Safety Proofs using Appearance and Behaviours

Sumanth Prabhu S, Kumar Madhukar, R Venkatesh

TRDDC, Pune

July 20, 2018

Program Reference: Understanding IC3

Safe Inductive Invariants: $(x \ge 0 \land y \ge 0)$ $(x \ge 0 \land y - x \ge 0)$

Program Reference: Understanding IC3

Given $\langle V \cup V', Init, Tr \rangle$ and *Bad*

Initiation: $Init(V) \Rightarrow Inv(V)$

Consecution: $Inv(V) \land Tr(V, V') \Rightarrow Inv(V')$

Safety: $Inv(V) \land Bad(V) \Rightarrow false$

Given $(V \cup V', Init, Tr)$ and *Bad* $\{x, y, x', y'\}, x = 0 \land y = 0, x' = x + 1 \land y' = y + x \text{ and } \neg (y \ge 0)$

Initiation: $Init(V) \Rightarrow Inv(V)$ $(x = 0 \land y = 0) \Rightarrow (x \ge 0 \land y \ge 0)$

Consecution: $Inv(V) \land Tr(V, V') \Rightarrow Inv(V')$ $(x \ge 0 \land y \ge 0) \land x' = x + 1 \land y' = y + x \Rightarrow (x' \ge 0 \land y' \ge 0)$

Safety: $Inv(V) \land Bad(V) \Rightarrow false$ $(x \ge 0 \land y \ge 0) \land \neg(y \ge 0) \Rightarrow false$

Given $(V \cup V', Init, Tr)$ and *Bad* $\{x, y, x', y'\}, x = 0 \land y = 0, x' = x + 1 \land y' = y + x \text{ and } \neg (y \ge 0)$

Initiation: $Init(V) \Rightarrow Inv(V)$ $(x = 0 \land y = 0) \Rightarrow (x \ge 0 \land y \ge 0)$

Consecution: $Inv(V) \land Tr(V, V') \Rightarrow Inv(V')$ $(x \ge 0 \land y \ge 0) \land x' = x + 1 \land y' = y + x \Rightarrow (x' \ge 0 \land y' \ge 0)$

Safety: $Inv(V) \land Bad(V) \Rightarrow false$ $(x \ge 0 \land y \ge 0) \land \neg(y \ge 0) \Rightarrow false$

How to synthesize Inv?

Guess and Check

Iterative learning: $Inv \Leftrightarrow I_0 \land I_1 \land \cdots \land I_n$

Probability distribution:

 $(\mathbf{x} \ge 0) \mapsto 0.4$ $(-\mathbf{x} \ge 0) \mapsto 0.0$ $(\mathbf{y} \ge 0) \mapsto 0.3$ $(-\mathbf{y} \ge 0) \mapsto 0.0$ $(\mathbf{x} + \mathbf{y} \ge 0) \mapsto 0.2$ $(\mathbf{y} - \mathbf{x} \ge 0) \mapsto 0.1$

int x = y = 0
while (*)
 x = x + 1
 y = y + x

Fedyukovich, Kaufman, and Bodík, FMCAD 2017

> Sampling Grammar c ::= 0 | 1 | -1 k ::= 0 | 1 | -1 v ::= x | y $lincom ::= k \cdot v + \dots k \cdot v$ $ineq ::= lincom \ge c |$ lincom > c $cand ::= ineq \lor ineq \lor \dots ineq$

assert(y >= 0)

How often does a disjunctive formula have the arity *i*

How often does an operator $op \in \{>, \ge\}$ appear among the inequalities

How often does a variable *v* have a coefficient *k*

assert(y >= 0)

How often does a disjunctive formula have the arity *i*

 $p_{\vee}(2) = 0$

How often does an operator $op \in \{>, \geq\}$ appear among the inequalities

 $p_{>} = 1/5$

How often does a variable *v* have a coefficient *k*

 $p_{\{1,x\}}(1) = 1/2$

Detective Auguste Dupin gave them a 'stong acceptance' as they found what was hidden in plain sight.

