernoulli(0.9))
if (BibAuthor(b@) == BibAuthor(bl) &&
BibTitle(b@) == BibTitle(bl))
observe(b® == bl);

Markov Logic Network [Domingos et al]

MLN is a triple of the form
L=(D,R,F)
Where
D is a set of domains
R is a set of relations
F is a set of probabilistic
formulas

A world o is a valuation to all the
relations R

An evidence £ Is a valuation to some of
the relations in R

The formulas F define a probability
distribution over the likely worlds

Goal of MLN inference is to compute
the most likely world (one with
maximum probability), given evidence ¢

MAP inference, formally defined

Given a world w, and a formula w: f, let
(I)((U,f) be w If PRI B o A -
otherwise

The weight or lil

IS rer P(w, f)

MAP solution: world with maximum weight

From WalkSAT to Quantifiers

Quantified formulas are handled by instantiating
them over the domain (this is called “grounding”)

Grounding is very expensive and slows down
WalkSAT considerably

Axioms (e.g. equivalence, congruence etc.) usually
have lots of quantifiers

Key idea:
Can use CEGAR to lazily instantiate axioms

CEGAR for MAP

Construct
Approximate Perform MLN
Input MLN F=F\AQD Approx MLN inference on L’
L =(D,R,F) L'=(D,R,F’)
Add Cto F'

Instantiations of violated
axioms C No
inworld @,

. Can generalize C for

fOT eaCh w. V. F(X) E A(L) dO accelerated
o—s convergence

C'=C'"U{1.0:F()ICET}

Solution world

Wapprox

Does Dapprox
satisfy all axioms

A(L)?

Yes

return @,

Why does this produce the correct

MAP solution?

L1 = (D,R,F U C1>

vy e, . L, ={(D,R,F U ()
Input MLN Approx MLN Solution) .
L=(D,R F) L'=(D,R,F') World © 4y Suppose C; and €, contain only axioms, and C;
c C,
Add Cto F”
SO oes If a world w has a weight p in L,, and satisfies all
nstantiations Of No satisfy aIIinmoXms . . . 0
violated axioms C fyie the axioms in C, \ C;, then it has the same weight
Ves in L,as well.

weight(MAP(L,)) = weight(MAP(L,))

return @gpprox

If world w is an MAP solution for L, and it satisfies
all axioms in C, \ C;, then w is an MAP solution for
L,

Evaluation

Method

| Dterations |

Time | Solution Cost

Advisor Hecommendation

AR ER IE RC

#relations 14 14 19 5
#lormula 24 3.8K 1.1K 32
#Faxioms [s] 7 3 2

#Fatoms BRK 20K B1K 9860
#evidence-atoms 65K 676 613K 430K
#query-atoms 188 400 400 400

Application MLN and dataset statistics

SOFT-CEGAR 18 Oa:44 3669.50

TUFFY 1 - =

ALCHEMY - - *

Entity Resclution

SOFT-CEGAR] 13:06 28112.24

TUFEY 1 15:13 3441697

ALCHEMY 1 16:17 S2RTEIR. 62

Information Extraction

SoFT-CEGAR 3 1746 109,40

TUFFY 1 55:49 3044 29

ALCHEMY - - =
Relational Classification

SOFT-CEGAR 2 05000 HT0.37

TUFEY 1 05:42 R74.63

ALCHEMY - - *

Empirical evaluation of SOFT-CEGAR

Evaluation: Entity Resolution (ER)

107

108

Cost

=—a Soft-CEGAR (0.001)
', eo—a Soft-CEGAR (0.005)
1\‘H +—a Soft-CEGAR (D.01)
| |I \H - - Tuffy
| \ Alchermy
'L-CI' -xi--k\\
e NG
A NN
“
"'\-\.P.;:;kx
b
et
v _ e
"'\-\.:\,\: -"-\._
“““““““““““ i*.‘x‘?g;;.‘-""“ e
NN g O
-.._. "-_1__. .) '.__.--_.
. "y
300 L o 1300 BES M Rla] L300

Time {(MM:5%5)

Cora dataset: 1295 citations and 132 distinct research papers

Summary

Probabilistic programs: Succinct ways of specifying probabilistic
models

Probabilistic inference using program analysis:

Aditya V. Nori, Gil Hur, Sriram K. Rajamani, Selva Samuel. Semantics Sensitive
Sampling. Draft under review

Gil Hur, Aditya V. Nori, Sriram K. Rajamani. Program Transformations for Probabilistic
Inference. Draft under review

Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently Sampling
Probabilistic Programs via Program Analysis. In AISTATS '13: Artificial Intelligence and
Statistics, April 2013

Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon and Johannes
Borgstrom. Bayesian Inference Using Data Flow Analysis. In ESEC-FSE '13: Foundations
of Software Engineering, August 2013

Arun T. Chaganty, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. Combining
Relational Learning with SMT Solvers using CEGAR. In CAV '13: Computer Aided
Verification, July 2813

Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guillaume Claret, Thore
Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio Russo. A Model-Learner
Pattern for Bayesian Reasoning. In POPL '13: Principles of Programming Languages,
January 2013

