
Safety Proofs using
Appearance and
Behaviours

Sumanth Prabhu S, Kumar Madhukar, R Venkatesh
TRDDC, Pune

July 20, 2018

Inductive Invariants

int x = y = 0
while (*) {
x = x + 1
y = y + x

}
assert(y >= 0)

Program Reference: Understanding IC3

Safe Inductive Invariants:

(x ≥ 0 ∧ y ≥ 0)

(x ≥ 0 ∧ y− x ≥ 0)

2

Inductive Invariants

int x = y = 0
while (*) {
x = x + 1
y = y + x

}
assert(y >= 0)

Program Reference: Understanding IC3

Safe Inductive Invariants:

(x ≥ 0 ∧ y ≥ 0)

(x ≥ 0 ∧ y− x ≥ 0)

2

Inductive Invariants

Given ⟨V ∪ V′, Init, Tr⟩ and Bad

{x, y, x′, y′}, x = 0 ∧ y = 0, x′ = x+ 1 ∧ y′ = y+ x and ¬(y ≥ 0)

Initiation: Init(V) ⇒ Inv(V)

(x = 0 ∧ y = 0) ⇒ (x ≥ 0 ∧ y ≥ 0)

Consecution: Inv(V) ∧ Tr(V, V′) ⇒ Inv(V′)

(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x+ 1 ∧ y′ = y+ x ⇒ (x′ ≥ 0 ∧ y′ ≥ 0)

Safety: Inv(V) ∧ Bad(V) ⇒ false

(x ≥ 0 ∧ y ≥ 0) ∧ ¬(y ≥ 0) ⇒ false

How to synthesize Inv?

3

Inductive Invariants

Given ⟨V ∪ V′, Init, Tr⟩ and Bad
{x, y, x′, y′}, x = 0 ∧ y = 0, x′ = x+ 1 ∧ y′ = y+ x and ¬(y ≥ 0)

Initiation: Init(V) ⇒ Inv(V)
(x = 0 ∧ y = 0) ⇒ (x ≥ 0 ∧ y ≥ 0)

Consecution: Inv(V) ∧ Tr(V, V′) ⇒ Inv(V′)
(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x+ 1 ∧ y′ = y+ x ⇒ (x′ ≥ 0 ∧ y′ ≥ 0)

Safety: Inv(V) ∧ Bad(V) ⇒ false
(x ≥ 0 ∧ y ≥ 0) ∧ ¬(y ≥ 0) ⇒ false

How to synthesize Inv?

3

Inductive Invariants

Given ⟨V ∪ V′, Init, Tr⟩ and Bad
{x, y, x′, y′}, x = 0 ∧ y = 0, x′ = x+ 1 ∧ y′ = y+ x and ¬(y ≥ 0)

Initiation: Init(V) ⇒ Inv(V)
(x = 0 ∧ y = 0) ⇒ (x ≥ 0 ∧ y ≥ 0)

Consecution: Inv(V) ∧ Tr(V, V′) ⇒ Inv(V′)
(x ≥ 0 ∧ y ≥ 0) ∧ x′ = x+ 1 ∧ y′ = y+ x ⇒ (x′ ≥ 0 ∧ y′ ≥ 0)

Safety: Inv(V) ∧ Bad(V) ⇒ false
(x ≥ 0 ∧ y ≥ 0) ∧ ¬(y ≥ 0) ⇒ false

How to synthesize Inv?

3

Guess and Check

Iterative learning: Inv ⇔ l0 ∧ l1 ∧ · · · ∧ ln

4

Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

Probability distribution:

(x ≥ 0) 7→ 0.4

(−x ≥ 0) 7→ 0.0

(y ≥ 0) 7→ 0.3

(−y ≥ 0) 7→ 0.0

(x+ y ≥ 0) 7→ 0.2

(y− x ≥ 0) 7→ 0.1

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2

5

Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

Fedyukovich, Kaufman, and
Bodík, FMCAD 2017

Sampling Grammar

c ::= 0 | 1 | −1

k ::= 0 | 1 | −1

v ::= x | y

lincom ::= k · v+ . . . k · v

ineq ::= lincom ≥ c |
lincom > c

cand ::= ineq∨ineq∨. . . ineq

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2

5

Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2

5

Appearance Guided Synthesis

int x = y = 0
while (*)

x = x + 1
y = y + x

assert(y >= 0)

How often does a disjunctive
formula have the arity i

p∨(2) = 0

How often does an operator
op ∈ {>,≥} appear among the
inequalities

p> = 1/5

How often does a variable v have
a coefficient k

p{1,x}(1) = 1/2

Detective Auguste Dupin gave them a ’stong acceptance’ as they found what was

hidden in plain sight.