Relearning Probabilities

Avoid candidates that are:

Already checked Stronger than failures $(x > 5 \lor x + y \ge 0) \supset (x > 10 \lor x + y > 5)$ Weaker than learned lemmas $(y \ge 0 \lor y - x \ge 10) \subset (y \ge -1 \lor y - x > 8)$

Increase probability of candidates that are unrelated

Experimental Evaluation

On 76 loopy programs, this technique outperformed

 $\triangleright \mu Z$ on 37 benchmarks (including 32 for which μZ crashed or timed out after 10 minutes)

▷ ICE-DT on 53 benchmarks (including 30 . . .)

▷ MCMC on 67 benchmarks (including 49 . . .)

Equal treatment of all syntactic expressions

Ignorance to whether the candidates have a semantic value

Inability to predict an appropriate order of candidates to be sampled and checked

Downsides

int x = k = c = 0;int N = *;while (c < N)int M = *;if $(k \mod 2 == 0)$ x = x + M: c = c + M;k = x + c;

Inductive Invariant1: $k \mod 2 = 0 \land x = c$

Inductive Invariant2: $k = x + c \land x = c$

Fedyukovich, and Bodík, TACAS 2017

Usage of Interpolation

Safety Proofs from Bounded Model Checking

Batch-wise candidate check

 $\begin{array}{l} \text{for each } cand \in candidates \\ \bigwedge \\ c \in candidates \end{array} c(V) \bigwedge \textit{Tr}(V,V') \Rightarrow cand(V') \end{array}$

BMC: $x = 0 \land k = 0 \land c = 0 \land \neg (c < N) \land \neg (x \ge N)$

BMC: $x = 0 \land k = 0 \land c = 0 \land \neg(c < N) \land \neg(x \ge N)$

Interpolants: $\{x \ge 0, c \le 0\}, \{x = c\}, \{x \ge c\}$

BMC: $x = 0 \land k = 0 \land c = 0 \land \neg(c < N) \land \neg(x \ge N)$

Interpolants: $\{x \ge 0, c \le 0\}, \{x = c\}, \{x \ge c\}$

Candidates: $k = x + c \wedge k \mod 2 = 0$

Prabhu, Madhukar, Venkatesh, SAS 2018, to appear

```
assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
   sum = sum + i;
   i = i + 1;
}
assert(2*sum == n*(n+1));
```

```
assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
   sum = sum + i;
   i = i + 1;
}
assert(2*sum == n*(n+1));
```

Safe Inductive invariant: $2 * sum = i * (i - 1) \land i \le n + 1$

```
assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) {
                         <0 , 1>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <1, 2>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <3, 3>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <6, 4>
  sum = sum + i;
  i = i + 1;
3
```

```
assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) {
                         <0 , 1>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <1,
                              2>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <3, 3>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <6,
                              4>
  sum = sum + i;
  i = i + 1;
3
```

If an invariant is a conjunction of k polynomial equations each of degree d and nullity of A is k, where A is a data matrix, then any basis for nullspace of A forms an invariant.

Sharma et al, ESOP, 2013

```
assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) {
                         <0 , 1>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <1, 2>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <3, 3>
  sum = sum + i;
  i = i + 1;
}
if(i<=n) {
                         <6, 4>
  sum = sum + i;
  i = i + 1;
3
```

Inductive invariant: $a * sum^2 + b * i^2 + c * sum * i + d * sum + e * i + f = 0$

Algebraic Invariants

1	sum	i	sum ²	sum * i	i^2
1	0	1	0	0	1
1	1	2	1	2	4
1	3	3	9	9	9
1	6	4	36	24	16
1	10	5	100	50	25

Algebraic Invariants

Algebraic Invariants

$$basis(Nullspace(M)) = \begin{bmatrix} 0\\ -2\\ -1\\ 0\\ 0\\ 1 \end{bmatrix}$$

 $0*1-2*\textit{sum}-1*\textit{i}+0*\textit{sum}^2+0*\textit{sum}*\textit{i}+1*\textit{i}^2$

$$2 * sum = i * (i - 1)$$

```
int LRG = nondet();
assume(LRG > 0);
int x = 0, y = LRG;
while(x < 2*LRG) {
  if (x < LRG) {
    y = y;
  } else {
    y = y + 1;
  }
  x = x + 1;
}
assert(y == 2*LRG);
```

```
int LRG = nondet();
assume(LRG > 0);
int x = 0, y = LRG;
while(x < 2*LRG) {
  if (x < LRG) {
    y = y;
  } else {
    y = y + 1;
  }
  x = x + 1;
}
assert(y == 2*LRG);
```

```
Disjunctive:

((x \ge LRG) \lor

(y = x) \land

(x \le 2 * LRG))
```

```
int LRG = nondet();
assume(LRG > 0);
int x = 0, y = LRG;
while(x < 2*LRG) {
  if (x < LRG) {
    y = y;
  } else {
    y = y + 1;
  }
  x = x + 1;
}
assert(y == 2*LRG);
```

