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Inductive Invariants

int x = y = 0
while (*) {
x = x + 1
y = y + x

}
assert(y >= 0)

Program Reference: Understanding IC3

Safe Inductive Invariants:

(x ≥ 0 ∧ y ≥ 0)

(x ≥ 0 ∧ y− x ≥ 0)
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Inductive Invariants

Given ⟨V ∪ V′, Init, Tr⟩ and Bad

{x, y, x′, y′}, x = 0 ∧ y = 0, x′ = x+ 1 ∧ y′ = y+ x and ¬(y ≥ 0)

Initiation: Init(V) ⇒ Inv(V)

(x = 0 ∧ y = 0) ⇒ (x ≥ 0 ∧ y ≥ 0)

Consecution: Inv(V) ∧ Tr(V, V′) ⇒ Inv(V′)

(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x+ 1 ∧ y′ = y+ x ⇒ (x′ ≥ 0 ∧ y′ ≥ 0)

Safety: Inv(V) ∧ Bad(V) ⇒ false

(x ≥ 0 ∧ y ≥ 0) ∧ ¬(y ≥ 0) ⇒ false

How to synthesize Inv?
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Guess and Check

Iterative learning: Inv ⇔ l0 ∧ l1 ∧ · · · ∧ ln
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Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

Probability distribution:

(x ≥ 0) 7→ 0.4

(−x ≥ 0) 7→ 0.0

(y ≥ 0) 7→ 0.3

(−y ≥ 0) 7→ 0.0

(x+ y ≥ 0) 7→ 0.2

(y− x ≥ 0) 7→ 0.1

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2
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Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

Fedyukovich, Kaufman, and
Bodík, FMCAD 2017

Sampling Grammar

c ::= 0 | 1 | −1

k ::= 0 | 1 | −1

v ::= x | y

lincom ::= k · v+ . . . k · v

ineq ::= lincom ≥ c |
lincom > c

cand ::= ineq∨ineq∨. . . ineq

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
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Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2

Detective Auguste Dupin gave them a ’stong acceptance’ as they found what was

hidden in plain sight.

5



Relearning Probabilities

Avoid candidates that are:

Already checked

Stronger than failures
(x > 5 ∨ x+ y ≥ 0) ⊃ (x > 10 ∨ x+ y > 5)

Weaker than learned lemmas
(y ≥ 0 ∨ y− x ≥ 10) ⊂ (y ≥ −1 ∨ y− x > 8)

Increase probability of candidates that are unrelated
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Experimental Evaluation

On 76 loopy programs, this technique outperformed

▷ µZ on 37 benchmarks (including 32 for which µZ crashed
or timed out after 10 minutes)

▷ ICE-DT on 53 benchmarks (including 30 . . .)

▷MCMC on 67 benchmarks (including 49 . . .)
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Downsides

Equal treatment of all syntactic expressions

Ignorance to whether the candidates have a semantic
value

Inability to predict an appropriate order of candidates to be
sampled and checked
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Downsides

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

Inductive Invariant1:
k mod 2 = 0 ∧ x = c

Inductive Invariant2:
k = x+ c ∧ x = c
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Accelerating Synthesis

Fedyukovich, and Bodík, TACAS 2017

Usage of Interpolation

Safety Proofs from Bounded Model Checking

Batch-wise candidate check

for each cand ∈ candidates∧
c∈candidates

c(V)
∧
Tr(V, V′) ⇒ cand(V′)
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Accelerating Synthesis

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

BMC:
x = 0∧ k = 0∧ c = 0∧¬(c <
N) ∧ ¬(x ≥ N)

Interpolants:
{x ≥ 0, c ≤ 0}, {x = c}, {x ≥
c}

Candidates:
k = x+ c ∧ k mod 2 = 0
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Behaviour as Data

Prabhu, Madhukar, Venkatesh, SAS 2018, to appear

assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
sum = sum + i;
i = i + 1;

}
assert(2*sum == n*(n+1));
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Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
sum = sum + i;
i = i + 1;

}
assert(2*sum == n*(n+1));

Safe Inductive invariant:
2 ∗ sum = i ∗ (i− 1) ∧ i ≤ n+ 1
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Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) { <0 , 1>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <1, 2>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <3, 3>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}
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sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}

If an invariant is a
conjunction of k
polynomial
equations each of
degree d and nullity
of A is k, where A is
a data matrix, then
any basis for
nullspace of A forms
an invariant.

Sharma et al, ESOP, 2013
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Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) { <0 , 1>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <1, 2>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <3, 3>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}

Inductive invariant:
a ∗ sum2 + b ∗ i2 + c ∗ sum ∗ i+

d ∗ sum+ e ∗ i+ f = 0

13



Algebraic Invariants

1 sum i sum2 sum ∗ i i2
1 0 1 0 0 1
1 1 2 1 2 4
1 3 3 9 9 9
1 6 4 36 24 16
1 10 5 100 50 25
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Algebraic Invariants


1 0 1 0 0 1
1 1 2 1 2 4
1 3 3 9 9 9
1 6 4 36 24 16
1 10 5 100 50 25

 ∗


a
b
c
d
e
f

 = 0
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Algebraic Invariants

basis(Nullspace(M)) =


0
−2
−1
0
0
1


0∗1−2∗ sum−1∗ i+0∗ sum2+0∗ sum∗ i+1∗ i2

2 ∗ sum = i ∗ (i− 1)
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Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Disjunctive:
((x ≥ LRG)∨
(y = x)∧
(x ≤ 2 ∗ LRG))

Conditional Invariants:
(((x < LRG) ⇒ (y = LRG))∧
((x ≥ LRG) ⇒ (y = x)))∧
(x ≤ 2 ∗ LRG)

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′
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Results

ELABor solved 16/24 new programs when
compared to FreqHorn-2
2x speedup and 100s time difference for 31
programs
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Future Directions

Usage in solving nested loops (In Review)

Neural nets to refine sampling

Deciding between behaviour or appearance
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Conclusion

Appearance guided synthesis

Behaviours to obtain candidates

Conditional invariants for disjunctions
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Conditional Invariants

Polynomial relation: x′i ∈ V′,
f(x′i) =

c1 ∗m1 + c2 ∗m2 + · · ·+ cn ∗mn

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

Mmatrix of monomials from sk
f⃗x′i

T
=

(
x′i1 . . . x′il

)
from s′k+1

rank(M) ̸= rank((M|f⃗x′i )) no
solution over c1 . . . cn
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Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

y = LRG
sk(LRG) = 100, sk(x) = 100,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 101,
sk+1(y′) = 101

y = x
sk(LRG) = 100, sk(x) = 10,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 11,
sk+1(y′) = 100
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Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Rank


const LRG x y
1 100 100 100
1 100 10 100
. . .


̸=

Rank


const LRG x y y′
1 100 100 100 101
1 100 10 100 100
. . .
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The cardinality of B is called dimension of V.
For a matrix A, the dimension of the vector
space generated by its columns is called its
rank. The nullspace of a matrix A is a set of all
vectors v such that Av = 0. The dimension of
a matrix’s nullspace is also called its nullity.
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