5

Relearning Probabilities

Avoid candidates that are:

Already checked

Stronger than failures
(x > 5 ∨ x+ y ≥ 0) ⊃ (x > 10 ∨ x+ y > 5)

Weaker than learned lemmas
(y ≥ 0 ∨ y− x ≥ 10) ⊂ (y ≥ −1 ∨ y− x > 8)

Increase probability of candidates that are unrelated

6

Experimental Evaluation

On 76 loopy programs, this technique outperformed

▷ µZ on 37 benchmarks (including 32 for which µZ crashed
or timed out after 10 minutes)

▷ ICE-DT on 53 benchmarks (including 30 . . .)

▷MCMC on 67 benchmarks (including 49 . . .)

7

Downsides

Equal treatment of all syntactic expressions

Ignorance to whether the candidates have a semantic
value

Inability to predict an appropriate order of candidates to be
sampled and checked

8

Downsides

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

Inductive Invariant1:
k mod 2 = 0 ∧ x = c

Inductive Invariant2:
k = x+ c ∧ x = c

9

Accelerating Synthesis

Fedyukovich, and Bodík, TACAS 2017

Usage of Interpolation

Safety Proofs from Bounded Model Checking

Batch-wise candidate check

for each cand ∈ candidates∧
c∈candidates

c(V)
∧
Tr(V, V′) ⇒ cand(V′)

10

Accelerating Synthesis

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

BMC:
x = 0∧ k = 0∧ c = 0∧¬(c <
N) ∧ ¬(x ≥ N)

Interpolants:
{x ≥ 0, c ≤ 0}, {x = c}, {x ≥
c}

Candidates:
k = x+ c ∧ k mod 2 = 0

11

Accelerating Synthesis

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

BMC:
x = 0∧ k = 0∧ c = 0∧¬(c <
N) ∧ ¬(x ≥ N)

Interpolants:
{x ≥ 0, c ≤ 0}, {x = c}, {x ≥
c}

Candidates:
k = x+ c ∧ k mod 2 = 0

11

Accelerating Synthesis

int x = k = c = 0;
int N = *;
while (c < N)
int M = *;
if (k mod 2 == 0)

x = x + M;
c = c + M;
k = x + c;

assert(x >= N);

BMC:
x = 0∧ k = 0∧ c = 0∧¬(c <
N) ∧ ¬(x ≥ N)

Interpolants:
{x ≥ 0, c ≤ 0}, {x = c}, {x ≥
c}

Candidates:
k = x+ c ∧ k mod 2 = 0

11

Behaviour as Data

Prabhu, Madhukar, Venkatesh, SAS 2018, to appear

assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
sum = sum + i;
i = i + 1;

}
assert(2*sum == n*(n+1));

12

Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
while(i<=n) {
sum = sum + i;
i = i + 1;

}
assert(2*sum == n*(n+1));

Safe Inductive invariant:
2 ∗ sum = i ∗ (i− 1) ∧ i ≤ n+ 1

12

Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) { <0 , 1>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <1, 2>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <3, 3>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}

13

Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) { <0 , 1>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <1, 2>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <3, 3>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}

If an invariant is a
conjunction of k
polynomial
equations each of
degree d and nullity
of A is k, where A is
a data matrix, then
any basis for
nullspace of A forms
an invariant.

Sharma et al, ESOP, 2013

13

Behaviour as Data

assume(1 <= n <= 1000);
sum = 0, i = 1;
if(i<=n) { <0 , 1>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <1, 2>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <3, 3>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <6, 4>
sum = sum + i;
i = i + 1;

}
if(i<=n) { <10, 5>
sum = sum + i;
i = i + 1;

}

Inductive invariant:
a ∗ sum2 + b ∗ i2 + c ∗ sum ∗ i+

d ∗ sum+ e ∗ i+ f = 0

13

Algebraic Invariants

1 sum i sum2 sum ∗ i i2
1 0 1 0 0 1
1 1 2 1 2 4
1 3 3 9 9 9
1 6 4 36 24 16
1 10 5 100 50 25

14

Algebraic Invariants

1 0 1 0 0 1
1 1 2 1 2 4
1 3 3 9 9 9
1 6 4 36 24 16
1 10 5 100 50 25

 ∗

a
b
c
d
e
f

 = 0

14

Algebraic Invariants

basis(Nullspace(M)) =

0
−2
−1
0
0
1

0∗1−2∗ sum−1∗ i+0∗ sum2+0∗ sum∗ i+1∗ i2

2 ∗ sum = i ∗ (i− 1)

14

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Disjunctive:
((x ≥ LRG)∨
(y = x)∧
(x ≤ 2 ∗ LRG))

Conditional Invariants:
(((x < LRG) ⇒ (y = LRG))∧
((x ≥ LRG) ⇒ (y = x)))∧
(x ≤ 2 ∗ LRG)