Disjunctive: $((x \ge LRG) \lor$ $(y = x) \land$ $(x \le 2 * LRG))$

Conditional Invariants: $(((x < LRG) \Rightarrow (y = LRG)) \land$ $((x \ge LRG) \Rightarrow (y = x))) \land$ $(x \le 2 * LRG)$

CTIs: $s_k \models Inv$ and $(s_k, s'_{k+1}) \models Tr$, but $s'_{k+1} \not\models Inv'$

Results

ELABOR solved 16/24 new programs when compared to FREQHORN-2 2x speedup and 100s time difference for 31 programs

Usage in solving nested loops (In Review)

Neural nets to refine sampling

Deciding between behaviour or appearance

Behaviours to obtain candidates

Conditional invariants for disjunctions

References

Grigory Fedyukovich and Rastislav Bodík. "Accelerating Syntax-Guided Invariant Synthesis". In: 2018 Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018, Thessaloniki, Greece, April 14-20, 2018. To appear.

Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodík. "Sampling invariants from frequency distributions". In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. 2017, pp. 100–107.

Sumanth Prabhu S, Kumar Madhukar, and R Venkatesh. "Efficiently Learning Safety Proofs from Appearance as well as Behaviours". In: *Static Analysis Symposium*. 2018, to appear.

	-		
	-	_	

Rahul Sharma et al. "A Data Driven Approach for Algebraic Loop Invariants". In: Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. 2013, pp. 574–592.

Al	gorithm 5 ELABOR: Learning from Behaviours and CTIs					
	Input: Init, Tr, Bad and V					
	Output: lemmas					
1:	$behaviours \leftarrow \text{EXECUTE}(Init, Tr, Bad)$					
2:	$candidates \leftarrow \text{GETALGEBRAICCANDIDATES}(behaviours)$					
3:	$\mathcal{P} \leftarrow \text{COMPUTEDISTRIBUTION}(Init, Tr, Bad)$					
4:	$G \leftarrow \text{constructGrammar}(\mathcal{P})$					
5:	$\mathcal{P}_a \leftarrow \text{COMPUTEDISTRIBUTION}(Tr_{conds})$					
6:	$G_a \leftarrow \text{CONSTRUCTGRAMMAR}(\mathcal{P}_a)$					
7:	$L \leftarrow \emptyset$ \triangleright the set of lemmas					
8:	$disjunct \leftarrow false$					
9:	while $\bigwedge_{l \in L} l(V) \wedge Bad(V)$ is SAT do					
10:	if $\neg disjunct$ then $disjunct \leftarrow CHECKFORIMPL(CTIs)$					
11:	if disjunct then antecedent \leftarrow NEWCANDIDATE (G_a)					
12:	$\mathbf{while} \ candidates < BatchSize \ \mathbf{do} \qquad \qquad \triangleright \ \mathrm{for} \ \mathrm{a} \ \mathrm{pre-decided} \ BatchSize$					
13:	$cand \leftarrow \text{NEWCANDIDATE}(G)$					
14:	if $init \leftarrow Init(V) \land \neg cand(V)$ is UNSAT then					
15:	$ \textbf{if } \textit{disjunct } \textbf{then } \textit{candidates} \leftarrow \textit{candidates} \cup \{\textit{antecedent} \Rightarrow \textit{cand}\} \\ $					
16:	$\mathbf{else} \ candidates \leftarrow candidates \cup \{cand\}$					
17:	else $ADJUST(cand, G, P)$					
18:	for $cand \in candidates$ do					
19:	if $consec \leftarrow \bigwedge_{c \in candidates} c(V) \bigwedge_{l \in L} l(V) \wedge Tr(V, V') \wedge \neg cand(V')$ is SAT then					
20:	$candidates \leftarrow candidates \setminus \{cand\}$					
21:	$\operatorname{ADJUST}(cand, G, \mathcal{P})$					
22:	$CTIs \leftarrow CTIs \cup \{\text{getModel}(V)\} \cup \{\text{getModel}(V')\}$					
23:	$candidates.reset$ \triangleright start the loop afresh					
24:	if $disjunct \land candidates > 0$ then $ADJUST(antecedent, G_a, \mathcal{P}_a)$					
25:	for $cand \in candidates$ do $L \leftarrow L \cup \{cand\}$					
26:	return L					

Polynomial relation: $x'_i \in V'$, $f(x'_i) = c_1 * m_1 + c_2 * m_2 + \dots + c_n * m_n$

Polynomial relation: $x'_i \in V'$, $f(x'_i) = c_1 * m_1 + c_2 * m_2 + \dots + c_n * m_n$

CTIs: $s_k \models Inv$ and $(s_k, s'_{k+1}) \models Tr$, but $s'_{k+1} \not\models Inv'$

Polynomial relation: $x'_i \in V'$, $f(x'_i) =$ $c_1 * m_1 + c_2 * m_2 + \dots + c_n * m_n$

CTIs:
$$s_k \models Inv$$
 and $(s_k, s'_{k+1}) \models Tr$,
but $s'_{k+1} \not\models Inv'$

M matrix of monomials from s_k $\vec{f_{x'_i}}^T = \begin{pmatrix} x'_{i_1} & \dots & x'_{i_l} \end{pmatrix}$ from s'_{k+1}

Polynomial relation: $x'_i \in V'$, $f(x'_i) =$ $c_1 * m_1 + c_2 * m_2 + \dots + c_n * m_n$

CTIs:
$$s_k \models Inv$$
 and $(s_k, s'_{k+1}) \models Tr$,
but $s'_{k+1} \not\models Inv'$

M matrix of monomials from s_k $\vec{f_{x'_i}}^T = \begin{pmatrix} x'_{i_1} & \dots & x'_{i_l} \end{pmatrix}$ from s'_{k+1}

 $rank(\mathbf{M}) \neq rank((\mathbf{M}|\vec{f_{x'_i}}))$ no solution over $c_1 \dots c_n$

```
int LRG = nondet();
assume(LRG > 0);
int x = 0, y = LRG;
while(x < 2*LRG) {
  if (x < LRG) {
   y = y;
  } else {
   y = y + 1;
  }
  x = x + 1:
}
assert(y == 2*LRG);
```

```
y = LRG

s_k(LRG) = 100, s_k(x) = 100,

s_k(y) = 100

s'_{k+1}(LRG') = 100,

s_{k+1}(x') = 101,

s_{k+1}(y') = 101
```

```
int LRG = nondet();
assume(LRG > 0);
int x = 0, y = LRG;
while(x < 2*LRG) {
  if (x < LRG) {
   v = v;
  } else {
    y = y + 1;
  }
  x = x + 1:
}
assert(y == 2*LRG);
```

```
y = LRG

s_{k}(LRG) = 100, s_{k}(x) = 100,

s_{k}(y) = 100

s'_{k+1}(LRG') = 100,

s_{k+1}(x') = 101,

s_{k+1}(y') = 101

y = x

s_{k}(LRG) = 100, s_{k}(x) = 10.
```

$$y = x$$

 $s_k(LRG) = 100, s_k(x) = 10,$
 $s_k(y) = 100$
 $s'_{k+1}(LRG') = 100,$
 $s_{k+1}(x') = 11,$
 $s_{k+1}(y') = 100$


```
        const
        LRG
        x
        y
        1
        100
        100
        100
        100
        1
        1
        100
        100
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1

 int LRG = nondet();
assume(LRG > 0);
 int x = 0, y = LRG;
                                                                                                                                                                                                                          ¥
while(x < 2*LRG) {

        const
        LRG
        x
        y
        y'

        1
        100
        100
        100
        101

        1
        100
        10
        100
        100

              if (x < LRG) {
                   y = y;
             } else {
                       y = y + 1;
             }
             x = x + 1;
 }
assert(y == 2*LRG);
```

The cardinality of **B** is called *dimension* of **V**. For a matrix **A**, the dimension of the vector space generated by its columns is called its *rank*. The *nullspace* of a matrix **A** is a set of all vectors **v** such that $\mathbf{Av} = 0$. The dimension of a matrix's nullspace is also called its *nullity*.