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

15

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Disjunctive:
((x ≥ LRG)∨
(y = x)∧
(x ≤ 2 ∗ LRG))

Conditional Invariants:
(((x < LRG) ⇒ (y = LRG))∧
((x ≥ LRG) ⇒ (y = x)))∧
(x ≤ 2 ∗ LRG)

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

15

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Disjunctive:
((x ≥ LRG)∨
(y = x)∧
(x ≤ 2 ∗ LRG))

Conditional Invariants:
(((x < LRG) ⇒ (y = LRG))∧
((x ≥ LRG) ⇒ (y = x)))∧
(x ≤ 2 ∗ LRG)

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

15

Results

ELABor solved 16/24 new programs when
compared to FreqHorn-2
2x speedup and 100s time difference for 31
programs

16

Future Directions

Usage in solving nested loops (In Review)

Neural nets to refine sampling

Deciding between behaviour or appearance

17

Conclusion

Appearance guided synthesis

Behaviours to obtain candidates

Conditional invariants for disjunctions

18

References

Grigory Fedyukovich and Rastislav Bodıḱ. “Accelerating Syntax-Guided Invariant Synthesis”. In:
2018 Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018, Thessaloniki,
Greece, April 14-20, 2018. To appear.

Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodıḱ. “Sampling invariants from
frequency distributions”. In: 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna,
Austria, October 2-6, 2017. 2017, pp. 100–107.

Sumanth Prabhu S, Kumar Madhukar, and R Venkatesh. “Efficiently Learning Safety Proofs from
Appearance as well as Behaviours”. In: Static Analysis Symposium. 2018, to appear.

Rahul Sharma et al. “A Data Driven Approach for Algebraic Loop Invariants”. In: Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,
2013. Proceedings. 2013, pp. 574–592.

19

20

Conditional Invariants

Polynomial relation: x′i ∈ V′,
f(x′i) =

c1 ∗m1 + c2 ∗m2 + · · ·+ cn ∗mn

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

Mmatrix of monomials from sk
f⃗x′i

T
=

(
x′i1 . . . x′il

)
from s′k+1

rank(M) ̸= rank((M|f⃗x′i)) no
solution over c1 . . . cn

21

Conditional Invariants

Polynomial relation: x′i ∈ V′,
f(x′i) =

c1 ∗m1 + c2 ∗m2 + · · ·+ cn ∗mn

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

Mmatrix of monomials from sk
f⃗x′i

T
=

(
x′i1 . . . x′il

)
from s′k+1

rank(M) ̸= rank((M|f⃗x′i)) no
solution over c1 . . . cn

21

Conditional Invariants

Polynomial relation: x′i ∈ V′,
f(x′i) =

c1 ∗m1 + c2 ∗m2 + · · ·+ cn ∗mn

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

Mmatrix of monomials from sk
f⃗x′i

T
=

(
x′i1 . . . x′il

)
from s′k+1

rank(M) ̸= rank((M|f⃗x′i)) no
solution over c1 . . . cn

21

Conditional Invariants

Polynomial relation: x′i ∈ V′,
f(x′i) =

c1 ∗m1 + c2 ∗m2 + · · ·+ cn ∗mn

CTIs: sk |= Inv and (sk, s′k+1) |= Tr,
but s′k+1 ̸|= Inv′

Mmatrix of monomials from sk
f⃗x′i

T
=

(
x′i1 . . . x′il

)
from s′k+1

rank(M) ̸= rank((M|f⃗x′i)) no
solution over c1 . . . cn

21

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

y = LRG
sk(LRG) = 100, sk(x) = 100,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 101,
sk+1(y′) = 101

y = x
sk(LRG) = 100, sk(x) = 10,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 11,
sk+1(y′) = 100

22

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

y = LRG
sk(LRG) = 100, sk(x) = 100,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 101,
sk+1(y′) = 101

y = x
sk(LRG) = 100, sk(x) = 10,
sk(y) = 100

s′k+1(LRG
′) = 100,

sk+1(x′) = 11,
sk+1(y′) = 100

22

Conditional Invariants

int LRG = nondet();
assume(LRG > 0);

int x = 0, y = LRG;

while(x < 2*LRG) {
if (x < LRG) {
y = y;

} else {
y = y + 1;

}
x = x + 1;

}
assert(y == 2*LRG);

Rank

const LRG x y
1 100 100 100
1 100 10 100
. . .

̸=

Rank

const LRG x y y′
1 100 100 100 101
1 100 10 100 100
. . .

23

The cardinality of B is called dimension of V.
For a matrix A, the dimension of the vector
space generated by its columns is called its
rank. The nullspace of a matrix A is a set of all
vectors v such that Av = 0. The dimension of
a matrix’s nullspace is also called its nullity.

24

